



# Heavy Neutral Particle Decays to Tau Pairs at $\sqrt{s} = 7$ TeV with CMS at the Large Hadron Collider

Michail Bachtis University of Wisconsin-Madison

24 April 2012

# The Standard Model of Particle Physics

mass

charge → 2/3

spin →

name --

- Three generations of matter
  - 6 quarks
  - 6 leptons
    - 3 charged  $(e,\mu,\tau)$
    - 3 neutrinos  $(v_e, v_u, v_\tau)$
  - Neutrinos supposed to be massless in the SM
    - Recent experiments show they have very small masses
- Force carriers
  - Photon ↔ EM force
    - massless
  - 8 gluons ↔ strong force
    - massless
  - $W^{\pm,}Z \leftrightarrow$  weak force
    - Very massive



ш

171.2 GeV/c<sup>2</sup>

top

4.2 GeV/c<sup>2</sup>

-<sup>1</sup>/<sub>3</sub>h

<sup>2</sup>/<sub>3</sub>

1/2

0

0

photon

Ш

1.27 GeV/c<sup>2</sup>

charm

104 MeV/c<sup>2</sup>

·<sup>1</sup>/<sub>3</sub>C

<sup>2/3</sup> <sup>1/2</sup> **C** 

2.4 MeV/c<sup>2</sup>

<sup>43</sup>/<sub>1/2</sub>U

up

4.8 MeV/c<sup>2</sup>

·¼

# **The Higgs Mechanism**

- In SU(2)<sub>L</sub> x U(1) symmetry
  - Gauge bosons massless
  - Fermions as well
- Gauge bosons acquire mass by breaking the SU(2) x U(1) symmetry
  - Adding a complex scalar field doublet
  - Three degrees of freedom give
     mass to the gauge bosons
    - Become Longitudinal polarization of W/Z fields
  - Fourth degree of freedom corresponds to a new scalar particle, the Higgs boson
- Fermions acquire masses via couplings to the Higgs
- Higgs boson not discovered yet



$$\mathcal{L} = |D_{\mu}\Phi|^2 - \mu^2 \Phi^2 - \lambda \Phi^4$$
  
For  $\mu^2 < 0$ , minimum  $\upsilon = \sqrt{-\frac{\mu^2}{2\lambda}}$ 

Translating the field to the new minimum gives:

$$M_W = \frac{g_U}{2}, M_Z = \frac{M_W}{\cos\theta_W}, M_H = \sqrt{-2\mu^2}$$
$$g^2 = \frac{8M_W^2 G_F}{\sqrt{2}}$$
3

### **Particle Interactions in the SM**



## The Structure of the Proton

- In proton collisions
  - Partons (quarks and gluons) are pulled from the proton and interact
- Quarks in the proton not free
  - Exchanging colored gluons
  - Virtual particles- off their mass shell
  - Two types
    - Valence (u,d)
    - Sea(u,d,c,s) : produced by strong interactions in the proton
- Gluons
  - Carry ~50% of the proton momentum
- Parton Distribution Functions
  - Probability of a parton to be pulled out of the proton with momentum fraction x : f(x)
  - Measured with experimental data



- In 7 TeV proton collisions
  - Two partons with momentum fraction x,y will give an effective center of mass of the interaction

$$\sqrt{s} = \sqrt{xyS} = 7\sqrt{xy}$$
 TeV

5

 Hadron colliders versatile for discovery

## **Z** Production in the LHC

10-1



- Production via the Drell-Yan process
- Leading order
  - Quark annihilation
  - Z has no transverse momentum
- At higher orders
  - Jets in the final states
  - Z has transverse momentum
    - Produced in association with jets



pp

Theory: FEWZ and MSTW08 NNLO PDFs

 $Z \rightarrow I^{\dagger}I^{\dagger}$ 

CMS, 36 pb<sup>-1</sup>, 2010

CDF Run II D0 Run I

pp

UA2

UA1

- in di-muon and di-electron final states
- This thesis:
  - Measurement of cross section in ditau final state
    - Test of lepton universality and benchmark for Higgs search

