

US CMS TriDAS 2006

US CMS Meeting Wesley H. Smith, *U. Wisconsin* CMS Trigger Project Manager April 8, 2006

Outline: Calorimeter Trigger Status Endcap Muon Trigger Status US DAQ Status Installation/Commissioning Plans Preparations for Physics Upgrade R&D

http://hep.wisc.edu/wsmith/cms/doc06/smith_trig_USCMS_apr06.pdf

Regional Cal. Trigger Milestone: Production & Testing Complete

Receiver Card:

Electron Isolation & Clock:

W. Smith, US CMS Meeting, April 8, 2006

Jet/Summary:

3 RCT Full Crates Operating at CERN - U. Wisconsin

Rear of Full RCT crate fully cabled to HCAL trigger primitive logic

Used for integration tests & board checkout after shipment

Front of Full RCT crate with Jet Capture Card that continuously samples output, checks on the fly for errors and provides readout of 256 crossings

Endcap Muon Trigger Milestone: Production & Testing Complete

- Muon Sorter (Rice):
 - Sorter produced (1 needed)
- Muon Port Card (Rice):
- Final production done (tested 67)
- Total needed: 60 (75 incl. spares)

Sector Processor (Florida):

- Backplane produced (1 needed)
- 20 SP produced (12 needed):

CSC trigger operations: Preparing for Cosmic Challenge

Currently set-up in SX5 and operating continuously with CMS DAQ

•Connected 10 chambers in ME+2 & ME+3 \rightarrow 20° full slice on YE+2

CSC Track-Finder will provide cosmic muon trigger based on a coincidence of LCTs in two or more disks

•Currently triggering @ 50Hz with 2-station coincidence

•CSC track finder has already provided triggers used to pass data from CSCs to global DAQ using Local Trigger Control and Fast Monitoring Modules.

Electronics Integration Center (Building 904)

Central Integration Racks in Electronics Integration Center

Large scale integration tasks in central racks: •Example: Calorimeter

trigger operating with CMS timing & control system

•Successful integration tests with regional calorimeter trigger, global calorimeter trigger, HCAL and ECAL trigger primitive logic

HCAL-SLB-RCT Integration in EIC - Maryland, Lisbon, Wisconsin

Sent synchronous jet data from HCAL HTR's thru 6 SLB via 10m cu 4Gb/s Vitesse Links to 6 Regional Cal.Trigger Receiver Mezzanine cards, thru Receiver Cards, Backplane & Jet Summary Card to Jet Capture Card that records the output of 256 crossings. Observe output jets on all channels in expected crossings.

CSC Track Finder Integration - Florida, Rice, UCLA

Slice Test: cosmics running now!

- Preparing full readout and self triggering of a whole trigger sector (60°).
- Since June '05 self-triggering with as close to nominal CMS setup as possible
 - used to pass data CSCs to global DAQ.
 - Above: visualization of correlated LCTs recorded by the SP at the slice test, stored and read back using CMSSW

EIC Integration

- Integration tests with Drift Tube Track Finder underway
- •Have CSC TF crate running in EIC
 - Full Florida TF crate operating at Rice (above)

Global Calorimeter Trigger

New GCT project launched

- Project schedule challenging but technical risks modest
- Modular design can be staged & installed in 3 steps
 - Electron, Jet & Muon Trigger
- Already tested the most critical part of the design
 - Jet finder on leaf card demonstrated to work at full speed.
- Have a team of excellent engineers with proven records
- Schedule and costs include adequate contingency.
- Good progress as of first review in March
- ESR in May

Fallback RCT direct to GT trigger scheme

- Uses existing hardware, initially without any modifications
 - Sent via RCT Jet Capture Card originally used for diagnostics
- Can be ready in 2 months for integration purposes
 - Trigger data from RCT to GCT already tested & works
- Operational trigger available by end of 2006

Trigger Software

Configuration data

Use CMS Configuration DB Infrastructure

Trigger Supervisor (see below)

Integrate with Run Control and trigger sub-systems

Trigger testing and monitoring

- ► Translate Integration Test Plans into Software ⇒ Bldg 904 setup
- Trigger Online Monitoring → Use DAQ Monitoring Infrastructure

Trigger Supervisor GUI

Trigger Supervisor Demonstrator

US groups in central DAQ

SLINK-FRL production test & commission D2S installation & commission (people @ CERN) Mini-DAQ: RUs, switch, BUs, FUs, mass storage

FNAL

Readout Builder applications RCMS MTCC and sub-detectors integration (UCLA)

