

Wesley Smith, *U. Wisconsin* CMS Trigger Project Manager

US CMS Collaboration Meeting May 19, 2001

- Overview of Calorimeter Trigger
- Calorimeter Trigger Status & Technical Progress
- Overview of Muon Trigger
- Muon Trigger Status & Technical Progress
- Overview of DAQ
- DAQ Status & Technical Progress
- Level-1 Trigger & Physics

CMS Level -1 Trigger TDR

CERN/LHCC 00-xx CMS TDR 6.1

November 2000

LABORATOIRE EUROPEEN POUR LA PHYSICQUE DES PARTICULES CERN EUROPEAN LABORATORY FOR PARTICLE PHYSICS

The TriDAS project. Volume I The Trigger Systems CMS Level 1 Milestone

Submitted to LHCC on Nov. 28, 2000: CERN/LHCC 2000 - 38 CMS TDR 6.1

Approved in March, 2001.

http://cmsdoc.cern.ch/cms/ TDR/TRIGGER-public/trigger.html

CSC Track Finder Crate

CSC Trigger Protos Tested

Muon Port Card (Rice) Dataflow verified, incl. optical link Sector Receiver

(UCLA)

Sector Processor (U. Florida)

All logic tested & agrees with ORCA simulation

CSC Trig.Conclusions & Plans

Conclusions from Test

- Conceptually Sound Design
- Need to reduce latency

Plans for This Year (review at end of May)

- Replace Backplane technology with faster
 - Channel Link -> GTLP at 80 MHz
 - New prototype backplane tested at Florida
- New Compact Single Crate Design
 - Merge all 17 FPGAs of baseline design into one
 - Possible due to new FPGA technology
 - Merge Sector Receiver & Sector Processor Boards
- New Optical Link Technology
 - Use new 1.6 Gbit/s links with 80 MHz clock
 - Tested at Rice and Works

Into 152 rear-mounted Receiver Cards (ptyp. tstd. w/ ASICs)
160 MHz point to point backplane (ptyp. tstd.)

• 19 Clock&Control (ptyp. tstd.), 152 Electron ID (ptyp. tstd.) 19 Jet/Summary, Receiver Cards operate @ 160 MHz

Regional Cal. Trig. Prototypes

Calorimeter Trigger Status

Successful Prototyping Program

- Crate, 160 MHz Backplane & Clock Card
- Receiver & Electron Isolation Cards tested
- Adder ASIC tested & production finished
- Links: 4x1Gbit on Cu* ECL x 20 m tested ASIC prototype development finished
 - Phase & Boundary Scan protos delivered
 - Isolation & Sort protos manufactured

Testing Program Plans

- Next generation Backplane finished
- Next generation Receiver, Elect. Iso.
- Test remaining ASIC prototypes

Mezzanine Card (Top view)

*Gbit Serial Cu Link Cards & test results:

US CMS DAQ Responsibilities

US: Event Manager + Builder Units

Multi-step Event Building no longer necessary

- Validates decision to invest in networking & computing
 - Today: two alternatives: Myrinet 2000 (2.5 Gb/s links) and/or two Gbit/s Ethernet links/RU

Wesley Smith, U. Wisconsin -- TriDAS Report

US CMS Collaboration Meeting, May 19, 2001

Developments last year

High Level Trigger: included in "PRS"

 Defining "Level-2" as anything doable without tracking information, Level-2 is ~ complete

New LHC schedule [®] new date for DAQ TDR

- First beams in early 06, first physics in Aug 06
- Submission date was always set to $T_0(LHC)$ -3.5 yrs.
 - With new schedule, submission goes to end (Nov 30) 2002

Schedule & Milestones:

- Unchanged, especially for the HLT/PRS part(s)
 - What gets delayed is decisions on technologies to use, etc., but not the results of the studies.
 - However, with another year's technology with us, we can expect that most of the data transfer issues are no longer with us, so we just concentrate on

(a) the algorithm itself and

(b) the CPU needed

Progress on DAQ

16x16 Event Builder Demonstrator complete:

- Based on Myrinet-2000:
 - Barrel-shifter works at close to 100% (raw) efficiency
- Based on Gbit Ethernet:
 - Looks very promising especially if 10 Gbit Ethernet in time

Designs for 500x500 switch available

Simulation results very pomising

Builder Unit prototype:

- Two solutions being looked at:
 - Custom-made board (commercial components)
 - Recycling of units made for Readout into a PC

High Level Trigger:

- "Level-2" equivalent algorithms in place
- Now working on "Level-3" (~ includes tracker information)

Progress: BU prototype

Current device Done at UCSD <u>Copper</u> Gbit Ethernet NIC <u>PowerPC</u> CPU RAMlink interface

CMS Level-1 Trigger Requirements and Simulation

Capture CMS Physics with high efficiency

- High luminosity targets:
 - lepton/γ (40 GeV)
 - dileptons/ $\gamma\gamma$ (20 GeV)
 - jets w/ missing E_{T} (100 GeV) jets w/missing E_{T} (50 GeV)
 - 1-4 jets (250-100 GeV)

Low Luminosity Targets:

lepton/ γ (25 GeV)

dileptons/ $\gamma\gamma$ (15 GeV)

1-4 jets (150-75 GeV)

Capture CMS Physics with low background rate

 75 kHz design output x 33% safety factor x 50% into muon & calorimeter triggers = 12 kHz target for simulated rates each

Safety factor for unknown physics, detector modelling & DAQ performance

Demonstration required using basic trigger capability (not all features)

Full Simulation of Detector, Electronics & Trigger

- ORCA4 -- Object-Oriented Reconstruction for CMS Analysis:
 - Complete Detector GEANT modeling
 - Complete digital hit reconstruction
 - Accurate bit-level integer simulation of trigger function

CSC Trigger Simulation (Rice, Florida, UCLA)

Studies have been carried out using the objectoriented software framework of CMS

- Geant3 for hit generation
- "ORCA" for detector and trigger simulation
- Entire L1 CSC Trigger scheme coded in C++
 - Perfect agreement achieved between simulation and hardware for millions of events (MPC, SR, SP)

Trigger rate, efficiency, and P_T resolution studied for *L* = 10³⁴ cm⁻²s⁻¹

- Pile-up includes 17.3 minimum bias collisions per beam crossing and neutron hits from much earlier crossings
- Aim for single muon rate <10 kHz with >90% efficiency

CSC Trigger Efficiency vs. P_T

US CMS : May 19, 2001. D. Acosta, UF

US CMS: May 19, 2001. D. Acosta, UF

CSC Rate with Neutrons

US CMS: May 19, 2001. D. Acosta, UF

Muon Trigger Conclusions

The previous simulations are the most detailed done to date of the CMS muon trigger

- FE amplifier response/noise is in, neutrons are in, etc.
- Trigger logic mostly validated against current hardware designs (some updates needed)

But we need detailed validation against real data

Testbeam and cosmic ray data

This requires physicist support!

Postdocs, students

It's important to design a highly efficient L1 CSC Trigger

- L2 and L3 algorithms use L1 candidates as seeds. If L1 misses the muon, physics may be lost...
- Must have ME1, and re-scoping ME4 helps at high luminosity
- RPC noise/trigger rate may be unacceptably large to help GMT

CMS Level-1 Calorimeter Trigger in ORCA4

ORCA: Object-oriented Reconstruction for CMS Analysis

- Considerable effort was made to implement CMS Level-1 Regional Calorimeter Trigger systems into OO code
 - Complete detector and electronics modelling
- Effort continues to maintain/update existing L1 Calorimeter Trigger code
 - Level-1 Calorimeter Trigger developed and maintained by UW (Dasu, Chumney, di Lodovico, Mulvihill)
- Collaboration wide studies of trigger effects and exploration of physics channels

• Large database exists of QCD events & physics channels

- nearly 600000 QCD events
- physics channels added regularly
 - Standard model: $H \rightarrow \gamma \gamma$, $H \rightarrow bb$, $W \rightarrow ev$, $Z \rightarrow ee$, top quark, $H \rightarrow ZZ$
 - SUSY higgs: $H \rightarrow \tau \tau$, $H^+ \rightarrow \tau v$
 - mSUGRA: sparticles