# **Higgs Phenomenology in the LHC**



ratio to tau leptons

# The Tau Lepton

- Heaviest lepton
  - Mass = 1.78 GeV
- Decays via the weak interactions
  - To electrons/muons + 2 neutrinos (35%)
  - To hadrons + 1 neutrino(65%)
    - Single  $\pi^+/K^+$
    - $\ \ \ \ \rho \rightarrow \pi^{\scriptscriptstyle +}\pi^{\scriptscriptstyle 0}$
    - $\alpha_1 \rightarrow \pi^+\pi^-\pi^+$  ,  $\pi^+\pi^0\pi^0$
- Identification of hadronic tau decays
  - Important since tau is a tool to search for the Higgs
  - Experimentally challenging
- Novel algorithm implemented in this thesis to identify hadronic decays of taus



u

# **Beyond the SM: Supersymmetry**

- SM: a theory of almost everything
  - Problems arise when SM is seen as part of a larger theory (e.g @ Plank scale) → hierarchy problem
  - Corrections to the Higgs mass become quadratically divergent in high scale  $\Lambda$ 
    - For Higgs mass to be low excessive fine tuning is needed
- Supersymmetry(SUSY) solves this problem
  - By introducing a new symmetry between fermions and bosons
  - For each particle there is a super-partner with spin differing by  $\frac{1}{2}$ 
    - Divergences cancel by construction!
    - Minimal extension: Double particle spectrum in the Standard model  $\rightarrow$  MSSM



# The Higgs sector in the MSSM

- Two Higgs doublets
  - 5 physical Higgs bosons (h,H,A,H<sup>±</sup>)
- Production mechanisms
  - Gluon fusion (b,t loop)
  - Associated production with b-quarks
    - Identifying b quarks in the final state enhances sensitivity
- At tree level
  - 2 parameters:  $M_A$  , tan $\beta$
  - M<sub>h</sub><M<sub>z</sub>
  - Loop corrections from SUSY particles
    - M<sub>h</sub> <133 GeV
    - Fixed in benchmark scenarios(mh<sup>max</sup>)
- At large tanβ
  - Cross section Enhanced
  - BR(Φ → ττ) ~ 15%



# The Large Hadron Collider

- 7 TeV proton proton (or heavy ion) collider
- Center of Mass energy = 7 TeV
- 27km circumference , 100m underground



- Four large detectors
  - ATLAS+ CMS
    - General purpose mainly proton physics
  - ALICE
    - Heavy Ion experiment
  - LHCb
    - Forward detector for b physics

# **LHC Operation**

The number of events for a given process is given by:

$$N = \sigma \int \mathrm{d}t\mathcal{L}$$

- σ: the cross section of the process
  - Expresses the probability of the interaction
  - Measured in units of areaeffective area of the interaction
- L :The instantaneous luminosity of the collider
  - Particle Flux / time
  - Units of 1/(area x time)
- Integrated Luminosity :
  - Instantaneous luminosity
     integrated over time

|                          | Design                                            | 2011 run                                            |
|--------------------------|---------------------------------------------------|-----------------------------------------------------|
| Beam Energy              | 7 TeV                                             | 3.5 TeV                                             |
| Bunches/Beam             | 2835                                              | 1380                                                |
| Rev Frequency            | 25ns                                              | 50ns                                                |
| Peak Luminosity          | 10 <sup>34</sup> cm <sup>-2</sup> s <sup>-1</sup> | 3x10 <sup>33</sup> cm <sup>-2</sup> s <sup>-1</sup> |
| Integrated<br>Luminosity |                                                   | 5.2 fb <sup>-1</sup>                                |
| SM Higgs bosons produced |                                                   | ~100,000                                            |

- Goal : maximize luminosity
  - Increase particles per bunch
  - Maximize the number of bunches and revolution frequency
  - Decrease the bunch area

# The challenge of pileup

- At high luminosity several pairs of protons can interact
  - Producing multiple interactions in the detector
  - Event of interest overlayed with other events
- Special techniques are needed to maintain high performance of particle identification



