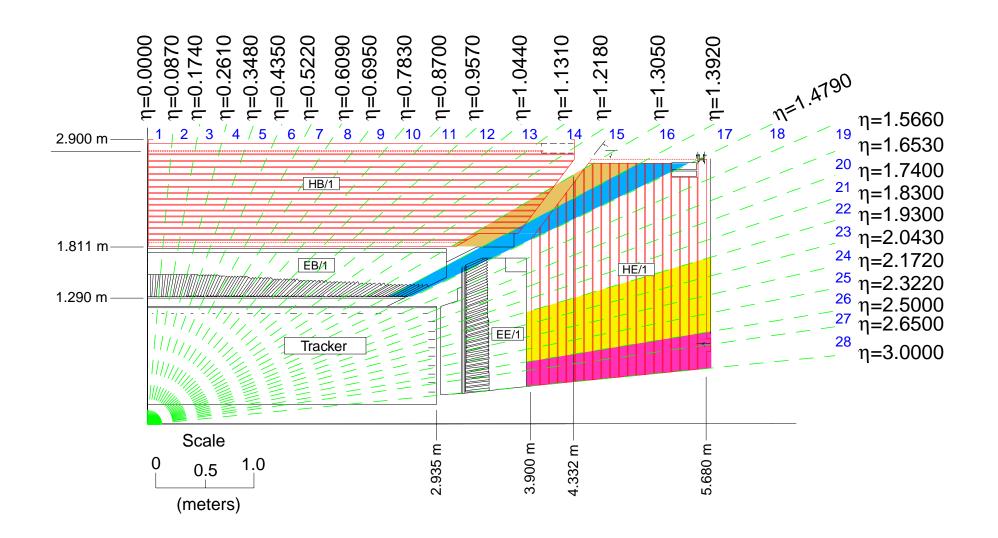
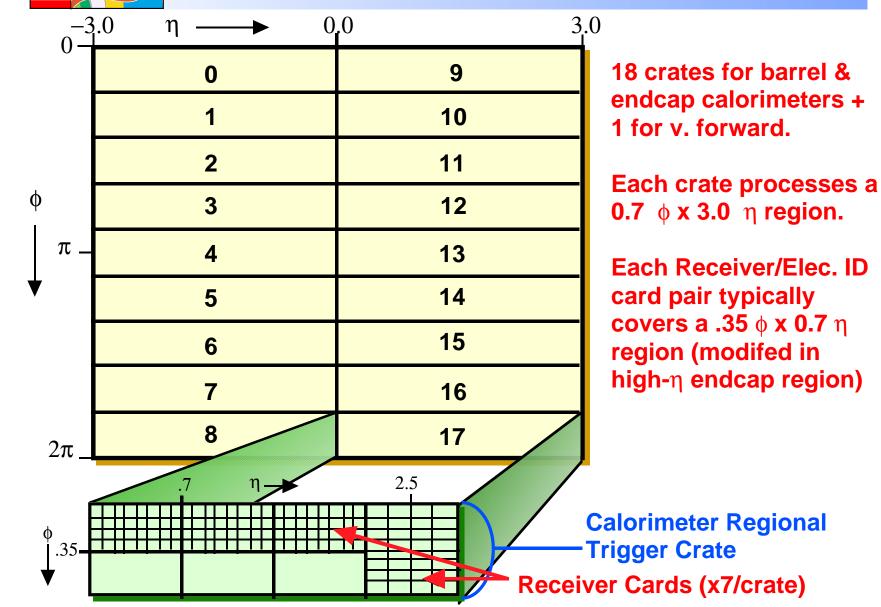