Page1 experiment status summary

UCSD

Event Builder GBE technology evaluation

Central DAQ RU Builder

Latest release

Version 3.8

Incorporated into XDAQ worksuite worksuite_G_28176 V1.5

Documentation http://xdaqwiki.cern.ch/index.php/Event_buil der

Project website http://smurray.home.cern.ch/smurray

Contact person Steven Murray (Fermilab) E-mail: Steven.Murray@cern.ch

DAQ Progress

USC:

- D2S FRL-FMM production&test completed
 - D2S Myrinet (FB switches, FRL-interfaces) delivered
 - 41 FRL/PCs racks installation well advanced
 - Start to learn S-link routing sometime next week
 - 80 PCs (FRL, FMM, MTCC and miniDAQ) delivered _50 PCs (FRL/FMM) installed in USC
 - 211 PCs (VME controllers, DCS + spares) delivered
 - 24 VME PCs delivered to tracker, CSC and MTCC
- DAQ cable trays ready in USC
 - Slink routing (FED-FRL) started
 - First optical cable (18 ribbons, 200m) arrived at CERN
 - All safety documents approved by TIS
 - Tested in DAQ preseries. Final Order out

SCX:

5

m

- Myrinet (FB switches, RU-interfaces) delivered
- 106 PC racks **delivered** (stored at first floor of SCX5)
- 600 PCs first RUN DAQ. Market survey out
- GBE event builder switch. Test Started

DAQ Integration: Pre-series

Green Barrack

Readout Builder PCs

- 64 dual Xeon 2.6 GHz RU-BU PCs
- Myrinet +GbE interfaces
- 16 dual Xeon 2.6 GHz Filter nodes
- OS Linux 2.4

Current activities DAQ integration and MTCC Online services preseries Detector readout integration First Run EVB technology GbE with a FORCE10 E1200 switch

Trigger Install/Commission

Magnet Test (a.k.a. Cosmic Challenge) :

•Muon Barrel Trigger:

- •YB+2 sectors 10, 11 & YB+1 sector 10 for DT's & RPCs
- •DT's use Sector Collector, Phi Track-Finder, Barrel/Wedge Sorters
- RPCs use RPC Barrel Collector connected to Link Boards

•CSC Trigger:

- •40° (or 60°) Slice: 24 CSCs from Sector 5, overlaps DT sectors 10, 11
- $\bullet \text{SP} \rightarrow \text{Clock \& Control Board} \rightarrow \text{Local Timing Controller}$

• Calorimeter Trigger:

- •Existing HCAL \rightarrow RCT \rightarrow JCC system brought to point 5 on demand
 - provides full HCAL module trigger
- Trigger provided to all participating subsystems
- **USC55:**
 - Planned start May 2006
 - •All trigger systems first tested in Prevessin 904
 - •Nothing is installed in a rack for the first time in USC55

Trigger Commissioning in 2006: Task List

Engineers:

- Revise firmware
 - Replace testing firmware with operations firmware
- Monitoring
 - Implement voltage/temperature detector controls
- Timing & Control
 - Build up timing & control signal distribution systems
- Software
 - Develop APIs for integration with software
- US CMS Concern: Sustaining the team needed for these tasks

Physicists:

- Diagnostics, emulators, simulation code, interfaces and integration with other CMS systems.
- US CMS Concern: Sufficient postdoctoral support to enable those working on these tasks to also be able to do physics

Install/Commission Crates: May '06 - Sep '06

- Tested Trigger Crates installed in USC55, re-tested, interconnected, inter-synchronized
- Regional and Global Detector trigger systems integrated with each other and Global Trigger

Integrate w/Detector Elect.: June '06 - Oct '06

- Phase 1 in USC55, Phase 2 in UXC55
- Cal Trig connected to E/HCAL USC55 electronics
- Muon Triggers connected to optical fibers carrying trigger data from detector in UXC55
- Global Trigger connected to TTC distribution system
- Operation with Local DAQ

Integrate w/Central Trig. & DAQ Oct '06 - Mar '07

- Subset of triggers available to detectors in UXC55
- Dedicated testing with individual detectors
- Detailed synchronization testing of all systems
- Testing with Central DAQ
- System Commissioning Apr '07 Aug '07
 - Full capability of trigger system available
 - Tests with all detectors and trigger operating simultaneously together and partitioned
 - Trigger and DAQ can operate in 8 separate partitions

Ready for Data Taking August, 2007

Simulated L1 rates at 10²⁸ Collaboration with Online Selection PRS

Initial Trigger Menu

Turn On: Level-1 Trigger Totally Open @ 12.5 kHz

- Calorimeter low ΣE_T or any muon (no P_T cut)
- Other candidate triggers for later running are active for diagnostic and study purposes (efficiency)

Test Triggers

• Dedicated runs and possible operation during abort gaps to verify detector function & synchronization.