Mean number of interactions/crossing

$$\mu = \frac{\mathcal{L}\sigma_T}{R_B f_B}$$

## **The Compact Muon Solenoid**





# Magnet

- Large solenoid magnet provides bending power for momentum measurement
- Sagitta of a particle trajectory  $s = \frac{L^2}{8r} = \frac{qBL^2}{8p}$
- Momentum resolution  $\frac{dp}{p} \approx \frac{p}{BL^2}$
- Optimal momentum resolution for large tracking path and large magnetic field
  - 3.8T magnet in CMS
  - 6.3 meter diameter



- 4 layer winding
- Magnet flux returned by 10000 ton iron yoke

### Tracker



Large size + full silicon
 technology result in large
 material budget



Silicon strip detector

- Provides measurement of charged particle trajectories and momenta
- Full silicon technology
  - Pixel detector near interaction point
    - Highest occupancy
  - Silicon strip outside
    - (barrel and endcap) covering  $\eta$ <2.5

#### Resolution

 $\frac{dp_T}{p_T} = \left(\frac{p_T}{\text{TeV}} 15\%\right) \oplus 0.5\% \qquad 17$ 

## **Electromagnetic Calorimeter**



- Crystal Technology
  - Lead Tungstate Crystals(~76000)
    - Radiation Length of 8.9 mm
      - 26 radiation lengths/crystal
    - Moliere radius of 22mm
      - Transverse shower profile within 2x2
    - 80% of the light emitted within 25 ns
- Fine segmentation for position resolution
- Covering up to η<3</li>

Resolution:  

$$\left(\frac{\sigma}{E}\right)^2 = \left(\frac{2.8\%}{\sqrt{E}}\right)^2 + \left(\frac{0.12}{E}\right)^2 + (0.30\%)^2$$



# **Hadron Calorimeter**





- Barrel and endcap (η<3)</li>
  - Sampling Calorimeter
  - Brass and scintillator plates
    - Light transmitted via fibers to photodetectors
- <u>Resolution</u>

$$\left(\frac{\sigma}{E}\right)^2 = \left(\frac{90\%}{\sqrt{E}}\right)^2 + (4.5\%)^2$$

- Forward region(3<η<5)</li>
  - Cherenkov based
  - Using quartz fibers within steel
     plates
    - Light collected by photo multipliers
- <u>Resolution</u>

$$\left(\frac{\sigma}{E}\right)^2 = \left(\frac{172\%}{\sqrt{E}}\right)^2 + (9\%)^2$$
 19

# **Muon System**



- Provides muon identification and Trigger
- Drift Tube chambers(η<1.2)</li>
  - Tubes filled with gas
  - Anode wire @ 1.8 kV
  - Muon interacts via ionization
  - Slow and precise
- Resistive Plate Chambers(η<1.6)</li>
  - Consists of two gaps filled with gas between readout strips
  - Very fast-Extensive monitoring needed

- Cathode strip chambers(0.9<η<2.4)</li>
  - Consist of a set of wires
    - Running Azimuthially
  - And cathode strips
    - Run lengthwise in constant  $\Delta \phi$
  - Provide fast, precise measurement of both coordinates
     20

# L1 Trigger

- At design conditions LHC provides collisions at 40MHz
  - Average event size 0.5-1 MB
  - Rate must be reduced before storing
- L1 Trigger
  - Made of custom electronics (ASICs + FPGAs)
  - Uses information from calorimeters and muon detectors
  - Implements basic particle ID in firmware and LUTs
  - Forwards all objects to the Global Trigger
  - Global Trigger produces decision if the event is stored
- Output rate ~100kHz



# **High Level Trigger**

- Processes events selected by L1
- Implements more complex algorithms
  - Written in C++, running in commercial processor farm(Scientific Linux)
    - Each working node processes one event
    - Events that pass are stored
  - Algorithms similar or identical to offline reconstruction
- Trigger path implementation
   optimized for speed
  - Simpler algorithms run first
  - If event passes, complex algorithms run after
- Event rate reduced to ~300 Hz



# **Event Simulation**

- HEP experiments
  - Large and complicated
- Precise simulation
  - Essential for experiment design and validation of experimental techniques
  - Performed using Monte Carlo **Methods**
- Modular design of simulation
  - **Physics Event Generators**
  - Simulation of Particles through the detector
  - Hardware emulation



