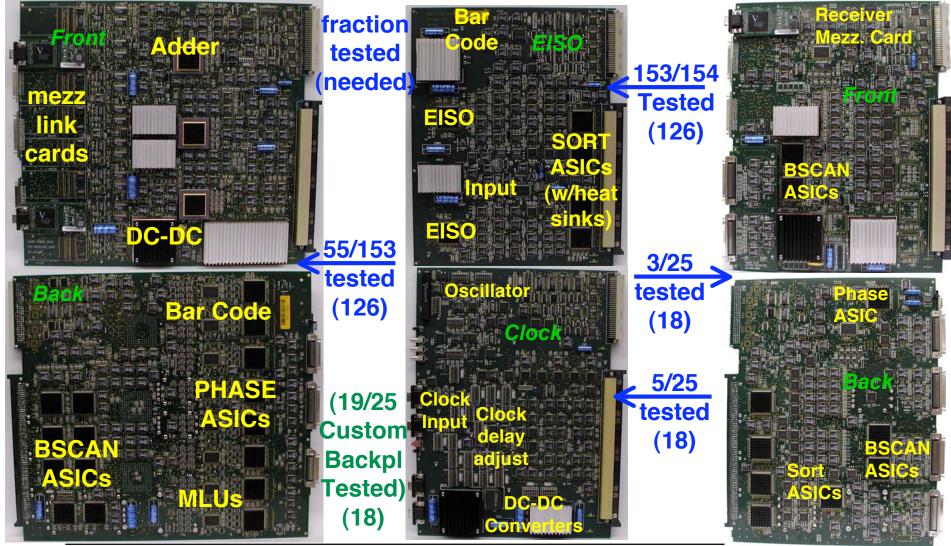



# **US CMS Trigger**

## DOE-NSF Review Wesley H. Smith, *U. Wisconsin* CMS Trigger Project Manager January 28, 2005

Outline: Calorimeter Trigger Status Endcap Muon Trigger Status M&O Plans Upgrade R&D


This talk is available on: <a href="http://hep.wisc.edu/wsmith/cms/doc05/Trig\_MO\_0205.pdf">http://hep.wisc.edu/wsmith/cms/doc05/Trig\_MO\_0205.pdf</a>

