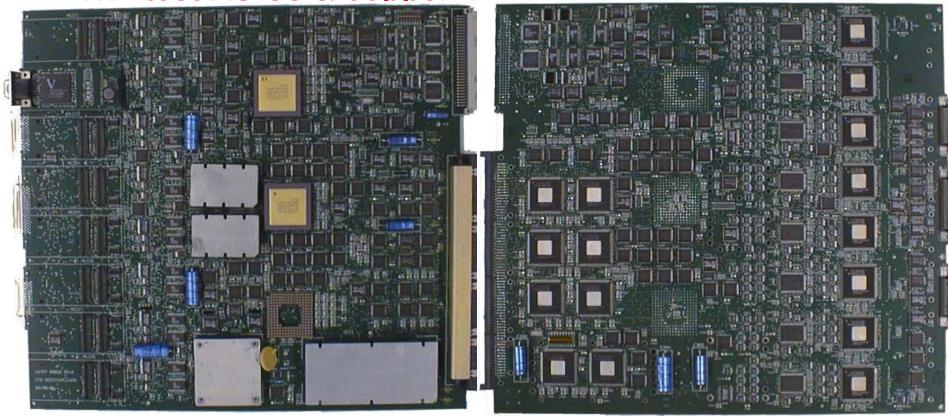

US CMS Trigger

DOE-NSF Review Wesley H. Smith, *U. Wisconsin* CMS Trigger Project Manager April 10, 2002

Outline: Calorimeter Trigger Status Muon Trigger Status Project Completion M&O Upgrades

Cal. Trig 2nd Gen. Prototypes (U. Wisconsin)

New High-Speed Backplane **建筑,油田、油田、田、田田、田田** •160 MHz with 0.4 Front **Tbit/sec dataflow** ME Designed to incorporate algorithm changes New Non-Isolated Electron, Tau & Jet Triggers New Clock & **Control Card** Rear • Fans out 160 MHz clock & adjusts phases for all boards


US CMS M&O Review, April 9-11, 2002: Trigger System

New Calorimeter Trigger Receiver Card (U. Wisconsin)

Full featured final prototype board has been manufactured, assembled and ready for testing.

Will test ASICs & copper link mezzanine cards

Top side with 1 of 8 mezzanine cards & 2 of 3 Adder ASICs Bottom side with all Phase & Boundary Scan ASICs

US CMS M&O Review, April 9-11, 2002: Trigger System

Cal. Trig. New Electron Isolation & Jet/Summary Cards Full featured final E.I. Proto. board is finished & ready for testing. JSC Proto. ready to build pending tests of other boards E.I. Proto will test Electron **ID ASICs & Sort ASICs**

US CMS M&O Review, April 9-11, 2002: Trigger System

New Cal. Trig. 4 Gbaud Copper Link Cards & Tester (U. Wisconsin)

8 Compact Mezzanine Cards for each Receiver Card accept 4 x 20m 1-Gbaud copper pairs transmitting 2 calorimeter tower energies each every 25 ns with low cost and power. Uses new Vitesse Link Chips.

> New Serial Link Test Card Built.

US CMS M&O Review, April 9-11, 2002: Trigger System

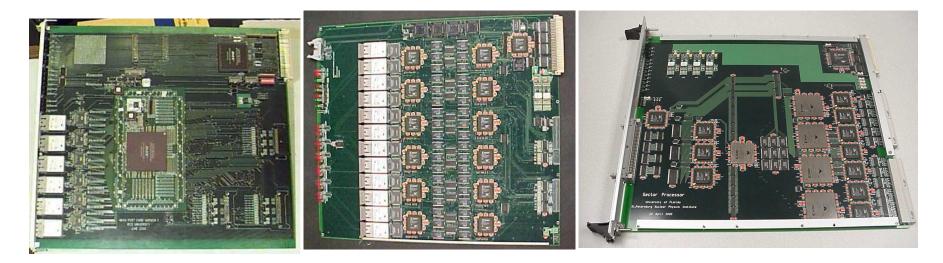
Cal Trigger Status/Plans

Preparing second generation prototype tests

- Crate, Backplane, Clock & Control, ASICs done
- Receiver Card & Electron Isolation Card ready.
- Serial Link Mezzanine Card Receiver done, Tester Card at vendor, Transmitter Tester in design

Goals for 2002

- Complete of prototype tests, validate ASICs
- Integrate Serial Links w/ECAL, HCAL front-ends
- Prototype Jet/Summary card manufacture
 - Ready for manufacture -- waiting for other board tests
- Finalize Jet Cluster crate design