# **Event Reconstruction+Analysis**

#### **Event Reconstruction**

- Processes RAW data and creates physics objects
  - Electrons , Muon, Taus , Jets etc
- Runs Centrally in the stored datasets
  - Users usually access the reconstructed data for analysis
- Implemented in CMS SoftWare (CMSSW)
  - Framework for reconstruction and data analysis
    - Implemented in C++/Python
  - Any new reconstruction algorithm is implemented and integrated in CMSSW

#### Data Analysis

- Custom User code to analyze specific final states
- Implemented in CMSSW
- Running on datasets using the GRID
  - The presented analysis was exclusively processed at Wisconsin T2 /Condor



# **Analysis Strategy**

- Select events in the following  $\tau\tau$  final states
  - ττ → μτ 3 v
    - Branching ratio ~23%. Clean final state
  - ττ → eτ 3 v
    - Branching ratio ~23%. High background from  $Z \rightarrow ee$
    - Electrons have very similar detector signature with taus
  - $\tau\tau \rightarrow e\mu 3 v$ 
    - Branching ratio ~6%. Almost background free
- Measure Z production cross section
  - Establish performance of tau ID and experimental techniques on data
- Use the sample to search for SM and MSSM Higgs bosons

## **Principles of Particle Identification**



# **Electron Identification**

- Requires a track matched to an electromagnetic deposit
  - Electromagnetic deposit formed as a supercluster
    - Cluster of clusters growing in the bending direction
    - To account for material effects
  - Supercluster must have low hadronic activity
    - H/E<0.05
- Additional rejection of photon conversions



# **Muon Identification**

- Three types of muon reconstruction
  - Standalone muon
    - Track reconstructed in muon system
  - Tracker muon
    - Tracker track extrapolated to match hits in muon system
  - Global Muon
    - Muon track reconstructed both in tracker and muon system
- Requirements
  - Muon identified as tracker and global muon
  - At least one pixel hit, muon hit
  - At least 10 tracker hits
  - At least two segment matches
  - χ2/NDOF<10



# **The Particle Flow Algorithm**

- Uses information from all sub-detectors
  - Combines tracks with calorimeter deposits
  - Provides unique event description
    - PF candidates (muons, electrons, charged hadrons, neutral hadrons, photons)
- PF candidates can be used to form higher level objects
  - Jets , Taus, missing transverse energy, isolation deposits
- PF provides the most precise measurement of the particle energy
  - Charged Hadrons are measured dominantly by the tracker
  - Electrons and photons are measured dominantly by the ECAL
  - Neutral Hadrons are measured with the calorimeters 29

## Lepton isolation

- Leptons from tau decays are isolated in the detector
- Leptons from QCD processes are inside jets
- Isolation:
  - Very important discriminator against QCD background
  - Using PF candidates in a cone of ΔR=0.4
  - Defined as sum of the candidate Pt divided by the lepton Pt(relative)
- Corrected for PU effects
  - Charged particles coming from primary vertex
  - Neutral particle deposit corrected by  $\Delta\beta$  corrections

![](_page_29_Figure_10.jpeg)

# Jet and missing $\mathbf{E}_{\mathbf{T}}$ reconstruction

- Jets
  - Particle clusters created using PF candidates
  - Using the anti-kt algorithm
- Full set of energy corrections is applied
  - L1 FastJet:
    - Removes energy coming from PU
  - L2Relative
    - Equalizes the jet response within the detector
  - L3Absolute
    - Equalizes the jet response in different Pt
  - Residual corrections
    - Applied on data to account residual differences with the simulation

- b-jet identification
  - Jets originating by b quarks
    - Several B hadrons
    - Have long lifetime
    - Exploit the displacement of the tracks from the vertex
- Missing transverse energy
  - Neutrinos cannot be detected
  - The overall invisible energy is estimated in the transverse direction
    - Balancing visible products
    - Using Particle Flow

$$E_T^{\text{miss}} = \sum_i \vec{E_T}$$

# **Hadronic Tau Identification**

- Traditional Tau ID
  - Cone based
  - Requires Narrow jet
- The HPS Algorithm
  - Reconstructs the individual decay modes
    - One charged hadron
    - One charged hadron+ 1  $\pi^0$
    - Three charged hadrons
- Reconstruction of  $\pi^0 s$ 
  - Challenging due to material effects
  - Introduce an EM strip