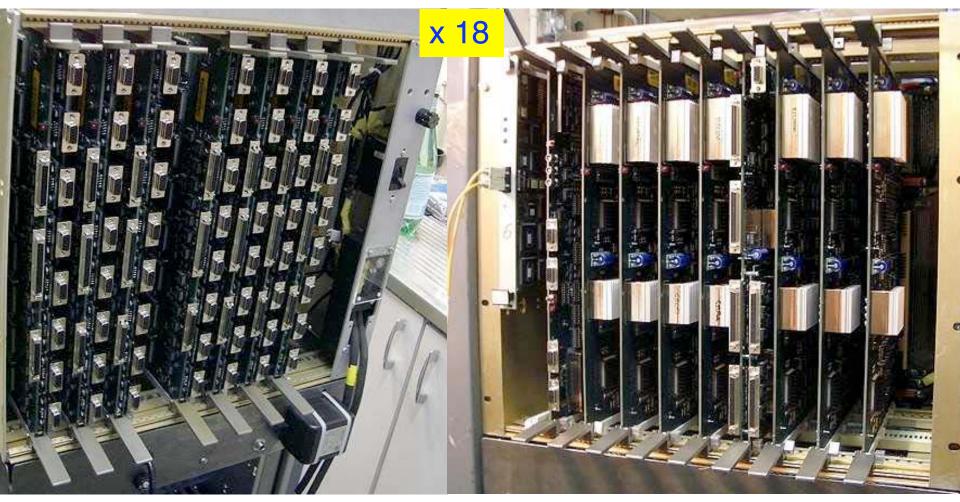




### Regional Cal. Trigger Milestone: Major Production Complete

#### Electron Isolation & Clock:

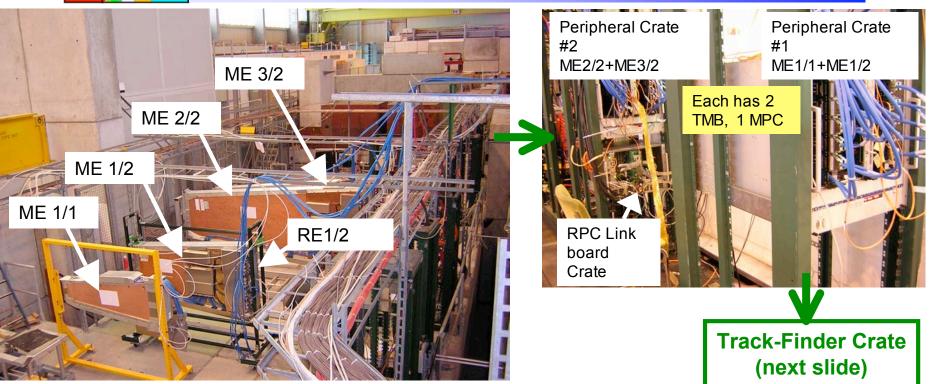



W. Smith, US LHC Detector M&O Evaluation Group, January 28, 2005

Jet/Summary:



# RCT Full Crate Operating at CERN


M&O Support used to keep operational, use in integration tests



#### **Rear: Receiver Cards**

#### Front: Electron, Jet, Clock Cards

## CSC Trigger Major Milestone: Structured Beam Tests



First time used full Track-Finding logic to identify tracks in data Full DAQ logging of inputs and outputs for offline comparisons

L1A generation a major synchronization accomplishment for trigger

Provided trigger for other subsystems

Marks beginning of CSC Trigger operations at CERN



#### Track-Finder Crate Operation -- Florida, Rice, UCLA

MS (x1) SP1 ARREST OF TAXABLE PARTY. X 1 eterset and the set of the 2 wighon A surf low

SP2(x 12) SP2(x 12) System of multiple peripheral crates (multiple Muon Port Cards) to TF crate

Synchronization studies

Multiple Sector processors to one Muon Sorter

#### Fully functional in Beam Tests

Provides trigger for the experiment

#### Operating now for Integration tests

L1A signal distributed out of crate from CCB



# **Trigger M&O Plans**

**Operate fully functional trigger electronics at CERN** 

Employed in myriad tests & preparation activities

#### **Tests in Electronics Integration Center**

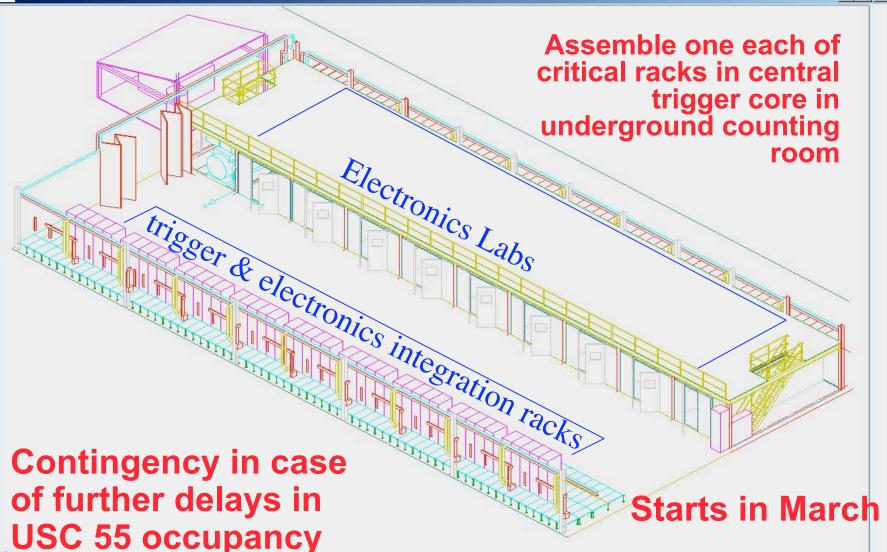
- Labs & row of racks for all electronics subsystems
- Test interfaces & integration as much as possible before move to USC55

#### Surface & "Magnet" tests in SX5

- With both HCAL and EMU
- More during magnet test
- Verify trigger functions & interfaces w/detectors on surface.

