

The SLHC Program and Detector Upgrades 2008 Aspen Winter Conference

Wesley H. Smith

U. Wisconsin - Madison

January 17, 2008

Outline: SLHC Upgrade Mature LHC → SLHC Discovery Physics examples ATLAS & CMS Detector Upgrades

This talk is available on:

http://www.hep.wisc.edu/wsmith/cms/doc08/smith_slhc_aspen_jan08.pdf

Mature LHC Program

If Higgs observed:

- Measure parameters (mass, couplings), need up to 300 fb⁻¹
- Self-coupling not accessible with LHC alone
- If we think we observe SUSY:
 - Try to measure mass (study cascades, end-points, ...)
 - Try to determine the model: MSSM, NMSSM, ...
 - Establish connection to cosmology (dark matter candidate?)
 - Understand impact on Higgs phenomenology
 - Try to determine the SUSY breaking mechanism
- If neither or something else:
 - Strong W_LW_L scattering? Other EWSB mechanisms?
 - Extra dimensions, Little Higgs, Technicolor ?
- Do we have to accept fine-tuning (e.g. Split Supersymmetry)
 Next: SLHC

(2) the statistical error halving time will exceed 5 years by 2013-2014

(3) therefore, it is reasonable to plan a machine luminosity upgrade based on new low-β IR magnets by ~2018

LHC upgrade options

Themes 1 (2012) & 3 (2016)

LHC Upgrade Scenarios

- Two scenarios of L~10³⁵ cm⁻²s⁻¹ for which heat load and #events/crossing are acceptable
- <u>25-ns option</u>: pushes β^* ; requires slim magnets inside detector, crab cavities, & Nb₃Sn quadrupoles and/or Q0 doublet; attractive if total beam current is limited; Peak events/crossing ~ 200.
- 50-ns option: has fewer longer bunches of higher charge ; can be realized with NbTi technology if needed ; compatible with LHCb ; open issues are SPS & beam-beam effects at large Piwinski angle; Peak events/crossing ~ 400
- Luminosity leveling may be done via bunch length and via β^* , resulting in reduced number of events/crossing ~ 100.

Wesley Smith, U. Wisconsin, January 17, 2008

С	MS
K	

CNAC	parameter	symbol	25 ns, small β*	50 ns, long	A
CMIS	transverse emittance	ε [μ m]	3.75	3.75	
	protons per bunch	<i>N_b</i> [10 ¹¹]	1.7	4.9	
	bunch spacing	∆t [ns]	25	50	
	beam current	I [A]	0.86	1.22	
Tura	longitudinal profile		Gauss	Flat	
IWO	rms bunch length	σ_{z} [cm]	7.55	11.8	
upgrade	beta* at IP1&5	β* [m]	0.08	0.25	
	full crossing angle	θ _c [μrad]	0	381	
scenarios	Piwinski parameter	$\phi = \theta_c \sigma_z / (2^* \sigma_x^*)$	0	2.0	
	hourglass reduction		0.86	0.99	
	peak luminosity	L [10 ³⁴ cm ⁻² s ⁻¹]	15.5	10.7	
	peak events per				
	crossing		294	403	
	initial lumi lifetime	τ _L [h]	2.2	4.5	
	effective luminosity	L_{eff} [10 ³⁴ cm ⁻² s ⁻¹]	2.4	2.5	
	$(T_{turnaround}=10 \text{ h})$	T _{run,opt} [h]	6.6	9.5	
	effective luminosity	L_{eff} [10 ³⁴ cm ⁻² s ⁻¹]	3.6	3.5	
	$(T_{turnaround}=5 h)$	T _{run,opt} [h]	4.6	6.7	
	e-c heat SEY=1.4(1.3)	P [W/m]	1.04 (0.59)	0.36 (0.1)	
	SR heat load 4.6-20 K	P _{SR} [W/m]	0.25	0.36	
	image current heat	P _{IC} [W/m]	0.33	0.78	
	gas-s. 100 h (10 h) τ _b	P _{gas} [W/m]	0.06 (0.56)	0.09 (0.9)	
	extent luminous region	σ _l [cm]	3.7	5.3	
	comment		D0 + crab (+ Q0)	wire comp.	
	•				

Wesley Smith, U. Wisconsin, January 17, 2008

SM Higgs Couplings

Combine different production & decay modes → ratios of Higgs couplings to bosons & fermions

