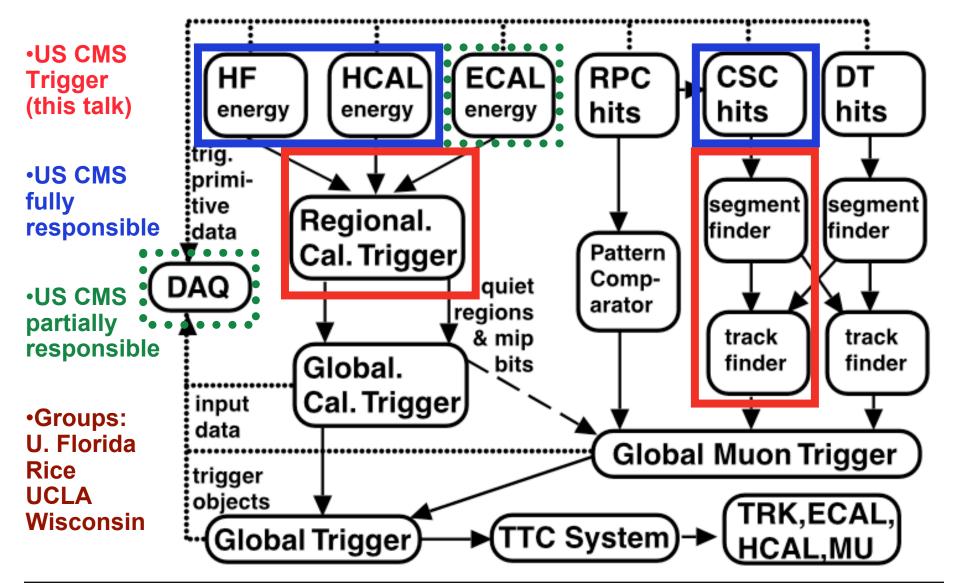


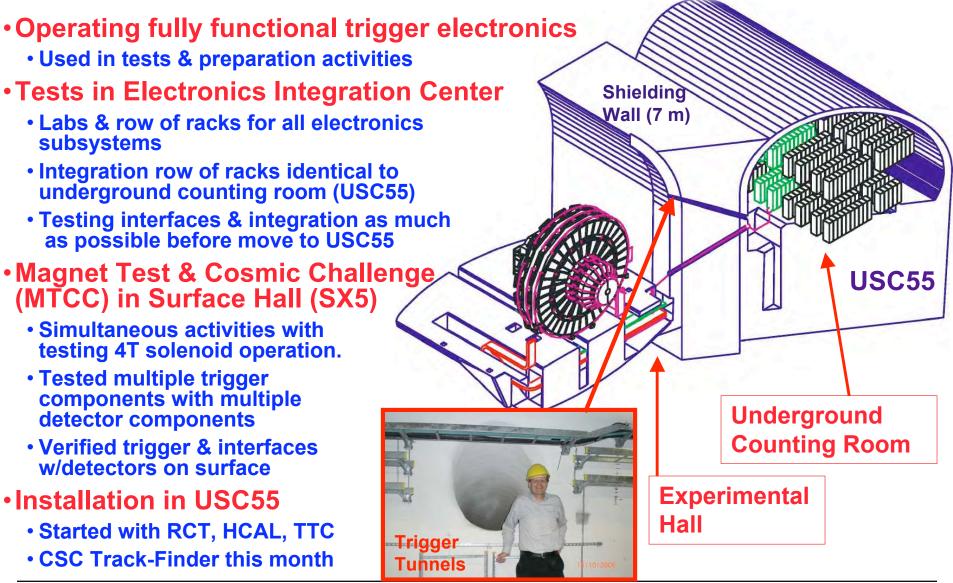
US CMS Trigger

DOE-NSF Review Wesley H. Smith, *U. Wisconsin* CMS Trigger Project Manager February 14, 2007


Outline: Calorimeter Trigger Status Endcap Muon Trigger Status M&O Plans Upgrade R&D