## Installation in Underground Counting Room (USC55)

- Expect start by Nov 30 '05 ---"ready for crates"
  - Racks & Infrastructure installed


#### Trigger Upgrade R&D

Start initial design work & technology investigations

Underground Counting Room

## Trigger Install/Commission: Path to USC55 thru Prevessin 904

STAND STAND





# Install/Commission: Next Steps

### Magnet (a.k.a. cosmic)Test:

- Drift Tubes are main trigger
- Also trigger on CSC & RPC
- Trigger Distribution: test beam  $\rightarrow$  emulator  $\rightarrow$  final
  - Start with demonstrated working systems and evolve to new systems in order of readiness, complexity
  - Use final Trigger, Timing & Control (TTC) infrastructure
- US share of support for TTC infrastructure M&O:
  - Partial support of engineer Tony Rohlev (\$38k/yr)
- Trigger provided to all participating subsystems
- **USC55:** 
  - Planned start at end of 2005
  - All trigger systems first tested in Prevessin 904
    - Nothing is installed in a rack in USC55 for the first time



Install/Commission Trig. Crates: Dec '05 - Apr '06

- Tested Trigger Crates installed, re-tested, interconnected, inter-synchronized
- Regional and Global Detector trigger systems integrated with each other and Global Trigger
- Integrate w/Detector Elect.: May '06 Oct '06
  - Cal Trig connected to E/HCAL USC55 electronics
  - Muon Triggers connected to optical fibers carrying trigger data from detector
  - Global Trigger connected to TTC distribution system
  - Operation with Local DAQ



Integrate w/Central Trig. & DAQ Nov '06 - Apr '07

- Subset of triggers available to detectors in UXC55
- Dedicated testing with individual detectors
- Detailed synchronization testing of all systems
- Testing with Central DAQ

## System Commissioning May '07 - Aug '07

- Full capability of trigger system available
- Tests with all detectors and trigger operating simultaneously together and partitioned
  - Trigger and DAQ can operate in 8 separate partitions