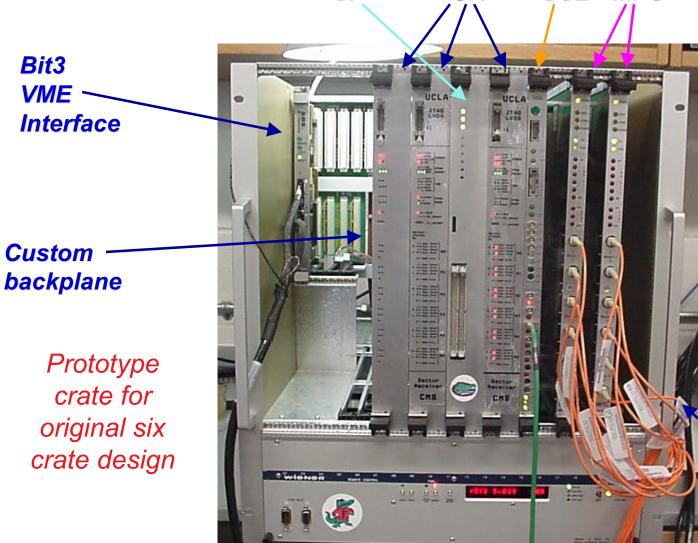

1st Muon Trigger Prototypes (Florida, Rice, UCLA)

Successful CSC Trigger Integration test

 Prototype Muon Port Card, Sector Receiver, Sector Processor, Clock Board, Backplane work & communicate -- Result in 2000

ORCA full simulation working

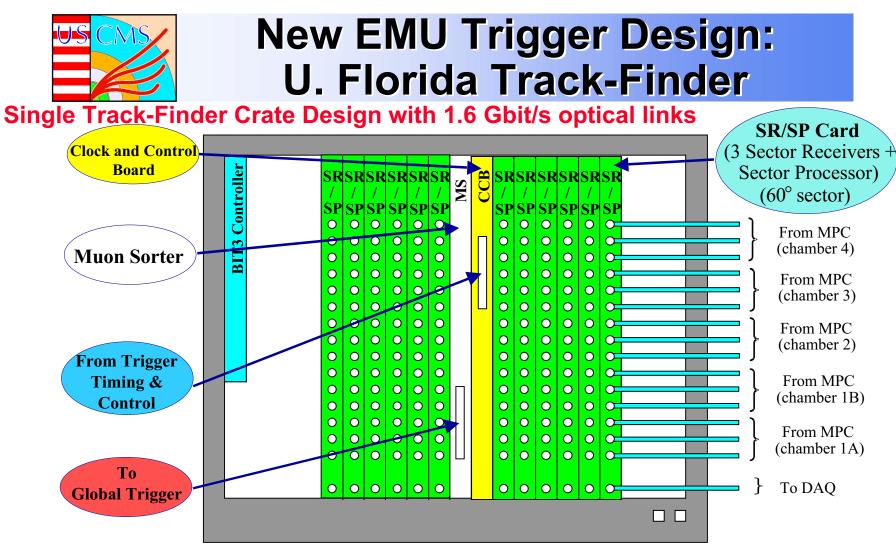
Agreement/use with hardware test



1st Track-Finder Crate Tests

CCB

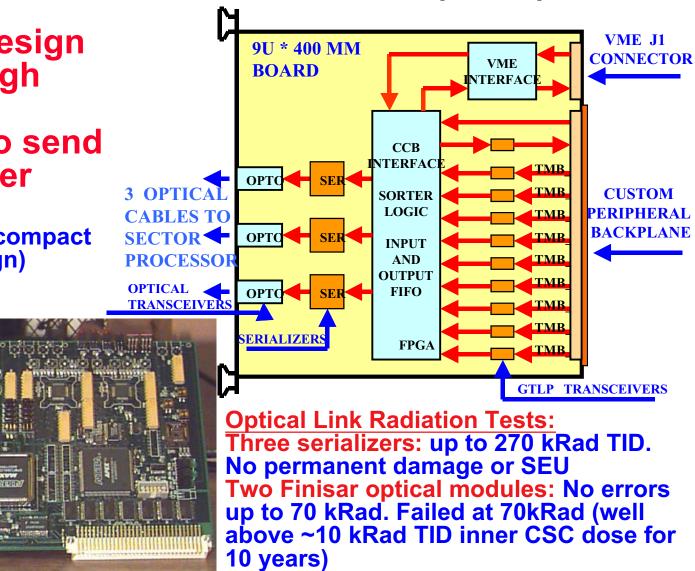
SR


MPC

SP

Very successful but latency too high --New design in 2001

100m optical fibers



- Reduces processing time from 525 ns (old design) to 175 ns
 - Total Latency ~ 20 Bx (from input of SR/SP card to output of MS card)
- Crate Power Consumption ~ 500 W 15 Optical connections per SR/SP card

