

Wesley H. Smith University of Wisconsin - Madison

Outline: Introduction: ATLAS, CMS, LHCb, ALICE Architecture Calorimeter Triggers Muon Triggers Global/Central Triggers & Control Conclusions

LHC Physics & Event Rates

At design $L = 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$

- 17 pp events per 25 ns crossing
 - •~ 1 GHz input rate
 - "Good" events contain ~ 20 bkg. events
- 1 kHz W events
- 10 Hz top events
- < 10⁴ detectable Higgs decays/year

Can store ~ 100 Hz of events Select in stages

- Level-1 Triggers
 1 GHz to 100 kHz
- High Level Triggers
 - •100 kHz to 100 Hz

Processing LHC Data

Vienna Instrumentation Conference, February, 2001

LHC pp experiments

ATLAS A Toroidal LHC ApparatuS

CMS Compact Muon Solenoid

CMS Trigger and DAQ system

Collision rate 40 MHz 100 kHz Level-1 Maximum trigger rate Average event size \approx 1 Mbyte **Event Flow Control** \approx 10⁶ Mssg/s No. of In-Out units (200-5000 byte/event) 1000 Readout network (512-512 switch) bandwidth \approx 500 Gbit/s Event filter computing power $\approx 5 \, 10^6 \, \text{MIPS}$ Data production \approx Tbyte/day No. of readout crates ≈ 250 No. of electronics boards ≈ **10000**

LHC Ion-Ion collision and B-decay experiments

ALICE A Large Ion Collider Experiment

The ALICE Collaboration proposes to build a dedicated heavy-ion detector to study the physics of strongly interacting matter at extreme energy densities, where the formation of a new phase of matter, the quark-gluon plasma, is expected.

LHCb

(Study of CP violation in B-meson decays at the LHC collider)

Alice Trigger and DAQ system

LHCb Trigger and DAQ system

LHC experiments trigger and DAQ summary

Trigger Levels

Collision rate 10⁹ Hz

Channel data sampling at 40 MHz

Level-1 selected events 10⁵ Hz

Particle identification (High $p_{T} e, \mu$, jets, missing E_{T})

- Local pattern recognition
- Energy evaluation on prompt macro-granular information

Level-2 selected events 10³ Hz

Clean particle signature (Z, W, ..)

- Finer granularity precise measurement
- Kinematics. effective mass cuts and event topology
- Track reconstruction and detector matching

Level-3 events to tape 10..100 Hz

Physics process identification

• Event reconstruction and analysis

Wesley Smith, U. Wisconsin

10⁻⁰ s

Level 1 Trigger Organization

Level-1 : only calorimeters & muons

Compare to Central tracking at $L = 10^{34}$ (50 ns integration, ≈ 1000 tracks)

> Algorithm Complexity + huge amount of data

12/5

≈7 m

Pattern recognition much easier on calo & muon:

Trigger Electronics Locations

In Underground Shielded Room:

- Muon track-finding & pt assignment
- Calorimeter object identification & energy summation
- Global trigger & control

On Detector:

- Muon Hits or Segments
- Calorimeter energy analog summation (ATLAS) or digitization (CMS)

Level-1 Trigger architecture

ATLAS:

- Regional triggers: calo & muon
- Results merged into Central Trigger Processor & sent to ROIs
- Final Level-1 accept \rightarrow front-ends

CMS:

• Same, except for no ROIs

ATLAS Level-1 Trigger

Mapping to Quadrants in Phi

- Trigger tower Matrix:
 - Eta x Phi = 0.1 x 0.1 |Eta| < 2.5
 - Variations up to |Eta| < 4.9

- Optimise fan-out between modules:

Phi/Quadrant architecture, only one-slot connections

- Each quadrant is mapped into:
 - 2 Preprocessor crates,
 - 1 Cluster Processor crate and
 - 1 Jet Energy-Sum Processor crate.

