

Technical Overview

Wesley Smith, *U. Wisconsin* CMS Trigger Project Manager

Outline:

- Overview
- Description of Major Components
- Prototypes & Test Results
- Basis of Estimate
- WBS
- Schedule

Calorimeter Trigger Overview

Calorimeter mapping

Into 152 rear-mounted Receiver Cards (proto. being built)
160 MHz point to point backplane (proto. built)

- 19 Clock&Control (proto. built), 152 Electron Identification,
 - 19 Jet/Summary, Receiver Cards operate @ 160 MHz

Receiver Card Function

Design optimized to forward data for further processing only at appropriate resolution and only on need-to-know basis.

Receiver card

- Receives 8-bit non-linear E_t + 1-bit ID data from 32 ECAL & corresponding HCAL trigger towers.
- Linearizes ECAL & HCAL E_t & prepares data for subsequent processing by Electron ID Card.
- Stages this & neighbor tower data to Elec. ID card.
- Linearizes ECAL and HCAL E_t on 8-bit scale and uses Adder ASIC to make 4x4 sums for jet and missing E_t triggers.
- ORs ECAL fine-grain EM ID and HCAL Muon ID bits separately for each 4x4 region.
- Stages 4x4 region data to Jet/Summary cards.

Receiver Card Prototype

Card built, assembly next

Receiver Daughter Card

Layout Complete

8 x 13-bit 160 MHz Adder ASIC

Vitesse 0.6µ H-GaAs Process: ECL I/O

- 13 bits per operand x 8 operands
- Single thirteen bit output
- Latency: 25 ns @ 160 MHz
- Full Boundary Scan support

Technical analysis by Vitesse

- •~11,000 cells
- 4 Watts
- 308 MHz

Status:

- 5 tested devices delivered
- select nets exceed simulation speed by 10%

Receiver Card:

- J. Lackey

Monolithic 9U High Backplane

- Incorporates std. 32 bit VME in top connector position
 - Single 128 pin DIN in Trigger Processor Card area
 - Two 96 pin DIN connectors in left most slot positions
- Data sharing on backplane
 - Reduces the number of receivers, serial to parallel convertors, and synchronizing circuits
- Stripline construction w/ five ground and power planes
 - 50 Ω impedance to match connectors and boards
 - 1 oz. copper with multiple power points
- Five signal layers
 - Handles routing density thru connector pins
 - Differential pairs are held to the same layer
 - Point to point on high speed data paths @ 160 MHz

The critical components that need to be tested before final design are:

- Backplane with differential point-to-point 160 MHz links
 - Already built. Clock lines have been tested with a prototype clock card (built). Rise and fall times = 0.8 ns for 20-80% signal change.
 - Detailed tests with multiple data links operating are awaited
- ASICs running at 160 MHz
 - Built Adder ASIC. Tested by Vitesse.
 - Tests, in circuit & using boundary scan, will be made on the prototype receiver card

Receiver Card

- Test Input Serial Data on Separate Daughter Card
- Test Adder Chips
- Test Dataflow in/out of backplane
- Card submitted for manufacture

T 1:Rcvr-E.I. 2:clk-sync 3:clk-reset 4 Recvr Cards, 4 Electron Iso, 1Jet/Sum

DoE/NSF Review, May, 1998

160 MHz Backplane Prototype

Backplane Test Setup

Top rear view of crate & backplane with power supplies

Front view of crate & backplane with clock board installed

DoE/NSF Review, May, 1998

Conclusions:

one side of differential pair

Output of backplane rise 820 ps

- Output of backplane fall 840 ps
- **Measured 20% to 80%**

Electron Isolation ASIC

Electron isolation ASIC status

Generated a detailed design for the EI ASIC Produced a cell count, pin count and power estimate (5 Watts)

Size, power and cost considerations produced a refinement in electromagnetic isolation algorithm Request for bids is ready -- on hold for Receiver Card tests (uses data)

160MHz 4x4 channel EI ASIC Max tower sum, HAC Veto and HAC isolation circuit.

Jet/Summary Card

Each ASIC takes 4 EM or HAD inputs:

Input - Data arrives @ 120MHz: 8 bits wide x 3 cycles 24-bit frame: 18-bit data + 5-bit error detection code 8-bit energy + 1-bit fine-grain ID per channel + 1 spare The input clock for each channel is derived from the Vitesse Receiver

Sort ASIC Design

Finds the 4 largest of thirty-two values

Sorts electrons by rank

Finds the 4 largest E_{τ} from sixteen 4 x 4 regions

Inputs

Eight 10-bit ECL inputs @ 160 MHz. Four cycles to read in thirty-two values Each input has 5 bits added:

3: which input of eight

Calorimeter Trig. Costs at L4

- Contingency analysis performed at lowest level (increased from 39->50%)
- Bottoms-up recosting & new WBS (no substantial *net* cost change)
- Cost profile pushed back 6 months on average

WBS		EDIA	M&S	Base	Cont	Total
Number	Description	(k\$)	(k\$)	(k\$)	(%)	(k\$)
3.1.2	Calorimeter Regional Trigger	1,247	3,141	4,388	50	6,581
3.1.2.1	Prototypes	301	140	441	46	643
3.1.2.1.1	Proto. Receiver Card	89	18	106	32	140
3.1.2.1.2	Proto. Electron ID Card	65	7	72	50	108
3.1.2.1.3	Proto. Phase ASIC		50	50	50	75
3.1.2.1.4	Proto. BScan ASIC	14	50	64	50	96
3.1.2.1.5	Proto. Jet Summary Card	99	9	108	50	162
3.1.2.1.6	Proto. Clock & Control Card	35	6	41	50	62
3.1.2.1.7	Proto. Crate Monitor Card					
3.1.2.2	Preproduction ASICs	243	310	553	47	811
3.1.2.2.1	Electron ID ASIC	53	80	133	50	199
3.1.2.2.2	Adder ASIC	42	50	92	30	120
3.1.2.2.3	Sort ASIC	42	80	122	50	183
3.1.2.2.4	Phase ASIC	53	50	103	50	154
3.1.2.2.5	Boundary Scan ASIC	53	50	103	50	154
3.1.2.3	Test Facilities	18	60	78	50	117
3.1.2.3.1	Design Test Facil.	13		13	50	19
3.1.2.3.2	Procure Test Facil.		60	60	50	90
3.1.2.3.3	Assemble Test Facil.	5		5	50	8
3.1.2.4	Power Supplies	3	79	82	30	106
3.1.2.4.1	Select Power Supplies	3		3	30	3
3.1.2.4.2	Power Supply Procure		79	79	30	103
3.1.2.5	Crates	21	13	35	30	45
3.1.2.5.1	Design Crate	18		18	30	23
3.1.2.5.2	Procure Crates		13	13	30	17
3.1.2.5.3	Test Crates	4		4	30	5
3.1.2.6	Backplane	64	130	194	54	299
3.1.2.6.1	Design Backplane	57		57	54	88
3.1.2.6.2	Backplane Procure	1	130	131	54	202
3.1.2.6.3	Test Bkpl	5		5	54	8

WBS		EDIA	M&S	Base	Cont	Total
Number	Description	(k\$)	(k\$)	(k\$)	(%)	(k\$)
3.1.2.7	Clock & Control Card	67	65	132	40	185
3.1.2.7.1	Design CCC	57		57	40	80
3.1.2.7.2	CCC Procure	2	65	67	40	94
3.1.2.7.3	Test CCC	8		8	40	11
3.1.2.8	Receiver Card	109	1,561	1,670	54	2,571
3.1.2.8.1	Design RC	63		63	54	98
3.1.2.8.2	RC Procure	4	1,561	1,565	54	2,410
3.1.2.8.3	Test RC	4 1		41	54	64
3.1.2.9	Electron Identification Card	95	649	744	50	1,116
3.1.2.9.1	Design EIC	57		57	50	86
3.1.2.9.2	EIC Procure	2	649	652	50	978
3.1.2.9.3	Test EIC	35		35	50	53
3.1.2.10	Jet Summary Card	67	103	170	50	254
3.1.2.10.1	Design JSC	57		57	50	86
3.1.2.10.2	JSC Procure	2	103	105	50	157
3.1.2.10.3	Test JSC	8		8	50	12
3.1.2.11	Cables		7	7	30	9
3.1.2.13	Crate Monitor Card					
3.1.2.14	Trigger Tests	260	22	282	50	423
3.1.2.14.1	Trigger Subsystem Tests	106		106	50	158
3.1.2.14.2	Trigger System Installation	155	22	177	50	265
3.1.2.15	Trigger Project Management					
3.1.2.15.1	Tracking & Reporting					

Cal Trig basis of estimate: Zeus

Zeus first level trigger requirements:

- Beam crossing every 96 nsec
- Background rate <100 kHz
- Max Level 1 Rate < 0.5 kHz

Zeus calorimeter trigger processing:

- Trigger decision total time = 5 μsec
- Data from13K Phototubes
- Dynamic range of 4096:1
 - EMC: µ: 300 MeV to 400 GeV

Zeus calorimeter trigger functions

• Identify e, μ ., jets & sum missing & total E_t

270 9Ux400 mm Encoder Cards digitize w/12-bit range every 12 ns , test for E v. H, MIP, Quiet & sum energies. Output at 80 MHz to Adders.