New Muon Port Card Design & Optical Link Tests (Rice)

New MPC Design uses new high speed links (TLK2501) to send one muon per optical fiber (needed for new compact track-finder design)

US CMS M&O Review, April 9-11, 2002: Trigger System

CSC Trigger Status/Plans

Prototype 1 tests now complete

Prototype 2 and production follow EMU components to optimize technology

MPC, SP, CCC modules, backplane* milestones:

- Apr-02 Prototype 2 designs done
 - Freeze CSC-DT interface
 - Determine DDU compatibility with OSU module for EMU
- Nov-02 Prototype 2 construction done
- Apr-03 Prototype 2 testing done
- Sep-03 Final designs done
- Oct-04 Production done
- Apr-05 Installation done

(*backplane schedule ~3 months ahead of above dates to provide platform for testing and integration)

Muon Sorter module: only 1, design by Jan-04

CMS V31 Schedule & Trigger

Activity Name	Start Date	Finish Date	2		2004								2005									2006						_					
,	Start Date	1 min Date	0	N D		F	М	A	М	J J	A	s	0	_	_	J F	м	A	М	J	J	Α	s	0		_	F	М	A	м	J	J A	S
Critical path from SX assembly					х м —										х м –											х м —							
Magnet test	M15/Mar/04				A						VI1				Α_	_										Α							_
Install EB +		W1/Sept/04			s							M1			s —											s							_
Assemble HF	M15/Mar/04	, v						_	_		M1																						
YB-,YE- mu install (SX)	S15/Aug/04	W15/Dec/04	1												M1																		
																S		C	6		2					¢.		6	n.				
UX Installation																Ψ		2	6				24			Y	4-		<u> </u>				
UX Civil Engineering finish	T1/Apr/04							N	11																								
Prepare UX area	T1/Apr/04	W1/Sept/04										M1				B	e	C				12		CI	a								
Install floor plates & CMS shielding	M1/Dec/03	T1/Jun/04								M1			N			T		9															
Prepare US area (infra/racks/cooling	M15/Dec/03								Ţ	М	1	7				dete	cto	r re	ado	ut/t	rig	ger/	DĂ	Oco	omr	nis	sion	ing					
Equip US with crates, DCS	T1/Jul/04	M1/Nov/04							1				Ν	/11		local tr	1	1		1		stalled	1	- I				Q.1 r		']			
SCX ready for control room inst	W1/Sept/04											M	1				Ψ.			∇								7	$\overline{\mathbf{v}}$				
Commission detectors/ DAQ	M1/Nov/04	S1/Apr/06																											ĺ.				
Cabling (heavy + fibre optics)		T15/Feb/05													+				-					. Ζ									
Lower major elements	T16/Dec/04																							Y									
Install HB. Commission HB/HE/HF		S15/Jan/05										2				M1																	
EB supermod. assembly/calibration	S1/Apr/01	W15/Sept/C										M	1						-+ er	nd		M1	-	end	N	/1	F				VI.	X	C
EB- install. Commission EB+ & EB-	S15/Jan/05																			M1			Ļ									T	
EE/SE+ install & commission	S15/May/05	S31/Jul/05														3								EB-			1		4		"	5	
TK manufacture & assembly	M1/Oct/01	W15/Dec/04	1																									八	51		U	P	
	S15/May/05	M31/Oct/05												Τ-	 I										M1 '								
SE- install/commission	S31/Jul/05	F30/Sept/0	5																	– 4	1			M1									
Install beampipe	F30/Sept/05	S31/Dec/05	6																							= M	1 — 5						1
Close expt (yoke/HF/shielding)	S31/Dec/05	T31/Jan/06																						5	+		М	1					1
Online/Offline Computing preparation	W1/Sept/04	W1/Feb/06																									М	1					
LHC 1-beam commissioning	T31/Jan/06	S1/Apr/06																															
CMS ready for colliding beam	S1/Apr/06																																
LHC pilot run	S1/Apr/06	M1/May/06		1																									-				
Open detector	M1/May/06	S7/May/06		•	1			\neg				\uparrow						1															1
Install EE-, pixels, T1 +maintain	S6/May/06	F21/Jul/06																1									1					M	11
Close detector	F21/Jul/06	M31/Jul/06						\top				1																			7	۵	\top
Complete CMS ready	M31/Jul/06				1							1																	M	1		•	+
compiete ettis i eury	E8/Oct/04	E8/Oct/04			-															I									1			_	

