

Wesley H. Smith U. Wisconsin CMS Trigger Coordinator CMS Plenary Session February 25, 2008

HLT Online Demonstrated Capability

HLT executed in validation Filter Farm

- •Operates as if data were provided by DAQ system
- •1 rack (20 PC's) of the DAQ at P5

Online conditions

• XDAQ environment, asynchronous event loop, DB conditions from local frontier squid

Test Events:

- •20 Million un-weighted MinBias events in raw data format
- •Skimmed on the basis of the L1 results (menu from CMSSW174)
- ~100k event available for feeding the HLT
- •10k events only taken as initial statistics
 - •Each FF node can deal only with ~1k events in replay mode

Scale by performance to FF Nodes: HLT code: 43 ms/ev

- Assumes 3 GHz nodes used for Filter Farm
- •Confirms HLT exercise result from Summer '07
- Use 100 ms/event/core in subsequent calculations for safety

DAQ Capability

100 kHz EVB (readout) installed

Use of EVB Farm as 25 kHz EVB + limited Filter Farm

- •With 100 ms/core (@2 GHz on EVB nodes): 14 kHz
- •Could be factor of 2 off, but present HLT measured 43 ms on 3 GHz
- •Operational Now
 - Drop to 7 kHz during May (recable) & August (integration of new PCs)

Dedicated Nodes for Filter Farm

- Purchase of 400 PCs (two quad-core @ 3GHz)
- •Capacity 36 kHz
- •Operational: expect end of summer
- Storage: (i.e. HLT accept rate)
 - Expect about 0.7 kHz peak, assuming 1.5 MB evt size (1 GB/s)
 - •Local Storage: Now: 22 TB, Mar: 50 TB, ~June: 100 TB
 - •100 TB = 28 hours at 1 GB/s

•Link to Tier-0 (1×10 Gb/s & one spare -- needs sustained throughput)

Summary of DAQ Capability vs. Time (tentative)

	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
50% EVB	Daq test	Daq test	Daq test	-	-	-	-	-	-	-	-
50% EVB	GR	GR	GR	GR	GR	GR	GR	GR	GR	GR	GR
HLT @EVB				~7	~14	~14	~7	~14	-	-	-
kHz											
HLT @FF kHz								~36 +	~36 +	~36 +	~36 +
				Cable 50%			Integr.				
CMS		GR	CR B=0T		CR B=4T						
LHC beam					ready						>

(+) depending whether contingency needed can add more nodes

Trigger & DAQ Commissioning, Testing & Operating Plans

Now:

•Testing Storage Manager

•First transfers to T0 over CDR links (120 MB/s so far)

Mar:

•Technical run: EVB farm (640 PCs) in SCX configured as EVB + limited HLT & transfer to CDR T0 link

April:

•Cosmic Run at B=0

•Cosmic Ray Triggers, noise rate measurements

June:

•Cosmic Run at B=4T (CRAFT)

•Ready for Beam if available

•Full L1 & HLT Startup menu (modulo timing change for beam)

Startup Luminosities

Approx 30 days of beam time to establish first collisions 1 to N to 43 to 156 bunches per beam

Bunches	β*	l _b	Luminosity	Pileup	Minbias rate
1 x 1	18	10 ¹⁰	10 ²⁷	Low	55 Hz
43 x 43	18	3 x 10 ¹⁰	3.8 x 10 ²⁹	0.06	20 kHz
43 x 43	4	3 x 10 ¹⁰	1.7 x 10 ³⁰	0.28	60 kHz
43 x 43	2	4 x 10 ¹⁰	6.1 x 10 ³⁰	0.99	200 kHz
156 x 156	4	4 x 10 ¹⁰	1.1 x 10 ³¹	0.50	400 kHz
156 x 156	4	9 x 10 ¹⁰	5.6 x10 ³¹	2.3	2 MHz
156 x 156	2	9 x 10 ¹⁰	1.1 x10 ³²	5.0	4 MHz

Calculation relating pileup, luminosity & bunch structure corrected (+20%)

Trigger Algorithm Status

Our highest priority is initial L1 & HLT menus for startup

- Includes emulation, DQM, performance tools, & clear strategy for validation of triggers with first data (see later slides)
- •We are able to do this because:

Have set of L1 & HLT algorithms & thresholds for 10³²

- •L1A = 50 kHz/3 = 17 kHz
- •HLT out to SM: 150 Hz of 1.5 MB events (230 MB/s)
 - •230 MB/s "physics" + 100 MB/s AI/Ca = 330 MB/s = 1 GB/s/3 "safety"
 - •Using the retuned standard L1 trigger menu in 16X
 - Provides for "ECAL coincidence" for jet triggers, etc. (remove HCAL noise trigs.)
 - •Candidate triggers w/adjusted prescales add ~ 10 Hz & small processing time
 - •Will add candidate triggers to standard trigger menu in 18x/200
- •Both L1 & HLT include prescaled "relaxed" triggers
 - •Single detector (e.g. RPC or DT or CSC only)
 - •Reduced conditions: no isolation, lowered thresholds
 - •Used for efficiency & acceptance studies

Trigger Performance Status

Trigger PAG validation status (10³² menu)

- Top efficiencies look good
- SUSY & Exotica: investigating changes in jet paths
- Higgs & Tau: Underway
- Jet/MET: Single jet efficiencies measured, others being done
- B-Jet: B-jet(s), B-HT measured, B-jet + mu next
- e_Y: W, Z, High-E_T γ OK, High-E_T e HLT OK w/ecal iso. retune, H $\rightarrow\gamma\gamma$ next

Monitoring

- Paths being developed for monitoring & validation
- Data rates, Hardware status & errors, rates of physics signal flow
- Separate use for online DQM, Offline DQM, L1/HLT validation
- Streams for rejected events, buggy events, unbiased signal candidates
- Proposal: rejection path defined for each factor of 10 reduction at HLT
 - Properly load balanced with .3% of each trigger devoted to rejection paths
- Proposal: signal paths treated as physics triggers specified by PAG,POGs
 - Use tag & probe to study, also add dedicated paths for certain backgrounds

Early Trigger Pile Up Simulation preliminary first look -- ongoing study

Most extreme case: In-time PU = 5 at 1.1×10^{32} (156 × 156)

•FAMOS: overlay minbias on signal directly at generation

- •reading from files of minbias pre-generated events
- • μ , γ , e POG validation, jet reco in good agreement to ~120 GeV
- •L1, HLT rates within stat. errors of about 20%

Total L1 rate (old menu) increase × 2 (needs further checks)

- •Max change: L1 HT(300), Tau(30) & MET(30), Iso EG(10) & Jet(30)...
- Largest effects in low threshold 2-object triggers
- •Total rate within L1 safety margin -- will adjust L1 to account for PU

HLT rate increase of 25%

- •Also largest effects in low-threshold 2-object triggers
- •Max change: MET&HT, 2-e, eμ, e-jet, μ-jet...
- •Relaxed electron paths more affected than unrelaxed
- •HLT thresholds & algorithms will be adjusted when studies done

As expected, source of increase is from QCD 20-30,30-50

Trigger Strategy Phases w/Beam

Phase 0:

- Run complete "Phase 1" program in CCAFT
- "Seamless" transition from Cosmics to Beam
 - Modulo adjustment for timing

Phase 1:

- Accept all filled crossings (zero-bias) at L1
- Run L1 Emulator at HLT to validate (only) L1 HW
- Send all "non-empty" events to T0
 - Use "relaxed" HLT (anything > noise) without L1 seeds

Phase 2:

- After validation of L1 HW bits, allow L1 HW to reject events
- Start prescaling zero-bias events
- After validation of HLT bits, allow HLT to reject events on those bits
- Keep prescaled HLT rejected L1 accept. & zero-bias prescaled
- In parallel, operate all triggers planned for Luminosity up to 10³²

Triggers with first data

We will start with 3 categories of triggers:

Zero-Bias

- Zero-bias uses either the BPTX to detect crossings with beam and/or we program to select the collisions between known full bunches
- These are prescaled.
- **Min-Bias**
 - Next Slides
- **Alignment & Calibration**
 - Much of min-bias sample used for these also
 - See following slides