Zeus Calorimeter Trigger

2 double-board Adder Cards/crate receive & process data from 14 TEC's at 80 MHz

16 crates send results to Global Cal Trigger

Adder Cards find Isolated e's & μ's, and sum energies

DoE/NSF Review, May, 1998

Board Costs:

Zeus Trigger Encoder Card Features

- 9U x 400mm
- 270 Made
- 80 MHz Clock
- Includes Analog front end digitization at 13 bits/10 MHz
- 4 HAC & 4 EMC inputs/card = 8 total
- Zeus Trigger Encoder Card Costs (in 1991-1992)
 - Board: \$300
 - Assembly: \$350
 - Parts: \$2,000
 - Engineering: 2 MY (incl. analog)
 - Costs verified in 1995 manufacture of 30 spares

M&S for Crates, Boards & Cables:

WBS	<u>ltem</u>	<u>Unit Cost</u>	Number	Total
3.1.2.4	Power Supplies	3,600	22	79,200
3.1.2.5	Crates	600	22	13,200
3.1.2.6	Backplane	5,910	22	130,020
3.1.2.7	Clock & Control Card	2,960	22	65,120
3.1.2.8	Receiver Card	8,870	176	1,561,120
3.1.2.9	Electron ID Card	3,690	176	649,440
3.1.2.10	Jet Summary Card	4,670	22	102,740
3.1.2.11	Cables	\$1/ft	7,300	7,300

Detail for Boards:

Card	<u>Size</u>	Board	Assmbl.	Parts	Total
Backplane	crate	1,000	300	4,610	5,910
Clock & Control	9Ux280mm	600	400	1,960	2,960
Receiver	9Ux400mm	800	650	7,420	8,870
Electron ID	9Ux280mm	400	300	2,990	3,960
Jet Summary	9Ux280mm	600	500	3,570	4,670

Detail for ASICS (WBS 3.1.2.2):

ASIC	NRE	Cst/Prt	<u>#/RC</u>	#/EIC	<u>#/JSC</u>	<u>Tot.#</u>
Adder (GaAs)	50,000	179	3	0	2	520
Phase (GaAs)	50,000	360	8	0	0	1,280
Sort (GaAs)	80,000	300	0	1	2	200
Electron ID(GaAs)	80,000	300	0	2	0	320
Bndry. Scan(GaAs)	50,000	150	1	1	1	340

(costs per part are included in board parts costs above)

Factors

- In-house experience
 - Zeus Trigger System
- Existing technology
 - CMS Prototype Boards, Backplane & ASIC's

Calculation (item by item):

- Use Zeus Cal Trigger
- Judgement of Difficulty (multiplication factor)
 - Difficult: ≥ 1.1
 - Average: 1.0
- Design Maturity (multiplication factor)
 - Conceptual Design = 1.5
 - RFI with engineering sketches = 1.4
 - Engineering Design = 1.3
 - Quote or bid package = 1.2
 - Catalog = 1.1

Conclusion:

• Overall = 50%

Cal. Trig. Milestones

Prototype Design Finished May '99 Proto. test w/ECAL Proto. Elect. **Jun '99 Proto. Boards & Tests Finished Nov '99 Begin ASIC Preproduction May '00** Proto. test w/HCAL Proto. Elect. **Jun '00 Begin Backplane & Crate Production May '01** Jun '01 **ASIC Development Complete Finish ASIC Preproduction Oct '01** Mar '02 **Begin Trigger Board Production Begin Tests w/Final ECAL Elect. Jul '02 Begin ASIC Production** Aug '02 **Begin Tests w/Final HCAL Elect. Sep '02 Crate & Backplane Complete Sep '02 Begin Production Board Tests** Jan '03 **Designs Finished May '03** Nov '03 **Finish ASIC Production Finish Trigger Board Production** Feb '04 **Finish Production Board Tests Apr '04 Begin Trigger Installation Apr '04 Begin Final System tests w/E,HCAL May '04 Trigger Installation Finished** Sep '04

Conclusions

CMS Regional Calorimeter Trigger

Inputs on 1.2 Gbaud Cu serial links

- 8-bits energy & 1 bit fine grain/trigger tower
- Careful mapping of calorimeter towers into trigger logic

• Receiver Card scales, sums, preprocesses

- Prototype being manufactured
- Designed to receive data from serial links
- Designed to operate @ 160 MHz
- 13 x 8 bit Adder ASIC tested > 160 MHz
- Backplane for VME & trigger data
 - Prototype constructed/tested
 - Prototype Clock Card constructed/tested
 - Signal performance excellent @ 160 MHz
 - Confirmation of design feasibility
- Electron Isolation & Jet Summary Cards
 - Receive data from Backplane
 - Algorithms matched to data & physics
- Documented Cost, Schedule, Milestones