## Ready for Data Taking August, 2007



### CMS Electronics Installation Plans Consistent with Trigger Plans

### 4 month slip wrt. schedule shown at MEG Feb '04

|                                      |   | 2Q 04 3Q |    |    |    |     |     |       |    |     | Q 05 |          | 2Q 05       |    |               | 3Q 05 |   | 4Q 05 |    |   | 5 1Q |          |    |                         | 06  |               | 3Q 06  |               |                  |         |            |      |      |            | 7 2Q 07         |                 |   | 3Q 07 |     |     | Q 07 |
|--------------------------------------|---|----------|----|----|----|-----|-----|-------|----|-----|------|----------|-------------|----|---------------|-------|---|-------|----|---|------|----------|----|-------------------------|-----|---------------|--------|---------------|------------------|---------|------------|------|------|------------|-----------------|-----------------|---|-------|-----|-----|------|
|                                      | А | M J      | J  | A  |    | 6 ( | 1 C | N   [ | ), | JF  | Μ    | Α        | Μ           | J  | J             | A     | S | 0     | N  | D | JI   | FI       | MA | M                       | J   | J             | Α      | S             | 0 1              | N       | ) J        | JF   | Μ    | Α          | М               | J               | J | A S   | S C | ) N | D    |
| Lower CMS                            |   |          |    |    |    |     |     |       |    |     |      |          |             |    |               |       |   |       |    |   |      |          |    |                         |     |               |        |               |                  |         |            |      |      |            |                 |                 |   |       |     |     |      |
|                                      |   |          |    |    |    |     |     |       |    |     |      |          |             |    |               |       |   | 4     |    |   |      |          |    |                         |     |               |        |               |                  |         |            |      |      |            |                 |                 |   |       | `   |     |      |
| Connect Cables to USC                |   |          |    |    |    |     |     |       |    |     |      |          |             |    |               |       |   |       |    |   |      |          |    | _                       |     |               | _      |               |                  |         |            | _    |      | - 1        | $\square$       | $\rightarrow$   |   |       |     |     |      |
|                                      |   | 0        |    |    | •  |     |     |       |    |     |      |          |             |    |               | _     |   |       | _  |   |      |          |    |                         |     |               | _      | _             |                  |         |            | _    |      | -          | $\square$       | $\rightarrow$   |   |       |     |     | _    |
| USC Ready for Crates                 |   | 2        | li | 11 | ш  | Щ   | SI  | d     | Πċ | 111 | Ψ    |          | wa          | IS |               | _     |   |       | _  |   |      |          |    |                         |     |               |        |               |                  | _       |            | _    |      | -          |                 | $\rightarrow$   | _ |       |     |     | _    |
| LIVO De estre fam Oreste e           |   |          | ١. |    |    | - 6 |     |       |    | -   |      |          | <u> </u>    |    |               | _     |   |       |    |   |      |          | -  | $\overline{\mathbf{A}}$ | ( Q | $\mathcal{I}$ | A      |               | ľ<br>H P         |         | $\Lambda$  |      |      |            | ┍┛┙             | $\rightarrow$   |   | -     |     |     |      |
| UXC Ready for Crates                 |   |          | д  | ЛЦ | e  |     | U:  | 2     | ĥ  |     | e    | <b>)</b> | <b>'</b> 04 | ŧ∔ | _             | _     |   | _     | 1  |   |      | _        | Щ  | GN                      |     | )             | U      | 186           |                  | 녰읉      | <u>}</u> [ | 붜(   | 714( | J) (       |                 | -+              |   | -     |     |     | -    |
| SCX connected to USC                 |   |          |    |    |    |     |     |       |    |     |      | C        |             | 5  | - 1           | _     |   |       | -8 |   |      |          | `  |                         |     | -             | $\neg$ |               |                  |         | -          |      |      | <b>[</b> ] | $\vdash$        | $\rightarrow$   |   | -     | -   |     |      |
|                                      |   | (ac      | Ģ  | ¢; | 25 | 540 | Ĵ   | φ     | Щ  | ıg  | -L   |          |             | Эţ | $\mathcal{F}$ | _     |   |       | -  |   |      | _        | _  |                         | -   | -             | -      |               | _                | -       | _          | _    |      |            | $\vdash$        | +               | - |       |     |     |      |
| Ready for LHC Beams                  |   |          |    |    |    | ÷   |     |       |    | -   |      |          | + +         |    |               |       |   |       |    |   |      |          | 1  |                         |     |               |        |               |                  |         |            |      |      |            |                 |                 |   |       |     |     |      |
|                                      |   |          | +  | +  | -  | +   |     |       | +  |     | -    |          |             | -  |               |       |   |       | -  |   | -문   | <u>ا</u> | 6  | f f O                   | ) A | 16            | 45     | -(t           | $\sigma(\theta)$ | ) fi fi | HA         | AH H | 2    | Htt        | ))A)            | d H A           | 0 |       |     |     |      |
| Complete ESRs for CMS Electronics    |   |          | -  | +  | +  | -   |     |       | _  |     | -    | _        |             |    | -             |       |   |       |    |   |      | Υ        | Y  |                         |     |               | ~      | $\rightarrow$ | $\gamma$         |         |            |      |      |            | 700             |                 | Y |       |     |     | -    |
|                                      |   |          | -  | +  | -  |     |     |       | _  |     |      |          |             |    |               |       |   |       |    |   |      |          |    |                         |     |               |        |               |                  |         |            |      |      |            |                 |                 |   |       |     |     | -    |
| Complete EIC, Prevessin 904          |   |          |    | +  | +  | ┢   |     |       |    |     | +    |          |             |    | -             | -     |   |       |    |   |      |          |    |                         | 1   |               |        |               |                  |         |            |      |      |            |                 |                 | Í |       |     |     |      |