Using UW Condor system

(see http://www.cs.wisc.edu/condor/)

- funded by UW (incl. Rajamani -- C.S. Grad Student)
- S. Rader system manager, R. Rajamani production coord.
- \bullet submitted from local machine \rightarrow sees local disks
- 1.2 TB RAID for storage
- 20 local CPUs 5 are Objectivity servers
- Additional 600+ CPUs accessible in Condor pool
- Beginning to assist with Spring 2001 CMS MC Production
- Have created own level-1 datasets (& own minbias):
 - have samples for t \rightarrow eX, Z⁰ \rightarrow ee, W[±] \rightarrow ev
 - want to add t \rightarrow jets and more...

Actively collaborating with other US production sites, with FNAL as coordinating site.

- Provides ability to tune cuts to sustain rates during operation
- For electron several cuts are available to optimize efficiency versus rate
- For all trigger types there are tunable parameters, e.g., look-up-tables
- QCD background rates are within target (~12 kHz for calorimeter triggers).

Wesley Smith, U. Wisconsin -- TriDAS Report

L1 Trigger Thresholds with ORCA4 simulated rate

	е	ee	τ	ττ	j	jj	jjj	jjjj
Low \mathcal{L}	24	18	95	75	150	115	95	75
High ${\mathfrak L}$	35	20	180	110	285	225	125	105
	τ +e	j+e	MET	e +Met	ј+мет	e(NI)	ee(NI)	Σετ
Low \mathcal{L}	80,14	125,14	275	12,175	65,175	NA*	NA*	1000
High ${\mathfrak L}$	125,20	165,20	350	18,250	95,250	58	28	1500
	μ	μμ	μ e	μτ	μ j	μ+ET	μ +ΜΕΤ	Rate:
Low \mathcal{L}	10	3	4,12	4,80	4,80	4,600	4,140	25 kHz
High \mathfrak{L}	25	8,5	5,32	5,140	5,155	5,800	5,200	25 kHz

75 kHz x 33% safety factor = 25 kHz target for simulated rates Threshold is defined as either 95% (e/ γ , τ , j) & 90% (MET, μ) efficiency

and is calibrated to uniformly match off-line energy.

*Isolation not used for electron triggers at low luminosity

ET=Total E₇, MET = Missing E₇, NI = Non Isolated

Trigger Physics Efficiencies

for 12 kHz ORCA4 simulated rate

Channel	Low \mathcal{L}	High ${\mathcal L}$	Triggers Used
H(200) $\rightarrow \tau \tau \rightarrow$ hadrons	93%	60%	e1 , τ1, j1 , e2 , τ 2 , j2
H(500) $\rightarrow \tau \tau \rightarrow$ hadrons	99%	86%	e1, τ1, j1, e2, τ2, j2
H(170) \rightarrow 4 electrons	100%	99%	e1, e2 Note: e at low \mathcal{L} does
H(110) \rightarrow 2 photons	99%	98%	e1, e2 not require isolation
H(135) $\rightarrow \tau \tau \rightarrow e$, hadron	96%	72%	e1, e2, τ1, j1
H(200) $\rightarrow \tau \tau \rightarrow e$, hadron	96%	74%	e1, e2, τ1, j1
H(120) \rightarrow Invisible (tag jets)	96%	58%	j1, j2, missing ET
H(120) \rightarrow ZZ* \rightarrow e, e, μ , μ		73%	e1, e2
H(200) \rightarrow ZZ \rightarrow e, e, jets		95%	e1, e2, j1, j2
tt o e, X	97%	82%	e1, j1, j2, j3, j4
tt \rightarrow e, H+, X1 \rightarrow e, τ , X2	94%	76%	e1, j1, j2, j3, j4