Wesley Smith, *U. Wisconsin* CMS Trigger Project Manager

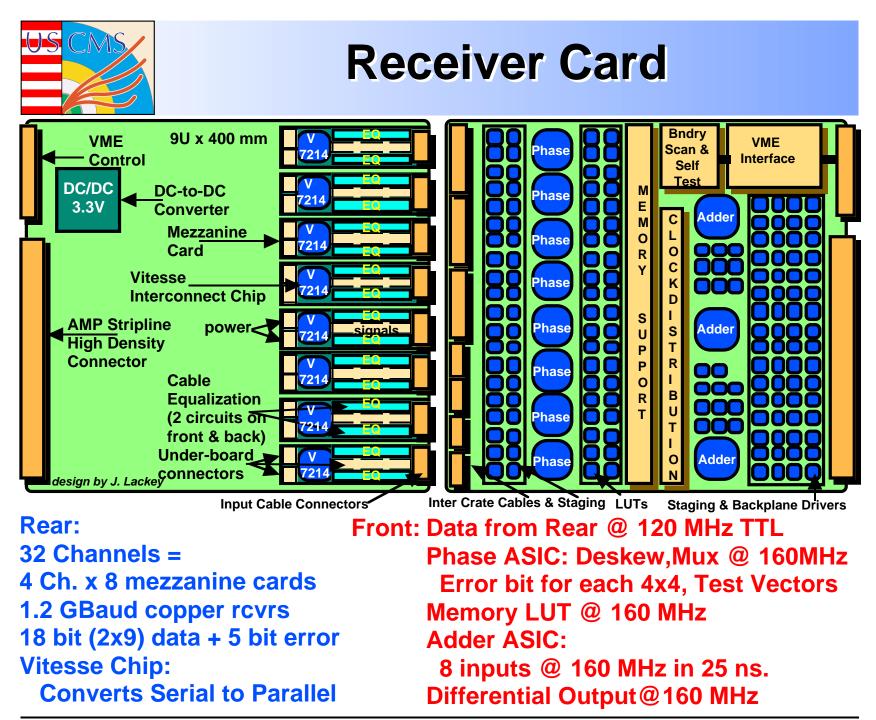
DOE/NSF Review April 12, 2000

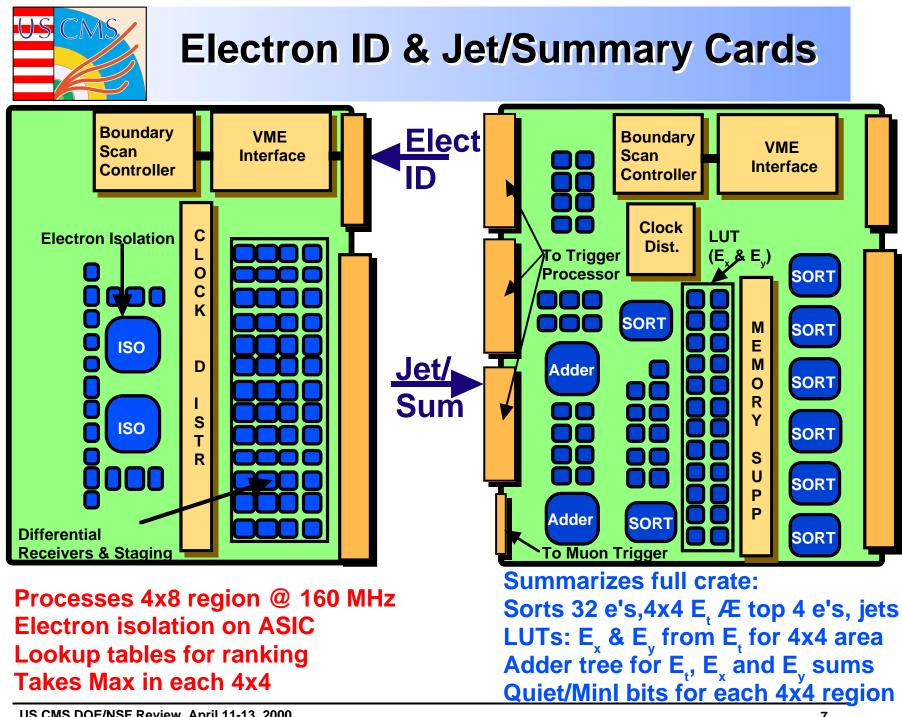
Calorimeter Trigger Overview



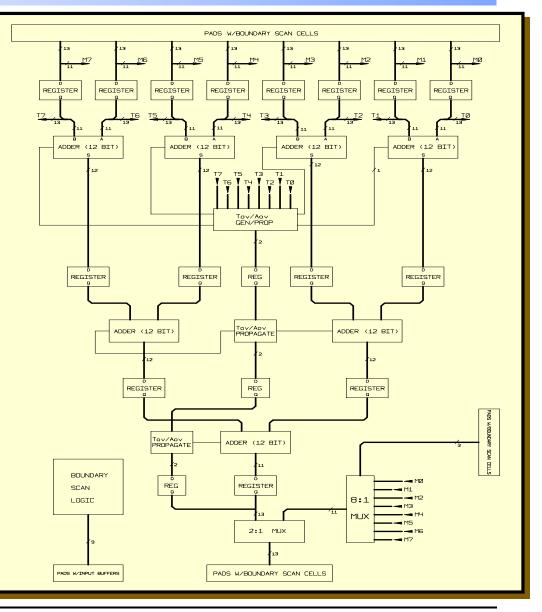
Into 133 rear-mounted Receiver Cards (ptyp. tstd. w/ ASICs)
 160 MHz point to point backplane (ptyp. tstd.)


- 19 Clock&Control (ptyp. tstd.), 133 Electron ID (ptyp. tstd.)
 - 19 Jet/Summary, Receiver Cards operate @ 160 MHz





Cal. Trigger Tower Mapping