•Independent of uncertainties on σ^{tot}_{Higgs} , $\Gamma_{H,} \int L dt \rightarrow stat$. limited •Benefit from LHC \rightarrow SLHC (assuming similar detector capabilities)

Wesley Smith, U. Wisconsin, January 17, 2008

Higgs pair prod. & self coupling

Higgs pair production through two Higgs bosons radiated independently (from VB, top) & from trilinear self-coupling terms proportional to λ_{HHH}^{SM}

Wesley Smith, U. Wisconsin, January 17, 2008

Improved reach for Heavy MSSM Higgs bosons

Order of magnitude increase in statistics with SLHC should allow Extension of discovery domain for massive MSSM Higgs bosons A,H,H[±]

e.g.: A/H $\rightarrow \tau \tau \rightarrow$ lepton + τ -jet, produced in bbA/H

Improved reach for MSSM Higgs bosons

MSSM parameter space regions for > 5σ discovery for the various Higgs bosons, 300 fb⁻¹ (LHC), and expected improvement - at least two discoverable Higgs bosons - with 3000 fb⁻¹ (SLHC) per experiment, ATLAS & CMS combined.

Supersymmetry

 5σ contours

Use high E_T jets, (GeV) CMS leptons & missing E_T **П**1/2 Not hurt by increased $m(z_1) < m($ 2500 pile-up at SLHC **Extends discovery** 2000 region by ~ 0.5 TeV exclud • ~ 2.5 TeV \rightarrow 3 TeV 1500 (4 TeV for VLHC) **Discovery means** > 5σ excess of events over 1000 known (SM) backgrounds

New gauge bosons

sequential Z' model, Z' production (assuming same BR as for SM Z) and Z' width:

Z' mass (TeV)	1	2	3	4	5	6
$\sigma(Z' \to e^+ e^-)(fb)$	512	23.9	2.5	0.38	0.08	0.026
$\Gamma_{Z'}$ (GeV)	30.6	62.4	94.2	126.1	158.0	190.0

 $Z' \rightarrow \mu^+ \mu^-$: 5 σ significance curves

Acceptance, e/μ reconstruction eff., resolution, effects of pile-up noise at 10^{35} , ECAL saturation included. (CMS study)

Extra Dimensions: Randall-Sundrum model

 $pp \rightarrow G_{RS} \rightarrow ee$ full simulation and reconstruction chain in CMS, 2 electron clusters, p_t > 100 GeV, |η| < 1.44 and 1.56 < |η| < 2.5, el. isolation, H/E < 0.1, corrected for saturation from ECAL electronics (big effect on high mass resonances!)

Wesley Smith, U. Wisconsin, January 17, 2008

Gravitons

Coupling Parameter c 10⁻¹

whole plane theoretically allowed,

TeV scale Extra Dimensions

KK excitations of the γ,Z

Interf: SLHC/6000 fb⁻¹ 20 TeV

LHC→ SLHC: (100→1000 fb⁻¹): Increase in reach by ~ 1 TeV

ATLAS Detector Design

Wesley Smith, U. Wisconsin, January 17, 2008

ATLAS Today

Wesley Smith, U. Wisconsin, January 17, 2008

Aspen Winter Conference: SLHC - 19

aDisk2

Machine ATLAS

Add quads & dipoles (for 25 ns) plus new shielding (TAS)

All Be beampipe: radius 21 mm at IP

- •x 2-3 reduction in muon bkgd.
- Cheaper than replacing muon chambers
- •Allows new pixel b-layer (innermost) at 30 mm

aCollar

aDisk1 aCM

aCrvo.

aShield

Expected Pile-up at Super LHC in ATLAS at 1035

• 230 min.bias collisions per 25 ns. crossing

- ~ 10000 particles in $|\eta| \le 3.2$
- mostly low p_T tracks
- requires upgrades to detectors