Start Luminosity (10²⁸⁻²⁹): First Trigger @ 12.5 kHz

- Calorimeter low E_T Electron (\geq 5 GeV) or Jet (\geq 10 GeV)
- Any muon (effectively \geq 3 GeV P_T cut)
- Other candidate triggers for later running are active for diagnostic and study purposes (efficiency)

Need HLT from beginning

- Reduce Level-1 12.5 kHz output rate to 100 Hz to tape
- Diagnostic for Level-1 Trigger
- All L1 trigger algorithms first tested/validated in HLT

Evolution of Initial Trigger Menu

Simultaneous strategies as luminosity & rates rise:

Keep thresholds low by adding conditions

- Electrons: add isolation at lower thresholds
 - Longitudinal: H/E
 - Transverse: HCAL Isolation, ECAL Isolation (Fine-Grain bit)
- Jets: add τ -bits to preserve thresholds for τ 's.
- Muons: add quality conditions at lower thresholds
 - more hits on muon tracks of individual muon trigger systems
 - Require coincidence between RPC and either DT or CSC
- Muons: add isolation at lower thresholds
 - Calorimeter quiet region associated with muon
- Raise thresholds for "unrestricted" triggers
 - Above lowest possible thresholds do not impose conditions
 - Calorimeter: no isolation above higher threshold or τ -bits
 - Muon: remove coincidence & isolation, relax hit requirement

Depends on HLT requirements (thresholds, conditions)

Triggers first validated in HLT, then migrated to L1

Trigger Monitoring

Pipeline alignment

- Check bunch crossing 0 alignment for changes (pipeline jumps)
- Check pattern in occupancy histograms

Trigger Function

- Test processing of online data through trigger emulation vs. trigger output on a dedicated stream of level-1 pass-through events. Flag discrepancies.
- Process L1 accepted events through HLT & compare with result of comparison with DAQ data.
- Use overlapping triggers to produce online trigger efficiency turn on curves and compare to previous runs and "ideal" templates using automatic statistical tests
- Repeat above offline (where possible)

SLHC Upgrade Planning

Luminosity upgrade x10 – SLHC : L = 10³⁵cm⁻²s⁻¹

- Extends LHC mass reach by ~ 20-30% with modest changes to machine
- Detector upgrades needed -- especially the trigger & tracker
- Time scale ~ 2015

Attempt to restrict upgrade to post-Trigger Primitive electronics as much as possible where detectors are retained

• Only change where required -- evolutionary -- some possible pre-SLHC?

SLHC Upgrade Committee Members -

- Tracker: G. Hall, ECAL: P. Busson, HCAL: A.Baden, Muon: C. Wilmott, Trigger: W. Smith, Computing/Physics: D. Acosta, Microelectronics: A. Marchioro, Opto-electronics: F. Vasey, Electronics Coordinator: J. Nash, Spokesperson, Deputy Spokesperson, Technical Coordinator, Deputy Technical Coordinator
- Set up by CMS Management Board & approved by Collaboration Board

April Workshop just held

April 3/4 2006 Perugia

Next Meetings During Electronics & CMS Weeks

SLHC TriDAS Upgrade

Level 1: Regional to Global Component to Global

SLHC Proposal:

- Combine Level-1 Trigger data between tracking, calorimeter & muon at Regional Level at finer granularity
- Use L1 calorimeter & muon trigger data as seeds for trigger tracks
- Transmit L1 physics objects made from tracking, calorimeter & muon regional trigger data to global trigger
 - Cal/Mu: ID (needs good acceptance, e.g. ME4/2), Track: P_T
- Implication: perform some of tracking, isolation & other regional trigger functions in combinations between regional L1 triggers
 - New "Regional" cross-detector trigger crates
- Leave present L1+ HLT structure intact (except latency)
 - No added levels --minimize impact on CMS readout
- DAQ: Merge Global L1 & Event Manager to perform event building with new enhanced TTC system
 - Readout directly into filter farm nodes using addresses communicated along with level-1 accept signal to front end readout

USCMS TriDAS 2006 Summary

Good Progress on all fronts:

- CAL & EMU Triggers finished production
- DAQ installation started
- Operations at CERN underway
- Integration tests complete or underway
- Software is in use and development continues

Main Activity in '06-7: Installation:

- Time is tight to accomplish the necessary tasks
- Steps taken, planning established to meet schedule
 - Tests: Surface Tests in SX5, incl. Magnet Test in Spring '06
 - Extensive use of Electronics Integration Center
 - Careful layout and plan for USC55 starting next month

Upgrade R&D:

- Design work: build on evolving concepts for higher luminosity
- Investigate enabling technologies to understand implementation