ATLAS L1 Calorimeter Trigger

Preprocessor (PPr) Tile/LAr Calorimeters LAr (had) (em) **Cluster Processor** On **Analogue Sum** Detector ~7000 analogue links Electron/Photon twisted pair, <70 m Hadron/Tau Receiver Trigger Cavern **Jet/Energy Sum** PPr **Pre-processor 10-bit FADC PPMs** To PPr-RODs **FIFO. BCID Processor (JEP)** (DAQ) Look-up table 2x2 sum **BC-mux** • Jet 9-bit jet elements 8-bit trigger towers • Missing-E₊ 10-bit serial links: JEP 400 Mbit/s (~10 m) CP Total Scalar E₊ JEMs CPMs **Jet/Energy Processo Cluster Processor** To RODs (e / γ and τ / h) em+had sum Output To RODs (DAQ) (DAQ) **Cluster-finding Jet-finding** ET sum Declustering E_{x}, E_{v} Declustering Central Trigger 160 Mbit/s 80 Mbit/s ΣЕт, ₽ Counting Counting CMMs backplane backplane **Processor** Rol's Ет e/γ τ/h Jets To RODs Rol's sums Level-1 Level-2 Regions (Level-2) Muon Trigger of Interest To Level-1 Central Trigger Processor (CTP)

ATLAS L1 Electron & Tau Triggers

Electron/photon trigger

4 x 4 window 0.1 x 0.1 elements step by 1 element |Eta|<2.5

Isolation:

Hadron/tau trigger

4 x 4 window 0.1 x 0.1 elements step by 1 element |Eta|<2.5

Isolation:

Wesley Smith, U. Wisconsin

ATLAS L1 Jet & Et-miss Triggers

Jet trigger

programmable 4 x 4 or 3 x 3 or 2 x 2 window 0.2 x 0.2 jet-elements step by 1 jet-element |Eta| < 3.2 Et-miss / sum-Et trigger

sum of Et sum of Ex and Ey |Eta| < 4.9

Jet-element, em. + had. summed

Wesley Smith, U. Wisconsin

Vienna Instrumentation Conference, February, 2001

Cal. Trigger Algorithms

CMS Cal. Trig. & Readout Layout

ATLAS Muon System

Resistive-plate chambers (RPCs) for Barrel region

|Eta|<1.05

- Wireless strip detector in Eta & Phi easy to cover large area
- 3 stations
- 430,000 channels

Thin-gap chambers (TGCs) for End-Caps

1.05<|Eta|<2.4

- Finer granularity needed Chambers outside toroidal field Trigger stations close together
- Strips in Phi, wires in R
- 3 stations + EI / FI
- High-rate capability needed for backgrounds in forward region
- 370,000 channels

ATLAS L1 Muon Trigger

RPC front-end electronics

Wesley Smith, U. Wisconsin

Vienna Instrumentation Conference, February, 2001

CMS Muon trigger system

DT and CSC track finding:

- Finds hit/segments
- Combines vectors
- Formats a track
- Assigns p_t value

CMS muon tracker finders

Drift Tubes (DT)

Drift Tubes

Meantimers recognize tracks and form vector / quartet.

Correlator combines them into one vector / station.

Cathod Strip Chambers (CSC)

Comparators give 1/2-strip resol.

Hit strips of 6 layers form a vector.

RPC muon trigger (CMS)

PRINCIPLE: pattern of hit strips is compared to predefined patterns corresponding to various pt

ATLAS L1 Central Processor

CMS Global Trigger

Input:

- Jets: 4 Central, 4 Forward, 4 Tau-tagged, & Multiplicities
- Electrons: 4 Isolated, 4 Non-isolated
- •4 Muons (from 8 RPC, 4 DT & 4 CSC w/P, & quality)
 - \bullet All above include location in η and ϕ
- Missing E₇ & Total E₇

Output

• L1 Accept from combinations & proximity of above

LHCb Trigger

Two hardware levels

- Level 0 reduces the rate to 1 MHz in 4 µs
 - * Select high P_T particles
 - * Reject multiple interactions
- Level 1 reduces the rate to 40 kHz in 1000 μs
 - * Identification of a secondary vertex
- DAQ input at 40 kHz

♦ Software filtering

 Two software filtering stages to reduce the rate to 200 Hz

LHCb Level 0 & Level 1

◆ Level-0

- Calorimeter triggers
- Muon trigger
- Pile-up veto
- ◆ Level-1
 - Vertex trigger
- Basic requirements
 - Level-0 latency $< 3.2 \ \mu s$, rate reduction to $< 1 \ MHz$
 - Level-1 latency variable < 256 μs (average 120 μs), rate reduction to < 40 kHz

LHCb Level 0

- LHC repetition rate 40 MHz
 - But only ~76 % have colliding bunches at LHCb
- LHCb works at 'low' luminosity, to have a single interaction per crossing
 - * Nominally 2 x10³² cm⁻²s⁻¹
 - Double and multiple interactions are rejected as soon as possible, using a pile-up VETO at Level 0
- Rate of interaction:
 - * Single : 9.4 MHz
 - * Multiple: 3.0 MHz
- Accepted rate 1 MHz
 - Factor 10 reduction on single interactions
 - * In fact a bit more as multiple interactions are not all vetoed.