![](_page_31_Figure_12.jpeg)

### Data sample

![](_page_32_Figure_1.jpeg)

 After data certification, 4.9fb<sup>-1</sup> of data were used for analysis

## **Selection of tau pairs**

- Muon+Tau
  - muon+tau trigger
  - muon Pt>17 GeV, η<2.1
  - tau Pt>20 GeV, η<2.3</li>
- Electron+Tau
  - electron+tau trigger
  - electron Pt>20 GeV, η<2.1</li>
  - tau Pt>20 GeV, η<2.3</li>
- Electron+Muon
  - electron+muon trigger(17/8)
  - Leading Lepton Pt>20
  - Sub-leading Lepton Pt>10
  - Muon η<2.1 ,Electron η<2.3</li>
- All final states
  - Opposite charge
  - Veto on  $Z/\gamma^* \rightarrow \mu\mu/ee$

Veto W+jets events using The transverse mass

$$M_T = \sqrt{2P_T E_T^{\text{miss}} (1 - \cos \Delta \phi)}$$

![](_page_33_Figure_19.jpeg)

# **Corrections to the Simulation**

- Light Lepton Trigger /ID
  - Using  $Z \to \mu \mu/ee$  events
- Tau ID
  - Independent measurement of Z → TT events (uncertainty. 6%)
- Tau Trigger
  - With Z → TT that fire lepton triggers
- Missing Transverse Energy
  - Calibrated with  $Z \to \mu \mu$  data

![](_page_34_Figure_9.jpeg)

# **Background Estimation**

- In e/μ+τ final states
  - W extrapolated from high MT region
  - QCD estimated from SS events
    - After subtracting W and Electroweak/tt backgrounds
- In e+µ final state
  - Measuring an extrapolation ratio from non-isolated to isolated leptons in SS region
  - Apply it in OS region

|     | μ+т        | e+T        | e+µ       |
|-----|------------|------------|-----------|
| Ехр | 46364±2292 | 31467±1709 | 18530±797 |
| Obs | 46244      | 30679      | 18316     |

![](_page_35_Figure_9.jpeg)

### **Results after full selection**

![](_page_36_Figure_1.jpeg)

![](_page_36_Figure_2.jpeg)

- Good agreement with simulation
  - Within background uncertainties
  - In all final states
- No first sign of new physics
  - Not expected to show up on those distributions

#### **Cross section calculation**

![](_page_37_Figure_1.jpeg)

Branching Ratio ( $\tau \tau \rightarrow$  final state)

Acceptance x efficiency =(A xɛ) from MC x corr.factors  $\bar{A} = A \times \epsilon_{MC} \times \prod_{i} \rho_{i}$ 

### Systematic uncertainties

| Source                   | μ+т  | е+т  | e+µ  |
|--------------------------|------|------|------|
| Muon ID/Trigger          | 1%   | -    | 2%   |
| Electron ID/Trigger      | -    | 1%   | 2%   |
| Tau ID                   | 6%   | 6%   | -    |
| Tau Trigger              | 3.3% | 3.3% | -    |
| Tau energy Scale         | 3%   | 3%   | -    |
| Topological Requirements | 0.5% | 0.5% | -    |
| Luminosity               | 2.2% | 2.2% | 2.2% |
| P.D.Fs                   | 2%   | 2%   | 2%   |
| NNLO effects             | 0.5% | 0.5% | 0.5% |

### **Cross section results**

![](_page_39_Figure_1.jpeg)

- Shape fit performed on all final states
- All channels in agreement with theoretical prediction
- Combined fit constrains the tau ID to 3%
- Combined cross section:
  - σ= 955 ± 7 (stat) ± 33 (syst) ± 20 (lumi) pb

# Search for Higgs bosons

- $Z \rightarrow \tau \tau$  cross section doesn't show any excess of events
  - Higgs production overwhelmed by Z background
  - Higgs signal would not be visible in the visible mass distributions
- Better sensitivity can be achieved in specific final states
  - Vector boson fusion for the SM Higgs
  - Associated Production with b-quarks for the MSSM Higgs

![](_page_40_Figure_7.jpeg)