Start installation Nov. '04 Start Integration w/DAQ & FE Mar. '05

US CMS M&O Review, April 9-11, 2002: Trigger System

Т

Trigger L2 Tasks

Fasks	start	finish:	
Produce TDR	8/00	12/00	~
 Design Final Prototypes 	11/00	12/01	~
 Construct Final Prototypes 	6/01	6/02	
Test/Integrate Final Prototypes	12/01	12/02	
 Pre-Production Design & Test 	6/02	6/03	
Production	12/02	6/04	
 Production Test 	6/03	11/04	
 Trigger System Tests 	5/04	5/05	
 "Slice Test" NEW 	10/04	11/04	+
 Trigger Installation 	11/04	11/05	+
 Integration & Test w/DAQ & FE 	3/05	9/05	-
 Maintenance & Operations 	10/04		-

Expect Additional Delay of 3 months

Define Project Completion

Installation in Underground Counting Room

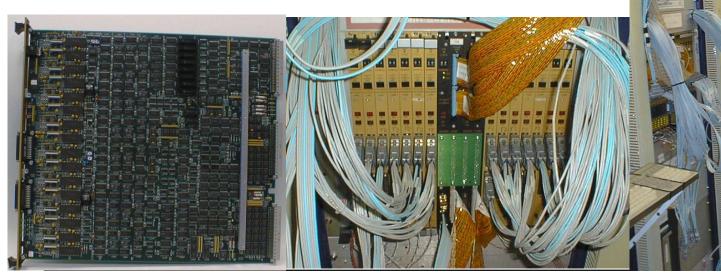
- Expect access by March '05
- Sufficient time for installation and some testing but not for completing commissioning with detectors

Slice Test (on surface)

- With both HCAL and EMU
- Verify trigger functions and interfaces by testing with detectors on surface at CERN.
- Suggest as substitute for commissioning completion step.
- Will check as much on surface before gaining access to underground facilities.

Planned for October '04 - March '05

USC55



M&O Basis of Estimate

Zeus Level-1 Calorimeter Trigger

16 80 MHz Crates operating on 96 ns collision frequency

- •CMS: 18 160 MHz crates at 25 ns collision frequency
- •300 370 mm x 400 mm boards w/ 1100 components (75% of board area), 8700 vias
 - •CMS: 300 370 mm x 400 mm boards with somewhat greater complexity
- •Finds isolated e, μ, jets, E_T, E_{Tmiss}
- Successful operation: 1992 2002

US CMS M&O Review, April 9-11, 2002: Trigger System

Tasks: Trigger Evolution

Responsibilities of Physicists

- Based on Zeus Cal. Trigger M&O 1992-2001
- Needed each for US CMS Cal. & Muon Trigger Efforts

Change trigger as beam conditions change Study new trigger configurations

Test runs, Monte Carlo studies, data studies

Trigger Physics Analysis

Understand detailed impact of trigger on physics

Preparation for luminosity increases

- Perform Monte Carlo studies of new conditions
- Validate with present data

Respond to changing apparatus

- Changes in material, configuration, etc.
- Must result in changes in simulation

Tasks: Trigger Operations

Responsibility of Physicists & Technicians

- Based on Zeus Cal. Trigger M&O 1992-2001
- Needed each for US CMS Cal. & Muon Trigger Efforts

Electronics Operations

- Write, test & maintain electronics test programs
- Maintain & update bad channel list
- Diagnose & repair electronics
- Daily checking programs
- Maintain & operate Repair Facility
- 24 hour/day support during running

Software Operations

- Run Control maintenance
- Trigger data validation
 - Online & Offline analysis of rates & efficiencies
- Monte Carlo & data trigger simulation maintenance

Trigger Calibration/Validation

Responsibility of Physicists

- Based on Zeus Cal. Trigger M&O 1992-2001
- Needed each for US CMS Cal. & Muon Trigger Efforts

Trigger Calibration

- Frequent calibration is performed with test systems to set the time & energy/position
- Calibration of a single trigger cell vs. full resolution readout data

Online Diagnostic Simulation

- Trigger bits vs.simulation of trigger using reconstructed data as input.
- Each trigger efficiency curve is monitored & checked online.