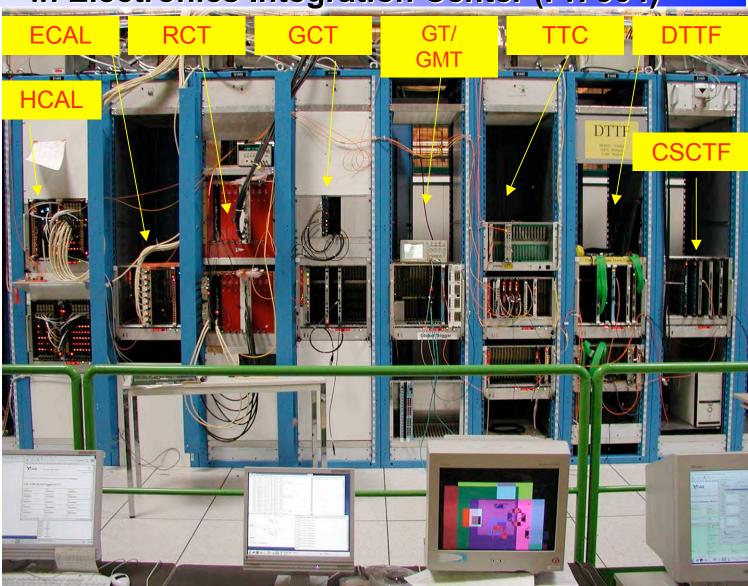
This talk is available on:

http://hep.wisc.edu/wsmith/cms/doc07/smith_trig_MEG_feb07.pdf



L1 Trigger Hardware Overview

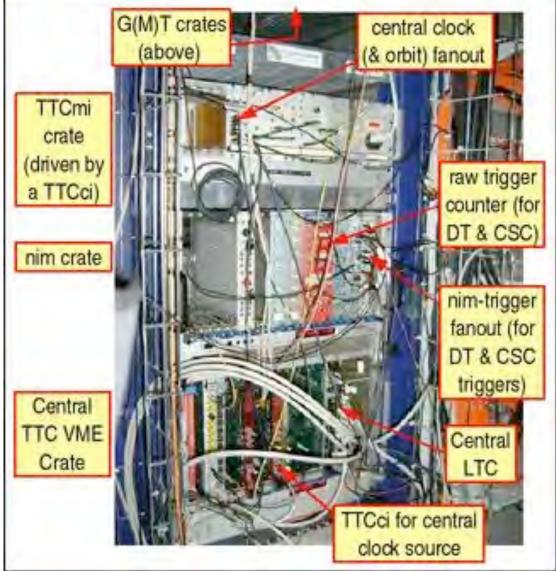
Trigger Integration Activities



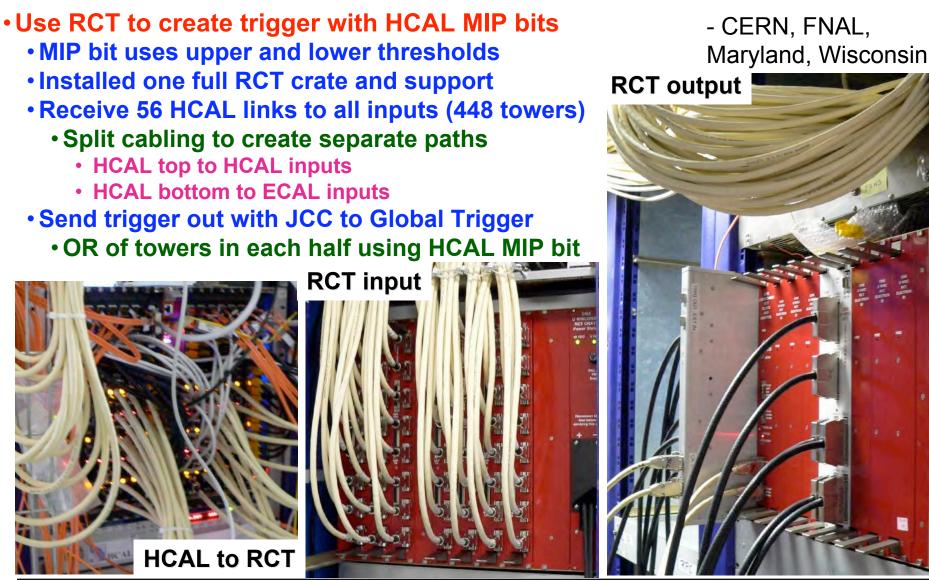
Trigger Integration Progress in Electronics Integration Center (Pr. 904)

•Large scale successful integration tests in central racks using common **TTC system** & trigger primitives, regional & global processing:

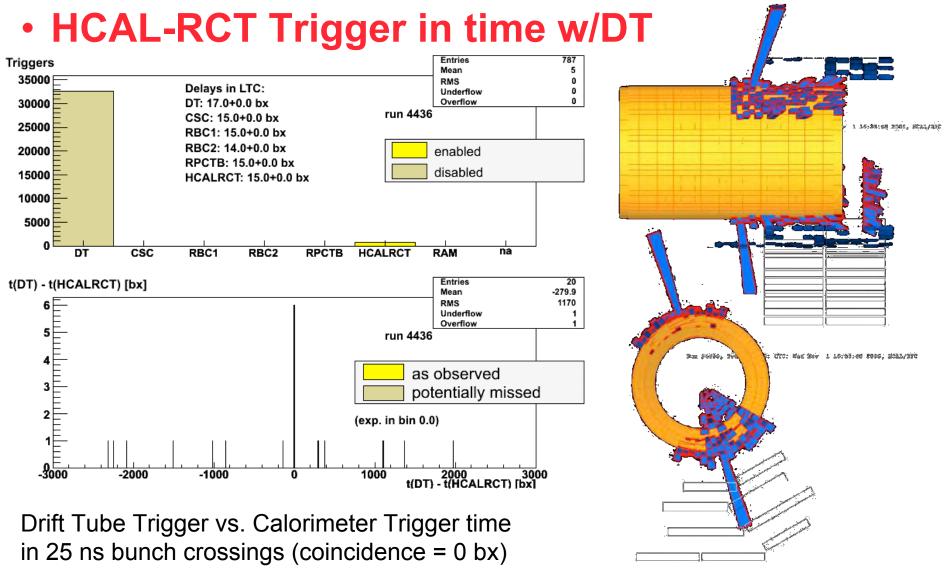
- Calorimeter Trigger
- Muon Trigger
- Global Trigger



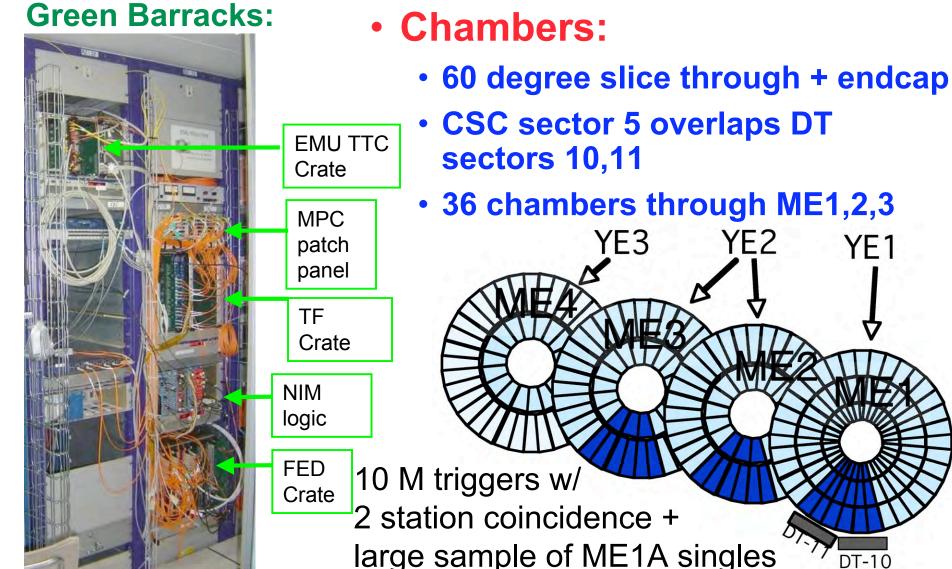
Trigger in MTCC


• Major success!

- •25 million events at a trigger rate of ~ 200 Hz
 - Mixture of DT, CSC, RBC, RPC-TB, HCAL-RCT trigs.
 - Trigger requirements easily configurable
- Stable operation
 - Stable run uptime > 1 hr many runs > 500K L1A.
- All subsystems synchronized
 - Tracker, ECAL, HCAL*, RPC*, DT*, CSC*
 - Readout & Trigger*
- Trig. throttling worked
 - Even when trigger problems or noise > 1 kHz
- Impressive teamwork!