8 x 13-bit 160 MHz Adder ASIC

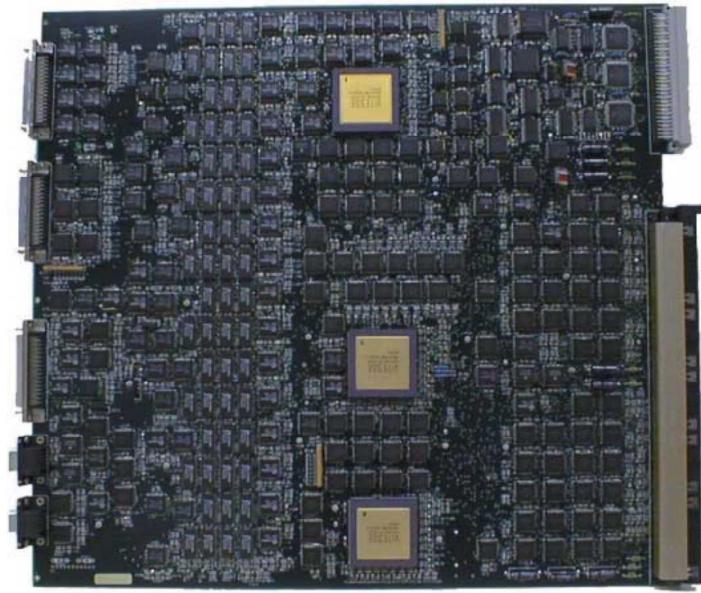
Vitesse 0.6µ H-GaAs Process: ECL I/O

- 13 bits per operand x 8 operands
- Thirteen bit output
- Latency:
 25 ns @ 160 MHz
- Full Boundary Scan
- •~11,000 cells
- •4 Watts
- Tested > 200 MHz
- Operated on RC
- In Production

Cal. Trigger Dataflow Test

Prototype Crate with

- 160 MHz Backplane
- Proto. Receiver Card (rear)
- Proto. Clock Card (front)
- Proto. Electron ID Card (front) Full 160 MHz dataflow verified