"Min-Bias"

HF Single particle

- Any fiber pair over threshold (HF sums are over 6 pairs).
- Should be a good trigger for studying min-bias, but many triggers may not have tracks in the central region → less useful for DPGs
- HF E_{T} rings around beampipe

• Potentially a good minbias trigger but integrates over noise & beam backgrounds EB/EE Tower-pair over Threshold

- Gives sharp turn-on with tower energy sharing, equals electron L1 w/o any isolation
- Useful even without the APD gain change (x4).
- Should catch 33% of particle production w/ γ from π^0 decays
- Set trigger tower thresh. ~ 150 MeV. Many events have multiple particles.
- Especially useful for ECAL calibration.

HB/HE Tower over Threshold

• Noise is a concern.

"Open Muon"

•Not really "min-bias": CSC LCT, DT Segment, RPC open road, RBC

Beam Scintillator Counter Coincidence

• This has a poor acceptance but adequately illuminates the tracker.

"Min-Bias" Status

HF Single particle & **HF** E_T rings around beampipe

- Code Implemented in GCT Emulator (HCAL TPG Emulator being updated)
- Will be included in 2.0.0 and should be compatible with releases since 170
- Calculation of the 2 inner rings now in GCT Leaf Card Firmware
 - Path through GCT wheel & concentrator being defined.
- •HF single particle being prepared in GCT Firmware
 - Plan for availability when Jet Trigger Commissioned (end March)
- **EB/EE & HB/HE Tower over Threshold**
 - Can be enabled in emulator with simple configuration change
 - Operating in Global Runs using Electron path through GCT
- "Open Muon"
 - Emulation & FW exists, but is a matter of configuration.

BSC Coincidence

- Hardware ready for installation -- planned for May
- HF-front-face BSCs (not the 2x2 small paddles on the back of HF yet) are in CMS GEANT & CMSSW up to the sim hits.
 - Note: BSC hits are not recorded in the readout
- Exact trigger logic is under discussion

Measure the thresholds and the noise rates

• Do this first in Global Runs, then Cosmic Run at 0T, CRAFT

Thresholds set at 5 - 7 sigma above noise.

• From measured rates

Test the HLT algorithms run on these samples

- Start with HLT menu for 4 × 10²⁹ (next slide)
- Get Feedback from DPGs & PAGs

First Look at HLT for 4 × 10²⁹

Trigger object	L1 Seed	HLT thresh [GeV]	Prescale	HLT Rate [Hz]
	L1_SingleJet15	30	10	15
Jet(MET)	L1_SingleJet30	60	1	55
	L1_ETM30	30	1	15
Electron	L1_SingleEG5	5	1	5
Photon	L1_SingleEG5	10	1	33
Muon	OR of All MuSeeds	none	1	34
ALL				140

Preliminary -- ongoing study

Alignment & Calibration Triggers

Calibration

- phi-symmetry trigger: needed by ECAL and HCAL.
 - Will use min.bias & output RecHits only
 - Requesting 1 kHz of min.bias and 1 kHz of dijets at L1.
 - Single path for ECAL and HCAL
 - Plan is to continue testing and integrate for 2_0_0/CSA08.
- π^0 ECAL trigger:
 - regional unpacking around L1 EM candidates.
 - 1 kHz of π^0 for 1% calibration.
 - Output size: 2 kB/evt.
 - Plan is to continue testing & integrate for 2_0_0/CSA08.

Alignment

- Cosmics for tracker/muon barrel alignment
 - Hope to collect 25k muons with p > 50 GeV in 2 weeks (RBC trigger)
- Beam Halo
 - BSC for tracker & CSC beam-halo for muon endcaps -- working on HLT path
- "wide open" single muon for startup -- working on HLT path
- single- and di-muon triggers from physics stream (express).