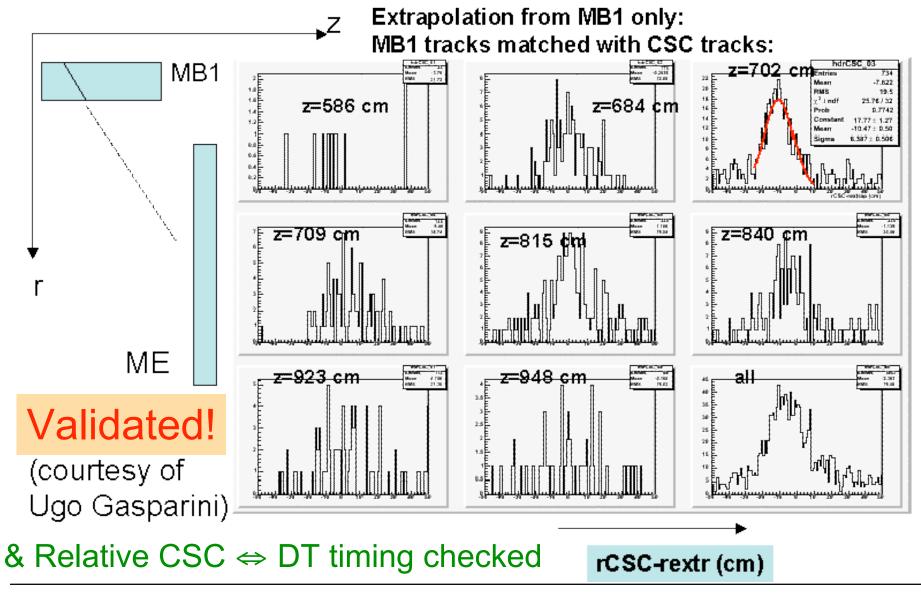
Regional Calorimeter Trigger & HCAL in MTCC



Results from MTCC

CSC Trigger in MTCC -- Florida, Rice, UCLA

DT-10


YE1

YE2

7F3

Selected MTTC Muon Trigger Results: Extrapolation of DT to CSC

RCT Installation in USC55

- •13 (of 18 total needed) tested & fully operational sets of RCT Cards are at CERN.
 - More in shipment
- •Crates, Fans, Power Supplies, Monitoring, Controls and other infrastructure installed, validated and passed safety
 - Timing & Global Calorimeter Trigger Crates installed also
 - Detector controls system operating
- •6 RCT Crates have cards installed
- Installation & cabling finished in March
 - •Begin detailed integration tests with ECAL, HCAL, GCT
 - Timing studies/calibration
 - Trigger patterns

Trigger Installation Schedule

- Install/Commission Trig. Crates in USC55: July '06 Mar '07 Underway but late*
 - Tested Trigger Crates installed, re-tested, interconnected, inter-synchronized
 - Regional & Global trigger subsystems integrated with each other & Global Trigger
 - USC55 infrastructure & advantages of MTCC & EIC setups*
- Integrate w/Detector Elect.: Jan '06 May '07 + (as detectors connected) ← Slipping !
 - Phase 1 in USC55, Phase 2 in UXC55
 - Cal Trig connected to E/HCAL USC55 electronics
 - Muon Triggers connected to trigger data optical fibers from detector in UXC55
 - Global Trigger connected to TTC distribution system
 - Operation with Local DAQ
- Integrate w/Central Trig. & DAQ: Jan '06 May '07 ← Slipping !
 - Subset of triggers available to detectors in UXC55
 - Dedicated testing with individual detectors
 - Detailed synchronization testing of all systems
 - Testing with Central DAQ
- System Commissioning: May '07 Aug '07
 - Full capability of trigger system available
 - Tests with all detectors & trigger operating simultaneously together & partitioned
- Ready for CMS Commissioning Aug '07

Commissioning: M&O Tasks

- Engineers:
 - Revise firmware
 - Replace testing firmware with operations firmware
 - Monitoring
 - Implement & test voltage/temperature detector controls
 - Timing & Control
 - Build up timing & control signal distribution systems
 - Software
 - Develop APIs for integration with software
- Physicists:
 - Diagnostics, emulators, simulation code, interfaces and integration with other CMS systems.
 - Integration with Trigger Supervisor system
 - Development & Checking of Trigger Emulators