• Distinct VBF forward jet signature and presence of b-tagged jets suppress Z  $\rightarrow$  TT background 41

# **Event Categorization**

- Separate events into event classes with different expected sensitivity
  - Combine different categories as separate final states
  - All the events are used in the search

![](_page_41_Figure_4.jpeg)

# Z -> ττ Background Estimation

#### **Z** normalization

- Scaled based on the number of  $Z \rightarrow \mu \mu$  observed events
- MC scaling factor = 0.99 +-0.03

![](_page_42_Figure_4.jpeg)

![](_page_42_Figure_5.jpeg)

- Reconstruct  $Z \to \mu \mu$  events in data
- Replace  $\mu$  with decay the event
- Mix the simulated tau pair event with the initial events without the muon
- PU/UE and jets from data!

#### **Muon+Tau**

![](_page_43_Figure_1.jpeg)

#### **Electron+Tau**

![](_page_44_Figure_1.jpeg)

#### **Electron+Muon**

![](_page_45_Figure_1.jpeg)

# **Statistical Analysis**

- No significant excess is observed in any final states in the SM or the MSSM Higgs searc
- 95% CL Upper limits are set
  - In the SM Higgs production cross section
  - In the MSSM parameter space ( $m_A$ ,tan $\beta$ )
- Using modified frequentist approach (CLs)

# **Upper Limits on SM Higgs**

![](_page_47_Figure_1.jpeg)

- Expected To exclude ~3.5xSM at M<sub>H</sub> between 110-130 GeV
- Observed exclusion 2.56 x SM at M<sub>H</sub>=115 GeV
- Need more data to derive conclusions

# **Upper Limits in the MSSM**

![](_page_48_Figure_1.jpeg)

- Excluding  $tan\beta < 8$  at low MA
  - Observed in agreement with expected at low MA
  - Small excess of events at high mass
    - Local significance = 1.5 standard deviations at  $M_{A}$ =350 tan $\beta$ =2049

# Conclusions

- A complete study of the di-tau final state was performed using ~5 fb-1 of data collected with CMS in 2011
- Novel Tau identification and lepton isolation techniques were proposed and implemented
- The Z  $\rightarrow$  TT cross section was measured in the full dataset in agreement with the theoretical prediction
- A search for SM and MSSM Higgs bosons was presented
  - No significant deviation from the background only hypothesis observed
  - Stringent new bounds are set to the SM Higgs production and MSSM parameter space
- More data in 2012 will shed light about the existence of the Higgs boson

## Backup

# **Event Simulation packages**

- Physics Generators
  - PYTHIA
    - General purpose leading order(LO) generator
    - Includes hadronization and parton shower
  - POWHEG
    - Improvement to PYTHIA
    - NLO calculation
  - MADGRAPH
    - Tree level generator
    - Ideal for processes with multiple objects (e.g Z+jets)
  - TAUOLA
    - Simulation of the tau decay

![](_page_51_Figure_13.jpeg)

- Particles Interaction in the detector
  - GEANT4
  - Using precise detector description
     <sup>52</sup>

#### **Tranvserse momentum resolution**

![](_page_52_Figure_1.jpeg)

- One and three prong ecay modes dominated by the tracker
  - Excellent resolution
- Hadron+strip decay mode dominated by energy loss
  - Material effects, mis-identification of neutral pions 53

# The Hadrons+Strips (HPS) Algorithm

- Start from a jet
- Build combinatorially tau decay modes using PF candidates
  - One charged hadron
  - Three charged hadrons
  - One hadron+ strip
    - Strip is introduced to account for material effects
      - As in electrons
- Apply mass requirements on the decay mode
- Apply isolation on a solid cone of 0.5
  - After subtracting tau constituents

![](_page_53_Figure_11.jpeg)

# **HPS Efficiency and fake rate**

![](_page_54_Figure_1.jpeg)

- Efficiency calculated on simulation
- Fake rate calculated on data
  - +compared to simulation
- HPS Algorithm achieves an efficiency of 50-60% for a fake rate <= 1%</li>

# Hadronic Tau identification

- Traditional Tau ID method in hadron colliders
  - Start from a jet
  - Create a narrow signal cone and isolation annulus
  - Assume signal cone constituents = tau
  - Apply Isolation
- Caveats
  - Energy measurement not precise
  - Sensitive to PU
  - Not using additional decay mode info
- Solution:
  - Propose Decay Mode Tau ID