|                                      |   |          |    |    |    |     |     |       |    |     |      |          |             |    |               |       |   |       |    |   |      |          |    |                         |     |               |        |               |                  |         |            |      |      |            |                 |                 |   |       |     |     |      |
| Testing Electronics in EIC           |   |          |    |    |    |     |     |       |    |     |      |          |             |    |               |       |   |       |    |   |      |          |    |                         |     |               |        |               |                  |         |            |      |      |            |                 |                 |   |       |     |     |      |
|                                      |   |          |    |    |    |     |     |       |    |     |      |          |             |    |               |       |   |       |    |   |      |          |    |                         |     |               |        |               |                  |         |            |      |      |            |                 |                 |   |       |     |     |      |
| Install Electronics in USC & UXC     |   |          |    |    |    |     |     |       |    |     |      |          |             |    |               |       |   |       |    |   |      |          |    |                         |     |               |        |               |                  |         |            |      |      |            |                 |                 |   |       |     |     |      |
|                                      |   |          |    |    |    |     |     |       | _  |     |      |          |             |    |               |       |   |       |    |   |      |          |    |                         |     |               |        |               |                  |         |            |      |      |            |                 |                 |   |       |     |     |      |
| Commission (Self Test)               |   |          |    |    |    |     |     |       | _  |     |      |          |             |    |               |       |   |       |    |   |      |          |    |                         |     |               |        |               |                  |         | _          |      |      | _          | $\square$       | $ \rightarrow $ |   |       |     |     |      |
|                                      |   |          | _  | _  |    |     |     |       | _  |     | _    | _        |             |    |               | _     |   |       | _  |   |      |          |    |                         |     |               |        |               |                  |         |            | _    |      | -          | $\square$       | $\rightarrow$   |   | -     |     |     | _    |
| Commission (Local DAQ)               |   |          | _  |    |    | _   |     |       | _  |     |      | _        |             |    |               |       |   |       | _  | - |      |          |    |                         |     |               |        |               | _                |         |            |      |      | -          | $ \rightarrow $ | $\rightarrow$   |   | -     |     |     | -    |
| Commission (Domoto DAO)              |   |          | -  | _  |    | _   |     | _     | _  |     | _    | _        | + +         |    |               | _     |   |       | _  | - |      |          |    |                         |     |               |        |               |                  |         |            | _    |      |            |                 | $\rightarrow$   |   | -     |     |     | -    |
| Commission (Remote DAQ)              |   |          | -  | -  | -  | _   |     | -     | _  |     |      | _        |             |    | _             | _     | _ |       | -  | - |      | _        |    |                         |     |               |        |               |                  | _       | _          | _    |      |            | $\vdash$        | -+              | _ | -     | -   |     |      |
| Commission Trigger (Stand alone)     |   |          | -  | +  | +  | _   | _   | -     | _  |     | -    | _        |             |    | -             | _     |   |       |    |   |      |          |    |                         |     | -             | -      | -             | -                | -       | _          | -    |      |            | $\vdash$        | -+              |   |       |     |     | -    |
|                                      |   |          | -  | +  | +  | ┢   |     |       | _  |     | -    |          | +           | +  | -             | -     |   |       |    |   |      |          |    |                         | -   | -             | +      |               |                  | +       | _          | -    |      |            | $\vdash$        | -+              | - |       |     |     |      |
| Commission Trigger (Sub - Detectors) |   |          | -  | +  | +  | ╈   |     | +     | -  |     | +    |          |             | +  | -             | -     |   |       |    |   |      |          |    |                         |     |               |        |               |                  | +       | _          | +    |      |            | $\vdash$        |                 | + |       |     |     | -    |
|                                      |   |          |    | +  | +  | ┢   |     | -     |    |     | +    |          |             |    | -             | -     |   |       |    |   |      |          |    |                         |     |               |        |               |                  | +       |            | +    |      |            |                 |                 | + |       |     |     |      |
| Send Triggers to Sub-Detectors       |   |          | ┢  |    |    | ╞   |     |       |    |     | 1    |          |             |    |               |       |   |       |    |   |      |          |    |                         |     |               |        |               |                  |         |            |      |      |            |                 | 十               |   | 1     |     |     |      |
|                                      |   |          |    |    |    |     |     |       |    |     |      |          |             |    |               |       |   |       |    |   |      |          |    |                         |     |               |        |               |                  |         |            |      |      |            |                 |                 |   | 1     |     |     |      |
| Commission Complete System           |   |          |    |    |    |     |     |       |    |     |      |          |             |    |               |       |   |       |    |   |      |          |    |                         |     |               |        |               |                  |         |            |      |      |            |                 |                 |   |       |     |     |      |
|                                      |   |          |    |    |    |     |     |       |    |     |      |          |             |    |               |       |   |       |    |   |      |          |    |                         |     |               |        |               |                  |         |            |      |      |            |                 |                 |   |       |     |     |      |