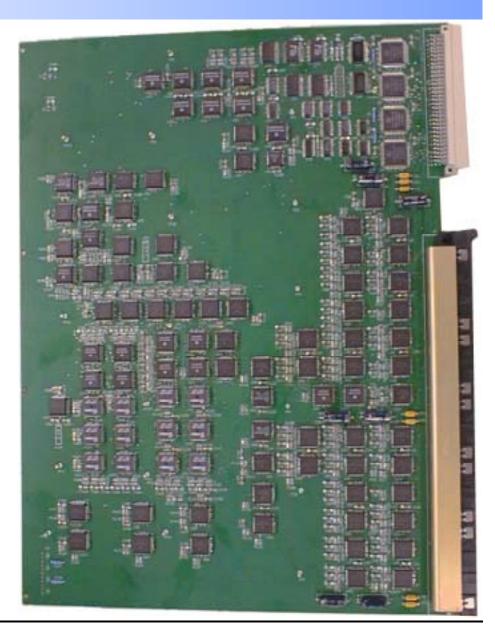


FRONT

REAR

Prototype Receiver Card

160 MHz Prototype Receiver Card tests: • VME Interface checked


- Adder ASIC's checked
- Timing checked
- Intercrate sharing checked

Electron ID Card Prototype

Card tested:

- VME Interface working
- Dataflow from Receiver Card through custom backplane works
- Timing checked
- Logic verified

ASIC Development - Receiver

Prototype Phase ASIC (Receiver Card)

- Input: 120 MHz TTL data from Gbit Link Mezzanine Card
- Output: 160 MHz ECL data & error detection
- Status:
 - Layout & simulation finished, test vectors developed
 - Vitesse design reviews passed, ready for manufacture

Prototype Boundary Scan ASIC (Receiver Card)

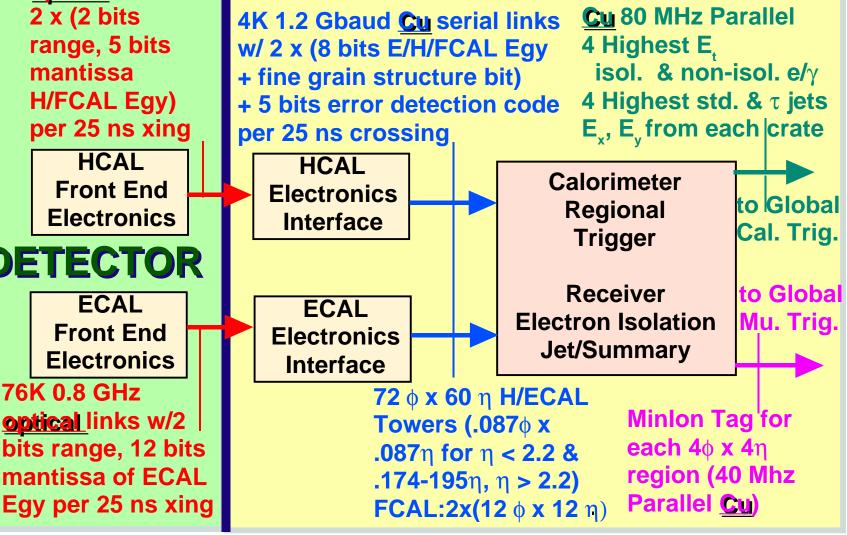
- Boundary scan of Receiver Card Input
- Backplane drivers -- compact circuitry
- Status:
 - Layout & simulation finished, test vectors developed

Vitesse design reviews passed, ready for manufacture
 Will test with new Receiver Card prototype

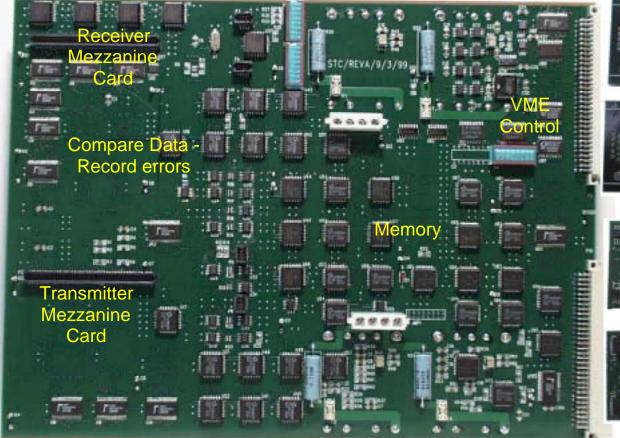
ASIC Development - EID & JS

Electron ID ASIC (Electron ID Card)