![](_page_55_Picture_12.jpeg)

Cone based

#### Decay mode based

![](_page_55_Figure_14.jpeg)

#### **Muon+Tau**

![](_page_56_Figure_1.jpeg)

#### **Electron+Tau**

![](_page_57_Figure_1.jpeg)

#### **Electron+Muon**

![](_page_58_Figure_1.jpeg)

## **Alternative W/tt rejection**

- Exploit the fact that the tau decay products are boosted
  - Neutrinos near visible products
  - Form ζ variables(used in CDF)

![](_page_59_Figure_4.jpeg)

![](_page_59_Figure_5.jpeg)

- Require
  - $P_{\zeta}$  -1.25  $P_{\zeta,vis}$ >-25 GeV (e/µ)

# **Background Estimation (e+µ)**

- TTBar: Dominant + ~Irreducible
  - Estimated by MC using CMS measurement
- QCD: ABCD method (isolation vs charge)
- Non QCD fakes(small) MC +40% uncertainty

![](_page_60_Figure_5.jpeg)

B

OS

**Both Legs** 

![](_page_60_Figure_6.jpeg)

![](_page_60_Figure_7.jpeg)

|     | e+µ        |
|-----|------------|
| Ехр | 18530+-797 |
| Obs | 18316      |

## **Acceptance Modeling**

- Acceptance is calculated with visible products using POWHEG+TAUOLA
- We don't calculate acceptance in Mass window
  - No way to restrict the reconstructed Z to a Z mass window due to invisible products
- To compare with  $Z \rightarrow II$  results:
  - We estimate the cross section at M>20 GeV
    - However more than 97% of the events with M>50
  - Then we extrapolate the measurement to M>50 GeV mass window using theoretical predictions

| Final State   | Acceptance $(\%)$ |
|---------------|-------------------|
| $\mu + 	au_h$ | $5.889 \pm 0.011$ |
| $e + \tau_h$  | $4.524 \pm 0.009$ |
| $e + \mu$     | $8.084 \pm 0.011$ |

## **Theoretical systematics**

- Effect of PDFs in acceptance : 2%
- FSR:negligible
- ISR+NNLO effects + higher order weak corrections
  - Those affect the Z Pt
  - We compare Z pt in POWHEG and µµ data
  - We reweigh the POWHEG spectrum to match data
  - Assigning the full difference in acceptance as systematic
    - <0.5%

![](_page_62_Figure_9.jpeg)

## Likelihood definition

Applying a shape fit with backgrounds and systematic uncertainties floating around the estimated values

The likelihood is:  $\mathcal{L} = \mathcal{L}_{shape} \times \mathcal{L}_{bkg} \times \mathcal{L}_{syst}$ 

 $\mathcal{L}_{\mathrm{bkg}} imes \mathcal{L}_{\mathrm{syst}}$  : product of constraints

The shape part is a stack of all visible mass distributions multiplied by their normalizations

Signal  

$$\mathcal{L}_{\text{shape}} = N_{Z \to \tau\tau}(n_j) f_{Z \to \tau\tau}(m_{\text{vis}}, n_j) + \sum N_i(n_j) f_i(m_{\text{vis}}, n_j),$$

Finally the signal coefficient is modified so that we can extract the cross section

$$N_{Z \to \tau\tau}(n_j) = \sigma \bar{A}(n_j)L,$$

# **VBF** kinematics

- Most of the VBF events have 2 jets within η<4.5 and Pt>30
- The mass of the two jets is much higher than Z background
- The jets appear in high η difference

![](_page_64_Figure_4.jpeg)

# **MSSM Higgs search categorization**

- Split the data into two categories
- MSSM-VBF:
  - Require onje b-tagged jet>20 GeV
  - To reduce ttbar require less than two jets with Pt>20
- MSSM-NoVBF:
  - All events failing B selection
- Signal has mostly one b-jet tagged
- Good agreement with simulation

![](_page_65_Figure_9.jpeg)

#### **VBF** candidate event

![](_page_66_Figure_1.jpeg)