## **SW Development Plan**

#### **Consolidate sub-systems software teams & present work:**

- Document what exists
- Promote use of common technologies
  - XDAQ, HAL, SOAP, I2O, DSTORE

#### **Consolidate hardware related layer:**

- Hardware management in Equipment Database
  - Board description, identification & history
- Agree on scheme for storage and verification of Firmware and LUT contents

#### **Configuration data**

- Use CMS Configuration DB Infrastructure (under development)
- Sub-systems define their Configuration Data Schema

#### **Trigger supervision**

- Define requirements and architecture ⇒ Documentation
- Integrate with RCS and trigger sub-systems

#### **Trigger testing and monitoring**

- Translate Integration Test Plans into Software ⇒ Bldg 904 setup
- Trigger Online Monitoring 
   Use DAQ Monitoring Infrastructure
- Test & run trigger emulation



## Physicist M&O Tasks

- Change trigger as beam conditions change Study new trigger configurations
  - Test runs, Monte Carlo studies, data studies
- **Trigger Physics Analysis** 
  - Understand detailed impact of trigger on physics
- **Preparation for luminosity increases**
- Monte Carlo studies of new conditions, validate with present data Respond to changing apparatus
  - Changes in material, configuration, etc.  $\Rightarrow$  changes in simulation
- **Operations 24x7 support during running** 
  - Write, test & maintain electronics test programs
  - Maintain & update bad channel list & run daily checking programs
  - Run Control maintenance
  - Trigger data validation and calibration
    - Online & Offline analysis of rates & efficiencies
  - Monte Carlo & data trigger simulation maintenance
    - Continuous validation of trigger using simulation & readout data



## Summary: M&O Personnel (does not include upgrade R&D)

### From Project Support:

- 1 / 2 / 2.25 / 2 FTE Engineers in FY04 / 5 / 6 / 7+
  - 0.5 FTE ea. for cal. & mu trigger (designers) + PNPI 0.25 for mu
    0 / 50% / 100% of this in FY04 / 5 / 6, PNPI in FY05,6 only
  - 1 FTE (cost shared w/CERN) on TTC M&O FY04 FY07
- 0 / 0.6 / 1.25 FTE Technicians in FY04 / 5 / 6+
  - 0.5 FTE ea. resident for cal & mu + 0.25 visiting for cal
    - 0 / 0.3 FTE ea. resident for cal & mu in FY04/ 5