- ATLAS is considering a B-layer (innermost) replacement after ~3 year of integrated full LHC luminosity and replace completely the Inner Tracker with a fully silicon version for SLHC.
- The B-layer replacement can be seen as an intermediate step towards the full upgrade. Performance improvements for the detector (mostly for to FE chip):
 - Reduce radius → Improve radiation hardness
 (→ 3D sensors, or possibly, thin planar detectors, diamond, gas, ...?)
 - Reduce pixel cell size and architecture related dead time
 - (→ design FE for higher luminosity, use 0.13 µm 8 metal CMOS)
 - Reduce material budget of the b-layer (~3% $X_0 \rightarrow 2.0-2.5\% X_0$)
 - increase the module live fraction (\rightarrow increase chip size, > 12 × 14 mm²)
 - possibly use "active edge" technology for sensor.
 - Use faster R/O links, move MCC at the end of stave

B-layer for upgrade will need radiation hardness (10¹⁵→10¹⁶ n_{eq}/cm²) and cope with detector occupancies up to (×15)

ATLAS SLHC Tracker "strawman" design

Strawman 4+3+2

Wesley Smith, U. Wisconsin, January 17, 2008

ATLAS Tracker Region Charged Hadron Irradiation

- With safety factor of two, need pixel (innermost) b-layer to survive up to 10¹⁶n_{eq}/cm²
- Short microstrip layers to withstand [∞]
 9×10¹⁴n_{eq}/cm² (50% neutrons)
- Outer layers up to 4×10¹⁴n_{eq}/cm² (and mostly neutrons)
 - → Issues of thermal management and shot noise. Silicon looks to need to be at ~ -25°C (depending on details of module design).
- → High levels of activation will require careful consideration for access and maintenance.

Issues of coolant temperature, module design, sensor geometry, radiation length, etc etc all heavily interdependent.

1 MeV neutron equivalent fluence

Quarter slice through ATLAS inner tracker Region, with 5cm moderator lining calorimeters. Fluences obtained using FLUKA2006, assuming an integrated luminosity of 3000fb⁻¹.

ATLAS Sensor R&D

Pixel and Strips: n-in-p (planar technology)

- No type inversion, full depletion is on structured side
- Collection of electrons (faster than p-in-n)

Still ~15000e⁻ at 1.10¹⁵ cm⁻²s⁻¹

Pixel b-layer: 3D technology is an option (should be ready for b-layer replacement in 20012)

Exist in single and double column type

Wesley Smith, U. Wisconsin, January 17, 2008

- LAr: Pileup will be ~ 3.2 X higher @ 10³⁵
 - Electronics shaping time may need change to optimize noise response
- LAr Forward:
 - Space charge effects present for |η|>2 in EM LAr calorimeter
 - High rates give high currents, heating of LAr
 - Some intervention will be necessary -- next slide
- **Tilecal mostly OK**
 - Will suffer some radiation damage ∆LY< 20%
 - Calibration & correction may be difficult to see Min-I signal amidst pileup

ATLAS LAr Endcap Upgrade (one scenario)

- Probably need to open up the endcaps to upgrade FCAL etc.
- Time taken to bring to surface, dismantle, upgrade and return $> \sim 2$ y
- Instead, lots of progress on understanding option to work in pit
- Favoured scenario:
 - Build replacement FCAL ready for upgrade.
 - Remove old FCAL in pit and put in brand new one.

SLHC: ATLAS Muons

- Some or many chambers will have to be replaced
 - depends on actual background rates
- **R&D** proposals for electronics, gases, new chambers
- Particularly micromegas is making progress
 - MICROMEsh GAseous Structure (Micromegas)
 - Parallel plate multiplication in thin gaps btw fine mesh & anode plate
 - can be used for both precision and triggering
 - challenge is to make large area (few m²) chambers

Wesley Smith, U. Wisconsin, January 17, 2008

- N. Hessey

Aspen Winter Conference: SLHC - 28

CMS Detector Design

CALORIMETERS Superconducting Coil, 4 Tesla **HCAL ECAL** 76k scintillating Plastic scintillator/brass PbWO4 crystals sandwich Today: no endcap ECAL (installed during 1st shutdown) **IRON YOKE** Level-1 Trigger Output • Today: 50 kHz (instead of 100) TRACKER Today: **Pixels** RPC $|\eta| < 1.6$ **Silicon Microstrips** instead of 2.1 210 m² of silicon sensors & 4th endcap 9.6M channels layer missing MUON **ENDCAPS** MUON BARREL Cathode Strip Chambers (CSC) **Resistive Plate Drift Tube Resistive Plate Chambers (RPC)** Chambers (DT) Chambers (RPC)