Real-Time study of Trigger Function

- Need sophisticated online display
- Difference between simulated & data trigger bits set

Physicists on M&O

Based on Zeus Cal. Trigger M&O 1992-2002

• Needed each for US CMS Cal. & Muon Trigger Efforts

Ph.D. Physicists (2)

- Responsible for daily operations
- Work with students on trigger duties
- Trigger Coordination

Students (6)

- Beginning (2)
 - Learning, trigger shifts (on call 24x7)
- Intermediate (2)
 - Responsible for trigger shifts, begin physics analysis
- Senior (2)
 - Released for thesis work, available for consultation, assistance, shifts

Technical Personnel on M&O

Based on Zeus Cal. Trigger M&O 1992-2002

• Needed each for US CMS Cal. & Muon Trigger Efforts

Technician

- Operates, repairs, maintains test facility
- Repairs boards & infrastructure under physicist & visiting engineer guidance
- Total required = 0.5 FTE resident + 0.25 FTE visiting

Expert Engineer

~ 5 trips/year for 2-3 weeks to make difficult repairs

Designer - available for consultation

- ~ 2 trips/year for 2-3 weeks for review & design issues
 - Complicated/Subtle problems
 - Modifications to trigger electronics
- Total Engineering (Expert + Designer) required = 0.5 FTE
 Ramp up: First year at 50% of this

CMS Specific M&O Support

Goal: Maintain the critical technical team

Muon Trigger

- Need expertise from 3 institutes
 - Rice Muon Port Card, Clock/Control, Sorter
 - Mike Matveev -- share support w/EMU
 - Florida Sector Receiver/Processor
 - Alex Madorsky -- share support w/EMU
 - PNPI Collaborated on engineering on above
 - Need their help at beginning of operations
- Build in engineering support to cover this

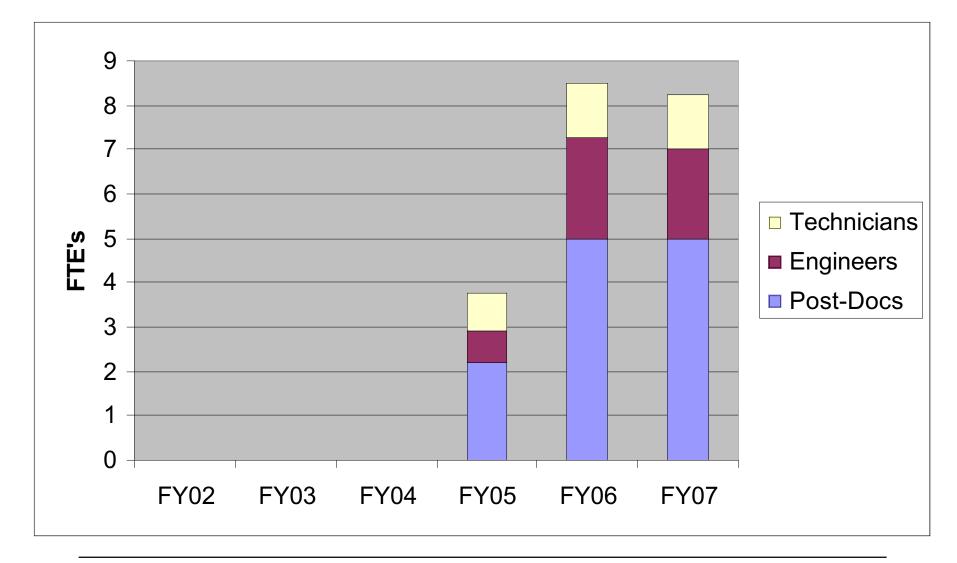
Calorimeter Trigger

- Need expertise of lead Wisconsin Engineer
 - Joe Lackey
- Need institutional technical support
 - Experience is vital

Muon & Cal can share resident technician services

Summary: M&O Personnel

From Project Support:


- 1.25 FTE Engineer
 - 0.5 FTE ea. for cal. & mu trigger + PNPI 0.25 for mu
- 1.25 FTE Technician
 - 0.5 FTE ea. resident for cal & mu + 0.25 visiting for cal

From Base Program Support:

- 4 FTE Ph.D. Physicists
 - 2 FTE ea. for cal & mu trigger
 - 50% of time on M&O
- 12 FTE Graduate Students
 - 6 FTE ea. for cal & mu trigger
 - 25% (effectively) of total tenure on trigger
 - Fewer students \rightarrow more postdocs

US CMS Trigger M&O Resources

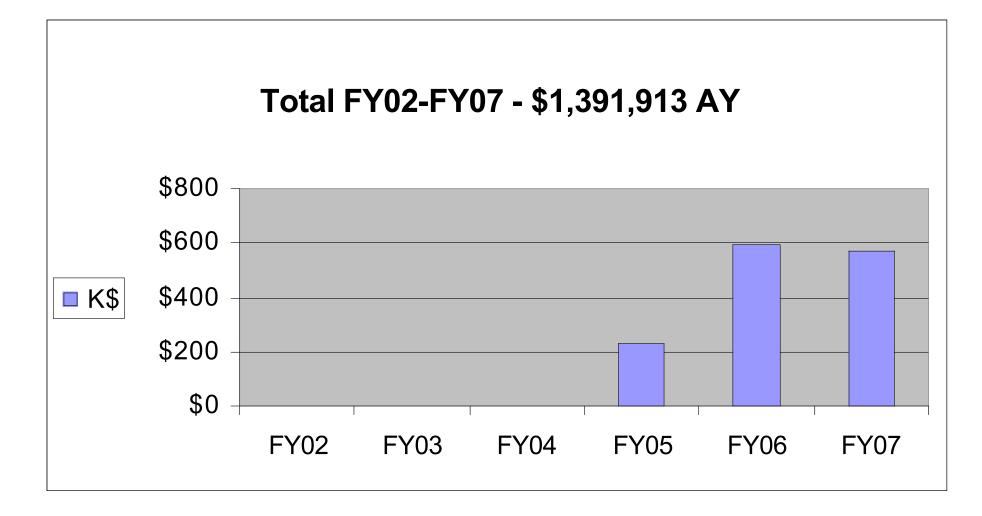
Trigger M&O M&S

Scaled from Zeus Cal. Trigger M&O 1992-2002 Diagnostic equipment

- Scopes & probes, logic analyzers, computers, interfaces, etc.
- Construction of additional specialized test boards

Repair equipment & supplies

- Soldering stations (BGA repair), Tools, Voltmeters, misc. supplies
- Module repair/replacement costs
 - Power supplies, regulators, breakers, thermal sensors, crate CPUs, etc.
- Replacement of broken cables, fiber optics, etc.
- Vehicle lease for hauling back & forth


Shipping and/or contract repair Costs

- Sending items back to US for major work
 - Either to FNAL, University, or manufacturer

Est. Yearly Cost of 80K\$, Total for FY05-FY08: 280K\$

- •40K\$ each for US CMS Cal. & Muon Trigger Efforts
 - Half that for FY05 as ramp up

Trigger Upgrades

R&D effort to study upgrades to level-1 trigger to handle luminosity beyond 10³⁴

- •May need more sophisticated logic to distinguish physics signals from increased backgrounds
- •Upgraded logic must operate in same time as present logic
 - Increase in speed for more sophisticated algorithms

R&D effort to study upgrades to level-1 trigger to handle changes in bunch crossing time

•Possibility of increase from 25 ns to 12.5 ns

- •Detector response times slower than 25 ns crossing time
- •In some cases (e.g. HCAL & ECAL), timing information is sufficiently precise to identify 12.5 ns crossings.
- •Upgrade trigger logic to allow analysis of 12.5 ns crossings

Trigger Upgrade R&D Program

Based on CMS Level-1 trigger R&D & Prototypes. Personnel requirements

- 1 FTE Engineer from Project
 - Engineering Design: 0.5 FTE ea. for cal. & mu trigger
 - Could be other "half" of engineer on M&O
- 1 FTE Ph.D. Physicist from base program
 - Simulation & Design Studies
 - 0.5 FTE ea. for cal & mu trigger

M&S Requirements

- \$40K/year for Prototypes
 - \$20K ea. for cal. & mu trigger
 - ~ 2 prototype boards (\$10K ea.) per year for cal. & mu

Trigger Upgrade Estimate Total for FY06-FY08: 360K\$

- Estimated Yearly Cost of 120K\$
 - M&S of 40K\$ for prototyping & EDIA of 80K\$ for engineering