- Implements Electron Isolation algorithm
 - Described in talk of S. Dasu
- Status: planned for completion by end of summer
 - Design & Schematics Finished
 - Layout & simulation next
- Sort ASIC (EID & Jet/Summary Card)
 - Integrated backplane receivers & sorting
 - Passes 4 highest rank of 32 inputs
 - Sorts input before passing unto card
 - Status: planned for completion by end of summer
 - Design & Schematics Finished
 - Layout & simulation next
- Will test with new Electron ID Card prototype


Calorimeter Trigger Links

5.5K 0.8 GHz optical links w/ 2 x (2 bits range, 5 bits mantissa H/FCAL Egy) per 25 ns xing HCAL **Front End** Electronics


Front End Electronics 76K 0.8 GHz optical links w/2 bits range, 12 bits mantissa of ECAL

COUNTING ROOM

Copper Cable Gbit Serial Data Tests

Serial Link Test Card includes VME, memories & comparison circuitry to fully test serial links @ 120 MHz TTL from Mezzanine Cards. (U. Wisconsin) Transmitter (bottom view) Mezzanine Transmit & Receive Cards convert 4 x 1Gb/s links to 120 MHz TTL w/ Vitesse 7214 & cable equalization

US CMS DOE/NSF Review, April 11-13, 2000

GBit Data Transmission

Tests over 20 m Tek Stop: 5.00GS/s 3790 Acqs copper cable • PRELIMINARY! Vitesse 7214 4 x Gigabit Interconnect chip • twisted pair cables (Belden 9182 (150 ohm, 22AWG, foamed dielectric,twinax) grouped by fours & terminated with 8-pin DIN style connectors \$318 per 500 foot spool (\$2.10 per meter). 200mV 200ps Ax1 M 26

Trigger Link Bit Error Detection

Link error code simulation:	Bits with errors	Number of Patterns	Percent of Errors not found
• Between ECAL & HCAL Upper Lev	vel		
	0	1	0.00
Readout & Cal. Regional Trigger	1	24 276	0.00 0.00
• 2x(8 bits E_{τ} + 1 bit finegrain)	2	2024	3.45
	4	10626	3.49
+ 5 bits error detection code*	5	42504	3.03
1 hit "Con Floa" - 21 hito/25 no	6	134596	0.08
+ 1 bit "Gap Flag" = 24 bits/25 ns		346104	0.17
 Full 5-bit Hamming Code* finds a 	8	735471	0.06
• Full 5-bit Hamming Code milds a		1307504	0.14
1 & 2-bit errors (most common)	10 11	1961256 2496144	0.01 0.01
	12	2704156	0.01
 Also finds more than 96% of any 	13	2496144	0.02
	14	1961256	0.10
other error type	15	1307504	0.15
· Dresedure unen errer is te zere er	16	735471	0.06
 Procedure upon error is to zero ar 	10 17	346104	0.30
log the error for readout by DAQ	18	134596	0.08
log the error for readout by DAQ	19	42504	3.24
 Full implementation in Phase ASIC 	20	10626	3.23
• I dif implementation in Thase Aon	21	2024	2.77
 Passed Vitesse Design Review. 	22	276	0.03
	23	24	0.00
	24	1	0.00

Plans for Next Year

ASIC Development

• Boundary Scan & Phase ASIC

- Test prototype run from Vitesse
- Sort & Electron ID ASIC
 - Finish layout & simulation
 - Vitesse to manufacture, then test

Next generation prototypes

- Backplane
 - Designed for final algorithms
- Receiver Card
 - Used for testing Phase & Boundary Scan ASICs
 - Will be fit with Gbit link mezzanine cards
- Electron Isolation Card
 - Used for testing Sort & Electron ID ASICs