Wesley Smith, U. Wisconsin, January 17, 2008

CMS Today

Wesley Smith, U. Wisconsin, January 17, 2008

CMS at the SLHC

Wesley Smith, U. Wisconsin, January 17, 2008

$H \rightarrow ZZ \rightarrow \mu\mu ee$, M_H = 300 GeV for different luminosities in CMS

CMS Tracker Upgrade

- Challenge Facing CMS & ATLAS: Build a replacement tracker for $L = 10^{35} \text{ cm}^{-2}\text{s}^{-1}$ with equal or better performance
- To do so, CMS & ATLAS need to solve several <u>very</u> difficult problems
 - deliver power probably requiring greater currents
 - develop sensors to tolerate radiation fluences ~10x larger than LHC
 - reduce material in the tracker
 - CMS needs to construct readout systems to contribute to the L1 trigger using tracker data -- next slides

It is probably <u>at least</u> as difficult a challenge as the original LHC detectors were in 1990

Installation of services one of the most difficult jobs to finish CMS

Ultra Rad-hard sensors

- Magnetic Czochralski (MCz) growth technology produces Si devices which are intrinsically highly oxygenated & high resistivity
- Using p-type MCz Si wafers instead of n-type ones, has the further advantage of not encountering type inversion at high fluences

Thin Sensors

- For fluences > 10¹⁵ p/cm², sensors dissipate a lot of power
- Thinner sensors → less volume → less current
- **3D or SOI Detectors**
- Large area low cost interconnections
- Low mass components & cooling methods
- **New Pixel Front End ASIC**
 - Reduced power -- switch from 250 to 130 nm technology helps
 - Increased radiation tolerance

CMS Trig & DAQ for LHC

Overall Trigger & DAQ Architecture: 2 Levels:

Wesley Smith, U. Wisconsin, January 17, 2008

SLHC Level-1 Trigger @ 10³⁵

Occupancy

- Degraded performance of algorithms
 - Electrons: reduced rejection at fixed efficiency from isolation
 - Muons: increased background rates from accidental coincidences
- Larger event size to be read out
 - New Tracker: higher channel count & occupancy → large factor
 - Reduces the max level-1 rate for fixed bandwidth readout.

Trigger Rates

- Try to hold max L1 rate at 100 kHz by increasing readout bandwidth
 - Avoid rebuilding front end electronics/readouts where possible
 - + Limits: (readout time) (< 10 μs) and data size (total now 1 MB)
 - Use buffers for increased latency for processing, not post-L1A
 - May need to increase L1 rate even with all improvements
 - Greater burden on DAQ
- Implies raising E_T thresholds on electrons, photons, muons, jets and use of multi-object triggers, unless we have new information ⇒Tracker at L1
 - Need to compensate for larger interaction rate & degradation in algorithm
 performance due to occupancy

Radiation damage -- Increases for part of level-1 trigger located on detector

Wesley Smith, U. Wisconsin, January 17, 2008

Aspen Winter Conference: SLHC - 37

Combine with L1 μ trigger as is now done at HLT:

- •Attach tracker hits to improve P_T assignment precision from 15% standalone muon measurement to 1.5% with the tracker
 - •Improves sign determination & provides vertex constraints
- •Find pixel tracks within cone around muon track and compute sum P_T as an isolation criterion
 - Less sensitive to pile-up than calorimetric information if primary vertex of hard-scattering can be determined (~100 vertices total at SLHC!)
- To do this requires $\eta \phi$ information on muons finer than the current 0.05–2.5°
 - •No problem, since both are already available at 0.0125 and 0.015°

CMS ideas for trigger-capable tracker modules -- very preliminary

- Use close spaced stacked pixel layers
- Geometrical p_T cut on data (e.g. ~ GeV):
- Angle (γ) of track bisecting sensor layers defines p_T (⇒ window)
- For a stacked system (sepn. ~1mm), this ^H_R is ~1 pixel
- Use simple coincidence in stacked sensor pair to find tracklets
- More details & implementation next slides

-- C. Foudas & J. Jones

p_T Cuts in a Stacked Tracker – p_T Cut Probabilities

•Depends on:

- J. Jones

Alternative Tracking Trigger: Associative Memories (from CDF SVX)

-- F. Palla, A. Annovi, et al.