Post TDR Trigger Efficiencies

Channel	Low 2	High L	Triggers Used	Comments
tt→eX*		66%	e1	Additional gain from jet trigger
Z→ee		90%	e1 e2	e1: 77% e2: 72%
W→ev		47%	e1 e2	Neutrino too soft to help trigger
H+ \rightarrow τ + Missing ET + jjj		57%	t1 t2	jet,electron triggers also can contribute
mSUGRA		80%	j1 j2 j3 j4	soft narrow jets in τ trigger, 68% τ only
H(110) → bb	83%	40%	j1 j2 j3 j4 t1 t2	High lumi is hard to analyze
H(130) → bb	84%	40%	j1 j2 j3 j4 t1 t2	May improve with $\Delta\eta$ cut between two jets

Efficiencies use all triggers except muon triggers Included in total 12 kHz ORCA4 simulated L1 Calorimeter Trigger rate ENAL and Wisconsin Simulation

Analysis by P.Chumney and F. di Lodovico

Calorimeter Trigger Tunable Parameters - S. Dasu

Trigger Primitives Level

- Fine grain bit to indicate energy profile within readout crystals or towers being combined
 - Presently used to veto e/γ based on energy in the neighboring crystals (programmable cuts available)
 - \bullet Presently used to identify MIP signature in HB/HE $|\eta|{<}2.5$
 - Possible to suppress pile-up in HF (algorithm to be defined)

Trigger Tower Level

- Separate E_{τ} memory look-up for e/ γ and τ /jet/ E_{τ} triggers
 - Use for noise suppression, calibration, optimize trigger scale LSB (default is now 0.5 GeV for e/γ and 1.0 GeV for $\tau/jet/E_{\tau}$)
- H/E veto memory look-up
 - The cut can be non-linear if desired
- Active tower definition
 - E_T cut programmable adjust for pileup at high luminosity

Cal. Trigger Tunable Parameters II

4x4 trigger tower region level in "jet stream"

- $\bullet\, E_{_{T}}\, cuts$ if desired for pileup suppression
- Cut on active tower count to define t bit can also be used to veto pileup and reduce spurious low E_{T} jets due to pileup τ /jet candidate level
 - Center region threshold
 - Center region E_{τ} required greater than neighbor region E_{τ}
 - Center region E_{τ} can also be required above programmable threshold, as a function of η , to suppress pileup
- E_T memory look-up for each η region Global level
 - Trigger object E_T , η , ϕ cuts
 - $\Delta\eta$, $\Delta\phi$ cuts, Correlations
 - Can require tag jet separation in h for H production in WW fusion useful for invisible H decay
 - Can lower E_{τ} thresholds by requiring high $\Delta \eta$, $\Delta \phi$ btw. electrons & jets to trigger on Drell-Yan W, Z for ECAL calibration

Calorimeter Trigger Object Data in Global Trigger

Central Isolated & nonisolated e/ γ & τ candidates

• Top four highest E_T objects of each type

- Jets
 - Top four highest E_T objects in $|\eta| < 3$

A τ candidate is just a tagged jet

may appear in

A high E_{τ} electron

both e/γ and τ lists

- Top four highest E_{τ} objects in 3 > $|\eta|$ > 5 separately
- Position (η , ϕ in 22 η x 18 ϕ bins, $|\eta_{max}| = 5$)
- # jets in several h, f regions above programmable cuts Summed quantities
 - Missing E_{T} ($|\eta| < 5$) computed from $\Delta \phi = 0.345$ region sums
 - Sum E_{τ} in all trigger towers ($|\eta| < 5$)
 - Not planned but possible additional GCT algorithms
 - Sum E_{T} of jets (12 highest objects) requiring E_{T} > cut
 - Missing E_{T} from jets (12 highest objects) requiring E_{T} > cut

QCD Background Rate

- Target of 12.5 kHz met for muon & calorimeter
 - triggers each (75 kHz/3 for safety split cal & mu)

Physics Efficiencies

Thresholds selected for high p_T, higgs physics (SM, MSSM)

Opportunity:

- Help define global trigger menu and expand CMS physics reach
 - Keep within allowed bandwidth of 25 kHz for all triggers combined
 - Adjust E_T thresholds
 - Use η, ϕ locations of trigger objects
 - Optimize trigger parameters