Operations: M&O Tasks

- Engineers & Technicians (salary & travel):
 - System maintenance
 - Diagnostics, repairs, firmware updates, hardware & software modifications
 - Intensive level of continuous support (typical of trigger systems)
- Physicists (COLA only):
 - Change trigger as beam conditions change
 - Study new trigger configurations
 - Test runs, Monte Carlo studies, data studies
 - Trigger Physics Analysis
 - Understand detailed impact of trigger on physics
 - Preparation for luminosity increases
 - Monte Carlo studies of new conditions, validate with present data
 - Respond to changing apparatus
 - Changes in material, configuration, etc. \Rightarrow changes in simulation
 - Operations 24x7 support during running
 - Maintain & update bad channel list & run daily checking programs
 - Trigger data validation and calibration (on/offline rates & efficiencies)
 - Monte Carlo & data trigger simulation maintenance & validation

Trigger Software

Trigger Software Roadmap:

- Trigger Supervisor Integration: all trigger subsystems under TS central control
- Trigger Configuration DB: all trigger subsystems w/Config Key defined in DB
- Trigger Configuration integrated w/Run Control
- Trigger Supervisor Monitoring available for all subsystems + Condition DB
- Trigger Monitoring in Filter Farm available + Condition DB
- Trigger Supervisor Testing: Three types of dedicated tests:
 - Expert tests: detailed tests at board level available to experts
 - Self-test: check electronics board present & perform built-in-self-test (BIST) is available
 - Interconnection tests: 2+ components involved in test, exchanging data between them.
 - Framework controlled by Trigger Supervisor exists, integration underway in USC55

Trigger Supervisor Monitoring

- Trigger Counters and Statistics: Rates, Error counters, Sync histograms
- Trigger HW error reports (logging & counting): synch loss, error in trigger or DAQ path, board failure
- Monitoring Infrastructure in Trigger Supervisor
 - Based on DAQ Online Monitoring Infrastructure, subset is stored in Trigger Conditions Database
 - Available now to trigger subsystems
- Trigger Configuration Data Base:
 - Stores trigger parameters configured by remote control: Hardware, software, firmware file links
 - Change frequently (versions) & different tags (e.g. depend on run type) \rightarrow Config. Key
 - Each trigger subsystem responsible for schema in Config. DB \rightarrow Schema available
 - Handling of Configuration Keys in TS Framework is already available

Trigger Personnel

• M&O

- From Project Support:
 - 2.6/2.0 FTE Engineers in FY07/FY08
 - 0.8/0.5 FTE in FY07/08 ea. for cal. & mu trigger (designers)
 - 1 FTE (cost shared w/CERN) on TTC → HCAL & ECAL SLB M&O

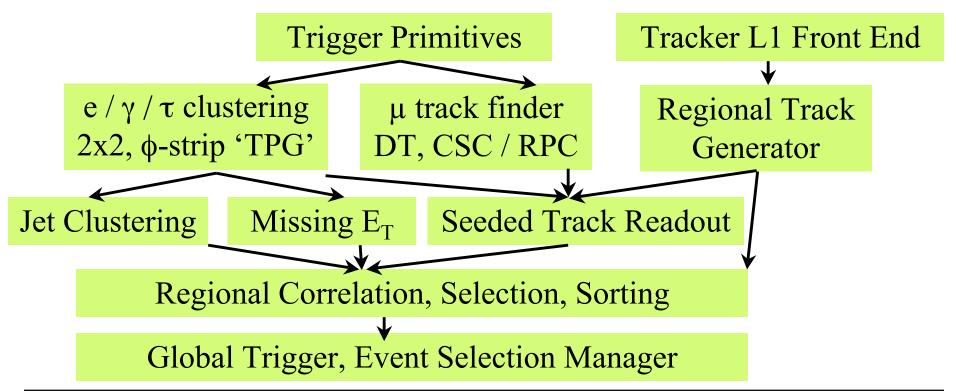
• 1.8/1.35 FTE Technicians in FY07/FY08

- 1.2/0.6, 0.6/0.75 FTE for cal/mu in FY07,8
- From Base Program Support:
 - 6 Ph.D. Physicists in FY07+
 - 3 physicists each for calorimeter & muon trigger
 - Spend 50% of time on M&O and 50% on physics research.
 - 12 Graduate Students by FY08
 - 6 students each for calorimeter & muon trigger
 - 25% (e.g. training, physics, thesis) of total tenure on trigger