Serial Link Tests

- Select final cable
- Integrate new generation Vitesse link chip (7216)
- provide test boards for integration with HCAL, ECAL

Cal Trigger Schedule & Milestones

	1995 1996				1997 1998				1999 2000			2001		2002		2003		2004		
		Apr		Apr		Apr		1		Apr		Apr		Apr		Apr	Oct		Oct	
-		•				-	10/ [·]	•		1 1 1		1 1 1		1 1 1	000	''P'	000	''P'	000	יץי י
	Begin ASIC Development ♠ 10/1/97																			
Advance A	SIC		I	ntern	al De	esign	Revi	ew 1	◆11	/12/9	8									
production	on				Pro	totyp	e Des	sign	Finis	ned 🜢	9/9/	99								
order to put	t all							-		•		/4/99								
under conti	act							-		Γ										
with comm	tted				Be	gin A	SIC	Prep	oduc	tion	9/3	0/99								
delivery				->			Pro	oto. I	Board	s &	Tests	Finis	hed (€_ 4/6	/01					
schedule							Revi	ew t	ests o	of Re	giona	l Trig	gger	• 4/6	/01					
reduces					Pov	iow			:			ter tr		·	1	I				
vendor/pro	cess				Rev	iew o														
risk							Beg	in Ba	ickpla	ne &		e Pro	oduct	ion 🔶	8/31	/01				
Deless									ASIC	Deve	lopm	ent (Comp	lete (9/2	5/01				
Delay										Finis	h AS	IC PI	repro	ducti	on 🄶	1/30/	02			
Jet/Summa	-							D				ard	1		•					
Proto. Boar	a							D	gin											
since not essential fo	-									I	Begin	ASI	C Pro	oduct	ion 🔶	2/28	/02			
design											Crate	& Ba	ackpl	ane (Comp	lete	9/18	8/02		
validation.										В	eain	Produ	uction	Boa	rd Te	ests 4	9/18	3/02		
Move J/S											3					•				
component												D	esigr		nishe	•				
tests to														Finis	sh As	SIC P	Produ	ction	<mark>♦</mark> 10/	31/0
Electron ID													Finis	h Trig	gger	Board	d Pro	ducti	on 🔶	2/10/
Card.													Fir	nish I	Produ	ction	Boa	rd Te	sts 🔺	3/9/
													• •							5,51

Cal Trigger Personnel

Physicists (at Wisconsin):

- Faculty: W. Smith & new hire
- Scientists: S. Dasu & P. Chumney (new)

Engineers (experienced team at Wisconsin):

- J. Lackey -- Lead Engineer & Designer
 - Also Lead Engineer for Zeus Calorimeter Trigger
- M. Jaworski -- Board Layout & Design support
 - Worked on Zeus Calorimeter Trigger
- H. Zhang -- ASIC Layout/Simulation (new)
 - Worked on Zeus Calorimeter Trigger
- D. Wahl -- Copper Link Test/Development (new)
 - PSL Engineer, assisted by lead PSL electronics engineer, P. Robl, who worked on Zeus Trigger

Issues

Committee Concerns:

- Increase Physicists & Engineering Personnel
 - Done (see previous slide)
- Apply engineering resources to recover schedule
- Done: application to ASIC development & Gbit Link **Issue at time of last review:**
 - Watch ASIC availability issues, as early procurement may become necessary.
 - Entire ASIC production under contract with Vitesse
 - Schedule rearranged to procure all of each ASIC immediately after successful test.
 - Detailed series of reviews set up with Vitesse to provide strict QA/QC & testability
 - Vitesse to deliver fully tested packaged ASICs

Conclusions

Successful Prototyping Program

- Crate, Backplane & Clock Card
- Receiver Card
- Electron Isolation Card
- Serial Link Test & Mezzanine Cards
- Adder ASIC -- now in production

Plans for next year

- Completion of all first prototype & some second.
- Link prototypes used for integration w/ECAL,HCAL

Cost & Schedule experience:

- ASIC vendor/schedule accelerated
- Personnel augmented
- No use of contingency, on schedule