Trigger Menus for CSA08

Considering two scenarios (straw-man examples) •2×10³⁰ & 2×10³¹

•Integrated luminosity: 1 pb⁻¹ & 10 pb⁻¹ after 1 month of running

•Assuming initial 20% duty cycle

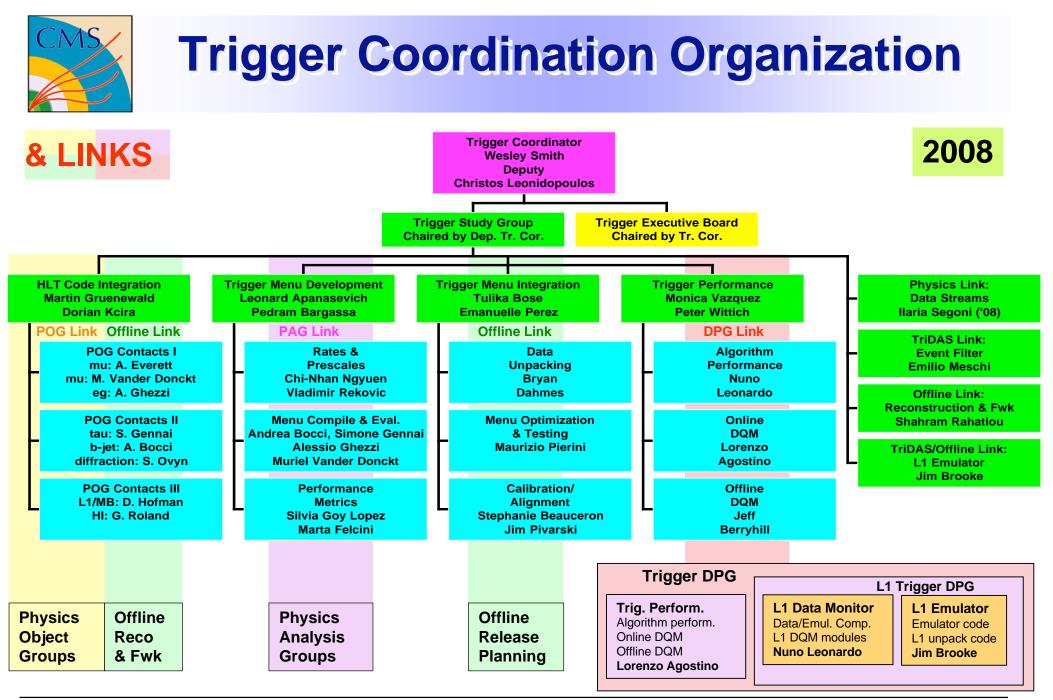
Emphasis on triggers for

- Alignment and calibration
- Detector/physics commissioning
- •Trigger monitoring and validation

Differences in menus between 2×10³⁰ & 2×10³¹ •Give more bandwidth to "physics" at 2×10³¹

HLT Data Model, Config DB

Old data model (1_7_x and earlier):


- Save all intermediate HLT byproducts for all events
- •Increases event size, inefficient memory usage, many small data structures
- •Large number of ROOT branches and "splitting"
 - •Reduction crucial: large # of root branches \rightarrow streaming at T0 very demanding.

New data model (as of 1_8_x):

- Save all intermediate HLT byproducts for small fraction of events
 - •HLT commissioning phase
- Save high-level trigger objects only for analyses/AOD
- •HLT book-keeping: saves info in same format for all HLT paths
- Pack all information up in single compact efficient data structure
- •Reduction in # of branches (preliminary): -50% in AOD, -15% in FEVT
- •Reduction in event size (preliminary): -20 to 25% in AOD, -15% in FEVT

Configuration Data Base

- •Online & offline HLT now work with Configuration Data Base
- Integration with FastSim soon

Trigger Conclusions

- •Well-integrated team is in place
- •HLT now validated under "real" operational conditions
- •Readout, Filter Farm, & Storage capability & evolution well matched to expected rates & event sizes
- •Have a set of L1 & HLT algorithms & thresholds for 10³²
 - •Pileup studies are producing first results
- •Good progress on DQM online, offline & algorithm performance
 - •Definition of monitoring streams underway
- •Have a well-defined strategy for testing & implementation of physics, alignment & calibration triggers from startup luminosity on up
 - •Zero-bias & several different min-bias triggers
 - •Triggers being readied for testing in CR at 0T, CSA08, CRAFT...
 - •Ready for beam from June onwards