### From Base Program Support:

- 2.6 / 4 Ph.D. Physicists in FY05 / 6+ (ramp up in FY05)
  - 2 physicists each for calorimeter & muon trigger
  - Spend 50% of time on M&O and 50% on physics research.
- 12 Graduate Students by FY07 (ramp up starting in FY05)
  - 6 students each for calorimeter & muon trigger
  - 25% (e.g. training, physics, thesis) of total tenure on trigger
  - Fewer students  $\rightarrow$  more postdocs



# Trigger M&O M&S

#### **Diagnostic equipment**

- Scopes & probes, logic analyzers, computers, interfaces, etc.
- Construction of additional specialized test boards

### **Repair equipment & supplies**

- Soldering stations (BGA repair), Tools, Voltmeters, misc. supplies
- Module repair/replacement costs
  - Power supplies, regulators, breakers, thermal sensors, crate CPUs, etc.
- Replacement of broken cables, fiber optics, etc.
- Vehicle lease for hauling back & forth
- Shipping and/or contract repair Costs
  - Sending items back to US for major work
    - Either to FNAL, University, or manufacturer

### Est. Yearly Cost of 80K\$, Total for FY05-FY09: 360K\$

- •40K\$ each for US CMS Cal. & Muon Trigger Efforts
  - Half that for FY05 as ramp up



## Foreign Contributions & Shared Resources

## **Trigger Guidelines:**

- Each institute maintains the hardware it built
  - Includes Labor & M&S
  - No exceptions
- Spare Parts are purchased before commissioning

## **Shared Resources:**

- Test facilities in Prevessin 904
- CERN Electronics Pool

## **CERN Contributions:**

- Rack, Cable & Power/Cooling infrastructure
- Local engineering assistance (CMS Electronics group)



# Trigger Upgrade R&D

#### Luminosity upgrade x10 – SLHC : L = 10<sup>35</sup>cm<sup>-2</sup>s<sup>-1</sup>

- Extends LHC mass reach by ~ 20-30% with modest changes to machine
- Detector upgrades needed -- especially the trigger
- Time scale ~ 2014

#### Trigger: rebuild for 12.5 ns

- Double operational frequency from 40 MHz to 80 MHz
  - Processing & data transfer
- Design for much higher rejection power for pileup to retain output rate of 100 kHz -- more sophistication
  - Exploit newer generation programmable devices

# Attempt to restrict upgrade to post-TPG electronics as much as possible where detectors are retained

- Only change where required -- evolutionary -- some possible pre-SLHC?
- Started in FY04
  - Workshops: US CMS in Madison Feb '04, CMS at CERN Feb '04 & Imperial College Jul '04.
  - CMS SLHC Level-1 Trigger & Tracker project started. W. Smith & G. Hall (Imperial) chosen to lead effort.



# **CMS Trigger Upgrade Plan**

### **Current for LHC:** $TPG \Rightarrow RCT \Rightarrow GCT \Rightarrow GT$ **Proposed for SLHC: TPG** $\Rightarrow$ **Clustering** $\Rightarrow$ **Correlator** $\Rightarrow$ **Selector Trigger Primitives** $\mu$ track finder e / $\gamma/\tau$ clustering DT, CSC / RPC 2x2, $\phi$ -strip 'TPG' Jet Clustering Missing E<sub>T</sub> Seeded Track Readout **Regional Correlation**, Selection, Sorting Global Trigger, Event Selection Manager



## CMS SLHC L-1 Trigger R&D

#### **New Features:**

- 80 MHz I/O Operation
- Level-1 Tracking Trigger
  - Inner pixel track & outer tracker stub
  - Reports "crude"  $P_T$  & multiplicity in ~ 0.1x 0.1  $\Delta \eta \times \Delta \phi$
- Regional Muon & Cal Triggers report in ~ 0.1 x 0.1  $\Delta\eta \times \Delta\phi$
- Regional Level-1 Tracking correlator
  - Separate systems for Muon & Cal Triggers
  - Separate crates covering  $\Delta \eta \times \Delta \phi$  regions
  - Sits between regional triggers & global trigger
- Latency of 6.4 µsec

