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The Standard Model of Particle Physics 
● Three generations of matter

● 6 quarks 
● 6 leptons

– 3 charged (e,μ,τ)

– 3 neutrinos  (ν
e
,ν

μ
,ν

τ
)

● Neutrinos supposed to be 
massless in the SM
– Recent experiments show they 

have very small masses

● Force carriers
● Photon ↔ EM force

– massless
● 8 gluons  ↔ strong force

– massless
● W±,Z ↔ weak force

– Very massive

Formulated as a quantum field
theory under SU(3)xSU(2)

L
xU(1)

gauge symmetries unifying
EM and weak interactions
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The Higgs Mechanism
● In SU(2)

L
 x U(1) symmetry 

● Gauge bosons massless
● Fermions as well

● Gauge bosons acquire mass by 
breaking the SU(2) x U(1) 
symmetry
● Adding a complex scalar field 

doublet 
● Three degrees of freedom give 

mass to the gauge bosons
– Become Longitudinal polarization of 

W/Z fields 
● Fourth degree of freedom 

corresponds to a new scalar 
particle, the Higgs boson

● Fermions acquire masses via 
couplings to the Higgs

● Higgs boson not discovered yet

Translating the field to the new
minimum gives: 
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Particle Interactions in the SM
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The Structure of the Proton 
● In proton collisions 

● Partons (quarks and gluons) are 
pulled from the proton and interact

● Quarks in the proton not free
● Exchanging colored gluons
● Virtual particles- off their mass shell
● Two types

– Valence (u,d)
– Sea(u,d,c,s) : produced by strong 

interactions in the proton

● Gluons
● Carry ~50% of the proton momentum

● Parton Distribution Functions
● Probability of a parton to be pulled out 

of the proton with momentum fraction 
x : f(x)

● Measured with experimental data

● In 7 TeV proton collisions
● Two partons with momentum fraction 

x,y will give an effective center of 
mass of the interaction

●  Hadron colliders versatile for 
discovery



 6

Z Production in the LHC

● Production via the Drell-Yan 
process

● Leading order
● Quark annihilation
● Z has no transverse momentum

● At higher orders
● Jets in the final states
● Z has transverse momentum 

– Produced in association with jets

Z/γ*

Z/γ*

q

● CMS and ATLAS measured Z 
production 
● in di-muon and di-electron final 

states

● This thesis:
● Measurement of cross section in di-

tau final state
– Test of lepton universality and 

benchmark for Higgs search  
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Higgs Phenomenology in the LHC
Gluon Fusion VBF

VH ttH

t H

H

H

W/Z
W/Z

t

t

● Gluon fusion 
● Dominant production mechanism

● Vector Boson Fusion
● Second dominant mechanism
● Distinct forward jet signature

● Associated Production(with W/Z or tt)
● Low rates

At low mass significant branching
ratio to tau leptons

W/Z

W/Z



 8

The Tau Lepton
● Heaviest lepton

● Mass = 1.78 GeV

● Decays via the weak interactions
● To electrons/muons + 2 neutrinos 

(35%)
● To hadrons + 1 neutrino(65%)

– Single π+/Κ+

– ρ → π+π0

– α
1 
→ π+π-π+ , π+π0π0

● Identification of hadronic tau decays
● Important since tau is a tool to search 

for the Higgs 
● Experimentally challenging

● Novel algorithm implemented in this 
thesis to identify hadronic decays of 
taus

τ ντ

νμ

μ

τ ντ

d

u
u

u
π­

π0

W*

W*
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Beyond the SM: Supersymmetry
● SM: a theory of almost everything

● Problems arise when SM is seen as part of a larger theory (e.g @ 
Plank scale) → hierarchy problem

● Corrections to the Higgs mass become quadratically divergent in high 
scale Λ
–  For Higgs mass to be low excessive fine tuning is needed

● Supersymmetry(SUSY) solves this problem
● By introducing a new symmetry  between fermions and bosons
● For each particle there is a super-partner with spin differing by ½

– Divergences cancel by construction!
– Minimal extension: Double particle spectrum in the Standard model → MSSM   
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The Higgs sector in the MSSM
● Two Higgs doublets

● 5 physical Higgs bosons (h,H,A,H±)

● Production mechanisms
● Gluon fusion (b,t loop)
● Associated production with b-quarks