Upgrade R&D

- Based on CMS Level-1 trigger R&D & Prototypes.
- Personnel requirements
 - 1 FTE Engineer from Project in FY07+
 - Engineering Design: 0.5 FTE ea. cal. & mu
 - These are other "half" of engineer on M&O
 - Designers of the trigger system (institutional memory)
 - 1 FTE Ph.D. Physicist from base program in FY07+
 - Simulation & Design Studies
 - 0.5 FTE ea. calorimeter & muon trigger

Trigger M&S


- Locations:
 - US (RCT & CSC) & UX (CSC only)
 - Test setups in Bldg. 904, and home institutes
- Diagnostic equipment
 - Scopes & probes, logic analyzers, computers, interfaces, etc.
 - Construction of additional specialized test boards
- Repair equipment & supplies
 - Soldering stations (BGA repair), Tools, Voltmeters, misc. supplies
 - Module repair/replacement costs
 - Power supplies, regulators, breakers, thermal sensors, crate CPUs, etc.
 - Replacement of broken cables, fiber optics, etc.
 - Vehicle lease for hauling back & forth
- Shipping and/or contract repair Costs
 - Sending items back to US for major work
 - Either to FNAL, University, or manufacturer
- FY07+ yearly cost of 80K\$
 - 40K\$ each for US CMS Cal. & Muon Trigger Efforts
- Upgrade R&D:
 - \$40K/year for Prototypes
 - \$20K ea. for cal. & mu trigger
 - ~ 2 proto. boards (\$10K ea.) per year for cal. & muon

SLHC Trigger Upgrade

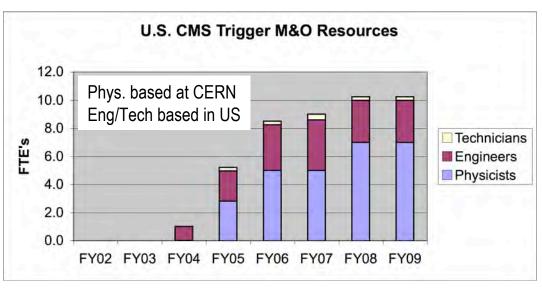
• CMS SLHC Proposal:

- Combine Level-1 Trigger data btw. tracking, calorimeter & muon at Regional Level at finer granularity
- Transmit physics objects from tracking, calorimeter & muon regional trigger data to global trigger
- Implication: perform some of tracking, isolation & other regional trigger functions in combinations between regional triggers (possibly seed tracking trigger)
 - New "Regional" cross-detector trigger crates
- Leave present L1+ HLT structure intact (except increase latency x 2 to 6 μ sec)
 - No added levels --minimize impact on CMS readout

SLHC Upgrade: near term

•CSC Trigger

- Simulation of high occupancy SLHC muon trigger algorithms
- Combined silicon + muon detectors track-finding processor studies
- Testing high-bandwidth digital optical links (10Gbps+)
- Testing asynchronous data transmission & trigger logic
- Upgrade of ALCT & Sector Processor for increased complexity, occupancy & asynchronous operation


Calorimeter Trigger


- Simulation of high occupancy SLHC calorimeter trigger algorithms
- •Combined tracking trigger + calorimeter trigger processor studies
- Develop new automated timing testing & distribution system (will use for present system as well)
- •Test new "mesh" & "star" commercial PCI-X backplane technology
- Study more complex higher-resolution algorithms in new FPGAs
- Evaluate short distance high bandwidth links, cables, connectors

Trigger M&O, R&D Plans

- Labor costs incl. minimum level of existing personnel who designed/built the system
 - Maintain the "long-term memory"
 - Not supported by base program
 - Engineers split between M&O & Upgrade R&D
- Physicists & student salaries not included
 - Project provides COLA support for physicists resident at CERN
 - Extremely important given limited resources of University base program

- Good Progress on all fronts:
 - CAL & EMU Triggers finished production, at CERN, being installed
 - Operations at CERN underway
 - Integration tests complete or underway
 - Software is in use and development continues
- M&O in '07: Install, Commission & Operate:
 - Time is tight to accomplish the necessary tasks
 - Steps taken, planning established to meet schedule
 - Use of Electronics Integration Center helped/helps
 - Detailed plan of integration tests after installation
- Upgrade R&D:
 - Design work: build on evolving concepts for higher luminosity
 - Investigate enabling technologies to understand implementation