

US CMS Collaboration Meeting Wesley H. Smith, *U. Wisconsin* CMS Trigger Project Manager April 25, 2003

Outline: Calorimeter Trigger Endcap Muon Trigger DAQ

This talk is available on:

http://hep.wisc.edu/wsmith/cms/USCMSTriDAS_0403.pdf

Calorimeter Trigger Crate

- all cards operate @ 160 MHz
- Use 5 Custom Gate-Array 160 MHz GaAs Vitesse Digital ASICs
 - Phase, Adder, Boundary Scan, Electron Isolation, Sort (manufactured)

Top side with 1 of 8 mezzanine cards & 2 of 3 Adder ASICs

32 Channels = 4 Ch. x 8 mezzanine cards with Vitesse 7216-1 1.2 GBaud copper receivers s Bottom side with all Phase & Boundary Scan ASICs Phase ASIC: Deskew,Mux @ 160MHz Error bit for each 4x4, Test Vectors Memory LUT @ 160 MHz Adder ASIC: 8 inputs @ 160 MHz in 25 ns.

V7216-1 deserializes data and sends 120 MHz TTL to front Phase ASIC Full featured final prototype board is validated - production underway, boards manufactured for full crate test, 1422 mezzanine cards being manufactured.

Electron Isolation Card

Designed by J. Lackey

Full featured final prototype board is validated and in production.

Processes 4x8 region @ 160 MHz Uses Sort and EISO ASICs

- Both tested by Vitesse before delivery
- Sort ASIC used for Backplane Receive
 - Validated
- Electron Isolation ASIC
 - Mostly validated
 - neighbor data for e/γ isolation algorithm needs add'l RCs

Lookup tables for ranking

Highest energy isolated and nonisolated e/γ per 4x4 region sent to Jet/Summary card for sorting, forwarding to Global Cal. Trig.

Jet/Summary Card

Summarizes full crate:

- Electron/photon/muon
 - SORT ASICs receive data on backplane and find top four e/γ (of 14 each isolated and non-isolated)
 - Threshold for muon Minimum Ionizing & Quiet bits (one per 4x4 region)
 - Data to Clustering/GCT
- Forward Calorimeter (HF) functionality
 - Reuses Mezzanine Card to read in data directly for inclusion in output
 - LUTs for HF regions
- Region energies
 - HF and 4x4 tower sums (regions) to cluster crate for central, τ , and forward jet; calculation of global quantities total and missing E_T
- Under Test
 - HF path checked
 - Data seen over backplane at Sort ASICs
 - 4x4 tower sum path checked to output

Testing Receiver, Clock, EISO, & Jet/Summary Cards, Crate, & Backplane

Crate Rear: Loopback Cables to test intercrate data sharing

Front: Clock, EISO, and Jet/Sum Cards with original STC and cable to test HF data transfer to Jet/Summary card at full speed

←160 MHz TTL clock with data into 200 ^{25 Apr 2002} MHz Memories (2 ns scale)

CSC Muon Trigger Scheme

EMU part: mostly in production

TriDAS part: Second generation prototypes

Tests

- **Both SP main** board and mezzanine **board pass** power-up and initial FPGA programming tests
- Validation of **VME** interface is underway
- Optical link tests underway

W. Smith, US CMS Collaboration Meeting, April 25, 2003: TriDAS Report

CSC Muon Sorter

Functionality

- Selects 4 best muons out of 36
 Sector arriving from 12 Sector
 Processors
- Sorting is based on 7-bit Rank GLOBAL MUON TRIGGER CRATE
- Transmits 4 best muons to Global Muon Trigger crate
 MEZZ over LVDS links in ranked order

Status

- Have 3 PCBs in hand
- Uses same mezzanine card as SP
- Standalone tests underway
- Tests with SP starts in summer

Define Trigger Completion

Installation in Underground Counting Room

- Expect access by March '05
- Sufficient time for installation and some testing but not for completing commissioning with detectors

Slice Test (on surface)

- With Both HCAL and EMU
- Verify trigger functions and interfaces by testing with detectors on surface at CERN.

UXC55

- Suggest as substitute for commissioning completion step.
- Will check as much on surface before gaining access to underground facilities.
- Milestone (HG1018) planned for completion November '04

USC55

New DAQ design: principle

Basic principle:

 Break DAQ into a number of functionally identical, parallel, smaller DAQ systems

Detector readout to surface

D2S + RB + EF breakdown

US contribution

Cover one segment (1/8) of the CMS DAQ plus _ of the Data-to-Surface system (plus the associated prototypes – "preseries")

- Segment: 1 Readout Builder + 1 Event Filter
- US_CMS detector electronics is ~1/4 of the total
- Delivery of the system can be accomplished by the end of the US_CMS project (FY05)
- Aids the experiment most in the current phase where cash flow is very tight
 - US R&D program can remain ~ unchanged (to the extent that the basic modules are the same)

Roughly speaking, the US

(a) works on/delivers prototype system (to 2004)(b) delivers the "startup DAQ" for CMS (2005)

Milestones*

Prototype DAQ (US Contribution)

D2S Prototype "Slice Test" Readout Builder Prototype July, 2004 November, 2004 (*) April, 2005

Startup DAQ (US Contribution)

Filter Farm Ready Readout Builder Ready May, 2006 August, 2006

Declaration of Completion (US Contribution) Startup DAQ ready for beam September, 2006

(*) "Slice" Test for US-CMS detectors – DAQ will have full D2S proto + a few RB elements

*(Version 33)

Slice Test DAQ (10-100 Hz)

Draft Configuration for EMU Slice Test Peripheral Crate Local DAQ PC **FED Crate** CFEB Write to DAQMB DDU BigPhys CCB CCB memorý **XDAQ** 120 **Event Builder** Run Control PC Disk **XDAQWIN** ORCA readable

CMS Slice Test DAQ Work at Fermilab

Starting this January a group (Davis, Fermilab, Florida, OSU, Rice) worked at US CMS DAQ test stand with EMU Electronics, gaining experience & first pass at design.

Test Stand Consists of:

- Fermilab CMS Event Builder farm
- •UC Davis test crate:
 - •One VME crate
 - •One DAQ Motherboard
 - •One Dynatem 360-
 - One Cathode Front End Board
 - Two toaster-shaped PC's for Local DAQ control

Preparing for May Test Beam

W. Smith, US CMS Collaboration Meeting, April 25, 2003: TriDAS Report

"Toaster" PC