#### **R&D program & technologies motivated by needs:**

- Complicated Algorithms & Low Latency:
  - FPGA's: faster, more logic -- less custom logic -- programmable
  - Faster and larger memories
- Moving more data at higher speed:
  - Link technology: speed & integration
  - Backplane technology: connectors & newer interconnect technology
- Higher Crossing Frequency:
  - High speed clocking: low jitter design for links
- Overall Complexity:
  - Design for test, diagnostics, algorithm validation



## Trigger Upgrade R&D Program

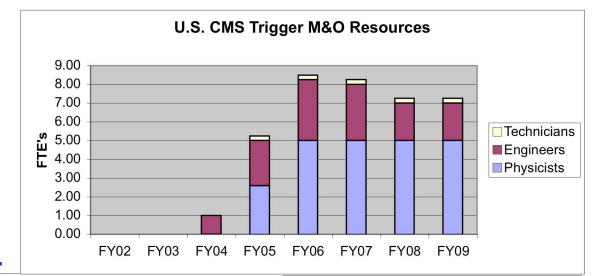
### Based on CMS Level-1 trigger R&D & Prototypes. Personnel requirements

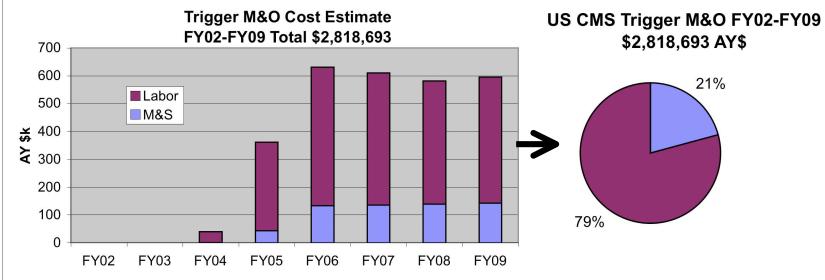
- 0.4 / 1 FTE Engineer from Project in FY05 / 6+
  - Engineering Design: 0.5 FTE ea. cal. & mu (ramp up in FY05)
  - Could be other "half" of engineer on M&O
  - These are designers of the trigger system (institutional memory)
- 0.4 / 1 FTE Ph.D. Physicist from base program in FY05 / 6+
  - Simulation & Design Studies
  - 0.5 FTE ea. cal & mu trigger (ramp up in FY05)

### **M&S Requirements**

- \$40K/year for Prototypes
  - \$20K ea. for cal. & mu trigger
  - ~ 2 prototype boards (\$10K ea.) per year for cal. & muon

## **Trigger Upgrade Estimate Total for FY05-9: 710K\$**


- Estimated Yearly Cost of 165K\$ FY06-9 (50K\$ EDIA only in FY05)
  - M&S of 40K\$ for prototyping & EDIA of 125K\$ for engineering
  - Engineering cost would be in Maintenance if not upgrade R&D




# Trigger M&O, R&D Plans

Labor costs include minimum level of existing personnel who designed/built the system

- Maintain the "longterm memory"
- Not supported by base program
- Plus one shared tech.







# **Trigger M&O Summary**

#### **Good Progress on all fronts:**

- CAL & EMU Triggers finishing production
- Operations at CERN commenced
- Integration tests complete or underway
- Software is in use and development continues

### **M&O Activity in '05: Prepare for installation:**

- Time is tight to accomplish the necessary tasks
- Steps taken, planning established to meet schedule
  - Tests: Surface Tests in SX5, Magnet Test in Fall '05
  - Use of Electronics Integration Center starting March '05
  - Careful layout and plan for USC55 starting Dec. '05

### **Upgrade R&D:**

- Design work: build on design framework established in '04
- Investigate enabling technologies to understand implementation