Wesley Smith, U. Wisconsin

Vienna Instrumentation Conference, February, 2001

Alice vs. ATLAS & CMS

ALICE is very different from CMS and ATLAS!

CERN

S and ATLAS!	ALICE			CMS/ATLAS
	Pb–Pb	Ca–Ca	<i>p–p</i>	<i>p–p</i>
Bunch-crossing period (ns)	125	125	25	25
\mathcal{L} (cm ⁻² s ⁻¹)	10 ²⁷	3×10 ²⁷ 10 ²⁹ (μμ)	10 ³⁰	10 ³⁴
σ minimum bias (barn)	8	3	0.1	0.1
dN(charged)/dη	<mark>8000</mark>	1200	8	8 (×18)
Minimum bias rate (Hz)	8000	8000 3 × 10 ⁵ (μμ)	10⁵	10 ⁹
Level-1 trigger rejection	10 ⁻¹			10⁻⁴
Event storage rate (Hz)	40 1000 (μμ)	150 1000 (μμ)	1000	100
Event size (bytes)	<mark>33–39 Μ</mark> 0.25 Μ (μμ)	5-6 M 0.1 M (μμ)	0.5 M	1 M
Data storage rate (bytes/s)	10 ⁹			10 ⁸
Data storage (bytes/yr)	10 ¹⁵			10 ¹⁵

Alice Level 0 & Level 1

◆ Level-0

- Minimum-bias trigger
- Dimuon trigger
- Level-1
 - Centrality trigger
- Past–future protection
- ◆ Basic requirements (Pb−Pb)
 - Must protect TPC for ±100 µs if pile-up, but c an have non-TPC events which read out quickly
 - Level-0 latency < 1.2 μs, rate reduction to ~1 kHz
 - Level-1 latency < 2.7 μs, rate reduction ~factor 2

Digital ASICs for Pattern Logic

CMS Calorimeter Regional Trigger Electron Isolation ASIC: 160 MHz 0.6 µm highintegration GaAs custom gate array

ATLAS Muon Trigger high & low p_t coincidence logic in 0.6 μm and 0.35 μm CMOS full-custom ASICs

Wesley Smith, U. Wisconsin

Wesley Smith, U. Wisconsin

Vienna Instrumentation Conference, February, 2001

Use of FPGAs

Example: CMS Cal Global Trig

- Summing
- Sorting
- Selecting
- Monitoring
- Whatever
 - (flexible)

Vienna Instrumentation Conference, February, 2001

Detector Timing Adjustments

- Detector pulse w/collision at IP
- Trigger data w/ readout data
- Different detector trigger data w/each other
- Bunch Crossing Number
- Level 1 Accept
 Number

Wesley Smith, U. Wisconsin

CERN

Wesley Smith, U. Wisconsin

Trigger & Readout Control

CMS Trigger Control

- L1Accept, LHC Clock, Bunch Crossing 0, Calibration Trigger
- Trigger rules prevent overflows. Deadtime is monitored.
- Fast monitoring: Buffer overflow signal starts L1A throttling
- System is divisible into independently operating partitions

LHC Trigger Conclusions

The design challenges of LHC experiments have been met with innovative systems involving:

- Extraction, processing and analysis of 40 Terabits of information per second
- Detailed pattern-recognition of calorimeter & muon chamber signals using pipelined logic with 25-ns steps (or faster)
- Reduction of 1 GHz of interactions to 100 Hz with high efficiency for discovery physics
- Nanosecond-level synchronization of Millions of channels of data
- Use of FPGAs, high-speed digital ASICs, highspeed optical links

Moving from prototypes into system construction in the next ~ 2 years

Acknowledgements

Special Thanks to:

- Eric Eisenhandler, ATLAS
 - "Hardware Triggers at the LHC", 1998 LHC Electronics Workshop, Rome.
- Ulrich Pfieffer, ATLAS
- Alexander Walsch, LHCb
- Olivier Callot, LHCb
- Sergio Cittolin, CMS
- Joao Varela, CMS

Whose slides were used in preparation of this presentation