AMchip1

Challenge: input Bandwidth \Rightarrow divide the detector in thin ϕ sectors. Each AM searches in a small $\Delta \phi$

OFF DETECTOR 1 AM for each enough-small Δφ Patterns Hits: position+time stamp All patterns inside a single chip N chips for N overlapping events identified by the time stamp

R-Φ plane , "ideal" barrel layer

Discrimination of low p_T tracks made directly on the strip detector by choosing suitable pitch values in the usual range for strip sensors.

(Needed because 25M channels x 4%) occupancy would require 6000 2.8 Gbps links at 100 kHz.)

50µm pitch, about 5% of the total ≤2 strips

•No. of links (2.5Gbps) ~300 for whole tracker (assuming 95% hit rejection)

Once reduced to ~100 KHz, it would only need few fast readout links to readout the entire Tracker

SLHC: CMS Calorimeter

Forward Calorimeter: Quartz Fiber

- Radiation tolerant
- Very fast
- Modify logic to provide finer-grain information
 - Improves forward jet-tagging

Hadron Barrel & Endcap Calorimeters

- Plastic scintillator tiles and wavelength shifting fiber is radiation hard up to 2.5 MRad while at SLHC, expect 25MRad in HE.
 - R&D new scintillators and waveshifters in liquids, paints, and solids, and Cerenkov radiation emitting materials e.g. Quartz
- Study silicon photomultipliers (SiPMs) to replace Hybrid Photodiodes (HPDs)
 - Less noise, more amplification, magnetic, radiation tolerance under study

ECAL: PBWO4 Crystal: Stays

- Sufficiently radiation tolerant
- Exclude on-detector electronics modifications for now -- difficult:
 - Regroup crystals to reduce $\Delta\eta$ tower size -- minor improvement
 - Additional fine-grain analysis of individual crystal data -- minor improvement

CMS SLHC Muon

R (cm)

700

600

500

400

300

Drift Tubes

Drift Tubes (barrel):

- Electronics might sustain rad. damage
- Increase x 10 in muon rates will cause dead time & errors in BTI algorithm, due to long drift times.
- # two tracks per station/bx could limit due to ghosts.

RPC (barrel & endcap):

- Operate in low η region with same FE
- Detector & FE upgrade is needed for η > 1.6 region
- Trigger Electronics can operate with some modifications
- Some front-end electronics may not be sufficiently radiation tolerant

CSCs (endcap):

- CSCs in endcaps have demonstrated required radiation tolerance
- Need ME4/2 layer recovered
- Parts of trigger & DAQ may need replacement to cope with high rates
- Some front-end electronics may not be sufficiently radiation tolerant

4 Stations in the barrel and each endcap
 Initial coverage of RPC is staged

- to η<1.6 and 3 disks • Initial trigger coverage of CS
- Initial trigger coverage of CSC 1st station is staged to η<2.1
- Fourth CSC disk staged to η<1.8

η=0.8

n=1.2

η=1.0

Current for LHC: TPG \Rightarrow RCT \Rightarrow GCT \Rightarrow GT

Proposed for SLHC (with tracking added): TPG \Rightarrow Clustering \Rightarrow Correlator \Rightarrow Selector

Present CMS Latency of 3.2 μsec = 128 crossings @ 40MHz

- Limitation from post-L1 buffer size of tracker & preshower
- Assume rebuild of tracking & preshower electronics will store more than this number of samples
- Do we need more?
 - Not all crossings used for trigger processing (70/128)
 - It's the cables!
 - Parts of trigger already using higher frequency
- How much more? Justification?
 - Combination with tracking logic
 - Increased algorithm complexity
 - Asynchronous links or FPGA-integrated deserialization require more latency
 - Finer result granularity may require more processing time
 - ECAL digital pipeline memory is 256 40 MHz samples = 6.4 μ sec
 - Propose this as CMS SLHC Level-1 Latency baseline

Conclusions

- The LHC will initiate a new era in colliders, detectors & physics.
 - Searches for Higgs, SUSY, ED, Z' will commence
 - Exploring the TeV scale
 - Serious challenges for the machine, experiments & theorists will commence

The SLHC will extend the program of the LHC

- Extend the discovery mass/scale range by 25-30%
- Could provide first measurement of Higgs self-coupling
- Reasonable upgrade of LHC IR optics
- Rebuilding of experiment tracking & trigger systems and parts of calorimetry, muon systems
- Need to start now on R&D to prepare