CMS EMU TRIGGER Electronics

B. Paul Padley

Rice University February 1999

Trigger Layout and Responsibilities

Basic Requirements

- Latency: < 3.2 us
- Fully pipelined synchronous architecture, dead time =0
- Maximum output rate: <15 kHz
- Output to the Global Trigger: up to 4 highest Pt muons in each event

Initial Design

- Put all front end, LCT generation and processing electronics on chambers
- Issues:
 - Poor accessability
 - Power dissipation
 - Radiation hardness

New Design (Summer '98 UCLA)

- Simple front end boards on chambers
- All digital LCT generation and processing logic into 9U crates on periphery

MUON TRIGGER SYSTEM MODULE COUNT (UCLA, **OSU, RICE, UF)**

✓Anode LCT Module	- 504
✓ Cathode LCT Module	- 504
✓Trigger Motherboard	- 264
✓DAQ Motherboard	- 264
✓ Port Card	- 60
✓ Clock and Control Board	- 126
✓ Sector Receiver	- 24
✓ Sector Processor	- 24
✓ Sorter	- 1
✓ Total	- 1771

EMU Trigger Motherboard

- One board for two chambers
- Receives up to two anode and two cathode LCT's
- Matches them in time
- Passes them on to Port Card
- 90 VME board with interface
- We have proposal to allow the use of RPC information to resolve ghosts if needed

MB Schematic

(and changes)

TRIGGER Motherboard

MUON TRIGGER MOTHERBOARD BLOCK DIAGRAM

Summer 98Test Beam Prototypes

Engineering "proofsof-principle"

- Custom analog ASICs (preamps, disc's, comparators)
- Wide use of FPGAs at 40 MHz
- High-speed LVDS channel links
- Clock distribution from motherboard
- Trigger drives DAQ system readout

Motherboard Prototype

- CAMAC board
- Communicate with FE via LVDS
- Send Clock to FE from quartz or external generator
- Selected LCT's stored in FIFO for reading by CAMAC
- Board is tested and working at 40 MHz.

It was built, and worked!

By that I mean

- Communicated with LCT card via National channel link LVDS
- Distributed clock
- Correctly selected "best" LCT's
- We could study BXN matching
 - but we could not test the BXN PLD code
 - Its tough testing this in an asynchronous beam.

BXN Matching Study

BXN Matching Study

In this case 3.2% excess

Caveat Emptor

- It must be noted that those BXN matching results are using the worst possible timing you could get from the Anodes
- There is no way in this test data to correct the BXN from the anode as will be done in reality.
- Thus the results represent upper limits.

Trigger Motherboard New Prototype Design Status

- Inputs from LCT modules and outputs to Port Card are specified
- PLD design 60% completed
- Schematic design in progress

The Port Card

The Port Card

- Serves one sector of 8 or 9 chambers
- Receives up to 18 LCT's from motherboards
- Selects the best 3 and sends to sector receivers on optical cable
- VME 9U board

Port Card

MUON PORT CARD

PORT CARD DESIGN STATUS

- Inputs from Trigger Motherboard and outputs to Sector Receiver are specified
- Chipset and Optical Modules for communication with Sector Receiver are defined
- Sorting Logic designed and under optimization now
- Schematic design will start soon

Hardwired Limitations

- Note restrictions of the scheme
- 1 stub per FE card
- 2 stubs per chamber
- 3 stubs per 20 or 60 degree sector

In station 1 use 20 degree sectors to limit number of Mboards to 9

This used to be 30 degrees Consequence of descope, must use 60 degree sectors in stations>1

CLOCK AND Control Board

- DISTRIBUTES TTC SIGNALS TO ALL TRIGGER 9U VME MODULES
- UNIFIED DESIGN FOR TRIGGER AND SECTOR PROCESSOR CRATES
- ABLE TO GENERATE TTC SIGNALS FROM BUILD-IN SIMULATOR
- VME 9U MODULE

a mount of a shire of the shire

Clock and Control Board Design Status

- Number and list of signals which should be distributed from TTC to trigger modules will be finalized soon
- Initial proposal on custom backplane is ready
- Schematic design will start soon

MUON SORTER

- RECEIVES 72 MUONS FROM 24 SECTOR PROCESSORS (3 MUONS PER SECTOR PROCESSOR)
- SELECTS FOUR BEST MUONS AND SENDS THEM TO GLOBAL MUON TRIGGER
- VME 9U MODULE

MUON SORTER BLOCK DIAGRAM

MUON SORTER DESIGN Status

- General requirements (inputs from Sector Processors and outputs to Global Trigger) are specified
- Basic sorting unit (4 best patterns out of 8) initial design is completed
- Optimization and timing analysis in progress
- Initial specification will be prepared this year

EMU TRIGGER BITS Reduction factor vs Trigger Latency

1 BX = 25 ns