– Identifying b quarks in the final state 
enhances sensitivity

● At tree level
● 2 parameters: M

A
 , tanβ

● M
h
<M

Z

● Loop corrections from SUSY particles
– M

h
 <133 GeV

– Fixed in benchmark scenarios(mhmax)

● At large tanβ
● Cross section Enhanced
● BR(Φ → ττ) ~ 15%

b,t
b

b
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The Large Hadron Collider

● Four large detectors
● ATLAS+ CMS

– General purpose mainly 
proton physics

● ALICE
– Heavy Ion experiment

● LHCb 
– Forward detector for b 

physics

● 7 TeV proton proton (or heavy ion) collider
● Center of Mass energy = 7 TeV
● 27km circumference , 100m underground



 12

LHC Operation
Design 2011 run

Beam Energy 7 TeV 3.5 TeV

Bunches/Beam 2835 1380

Rev Frequency 25ns 50ns

Peak Luminosity 1034cm-2s-1 3x1033 cm-2s-1

Integrated 
Luminosity 5.2 fb-1

SM Higgs 
bosons produced

~100,000

The number of events for a given 
process is given by:

● σ: the cross section of the 
process

● Expresses the probability of 
the interaction

● Measured in units of area-
effective area of the interaction

● L :The instantaneous luminosity of 
the collider

● Particle Flux / time
● Units of 1/(area x time)

● Integrated Luminosity :

● Instantaneous luminosity 
integrated over time

● Goal : maximize luminosity

● Increase particles per bunch
● Maximize the number of bunches 

and revolution frequency
● Decrease the bunch area
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The challenge of pileup
● At high luminosity 

several pairs of 
protons can interact
● Producing multiple 

interactions in the 
detector

● Event of interest 
overlayed with other 
events

● Special techniques are 
needed to maintain 
high performance of 
particle identification

Mean number of interactions/crossing
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The Compact Muon Solenoid
Mass:  12,500T
Diameter: 15.0m
Length:  21.5m

z

x
Center of LHC

y
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Magnet
● Large solenoid magnet 

provides bending power for 
momentum measurement

● Sagitta of a particle  
trajectory

● Momentum resolution

 
● Optimal momentum 

resolution for large tracking 
path and large magnetic field
● 3.8T magnet in CMS
● 6.3 meter diameter

● 4 layer winding 

● Magnet flux returned by 
10000 ton iron yoke
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 Tracker

● Provides measurement of charged 
particle trajectories and momenta

● Full silicon technology
● Pixel detector near interaction point

– Highest occupancy
● Silicon strip outside

– (barrel and endcap) covering η<2.5

● Resolution
● Large size + full silicon 

technology result in large 
material budget
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Electromagnetic Calorimeter

● Crystal Technology

● Lead Tungstate Crystals(~76000)

– Radiation Length of 8.9 mm
● 26 radiation lengths/crystal

– Moliere radius of 22mm 
● Transverse shower profile within 2x2

– 80% of the light emitted within 25 ns  
● Fine segmentation for position resolution

● Covering up to η<3

● Resolution:
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Hadron Calorimeter

● Barrel and endcap (η<3)
● Sampling Calorimeter
● Brass and scintillator plates

– Light transmitted via fibers to  
photodetectors

● Resolution

● Forward region(3<η<5)
● Cherenkov based
● Using quartz fibers within steel 

plates 
– Light collected by photo multipliers

● Resolution
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Muon System

● Cathode strip 
chambers(0.9<η<2.4)
● Consist of a set of wires

– Running Azimuthially
● And cathode strips

– Run lengthwise in constant Δφ
● Provide fast, precise 

measurement of both 
coordinates

● Drift Tube chambers(η<1.2)
● Tubes filled with gas
● Anode wire @ 1.8 kV
● Muon interacts via ionization
● Slow and precise

● Resistive Plate Chambers(η<1.6) 
● Consists of two gaps filled with gas 

between readout strips
● Very fast-Extensive monitoring needed 

● Provides muon identification and Trigger



 21

L1 Trigger
● At design conditions LHC 

provides collisions at 40MHz
● Average event size 0.5-1 MB
● Rate must be reduced before 

storing

● L1 Trigger
● Made of custom electronics 

(ASICs + FPGAs)
● Uses information from 

calorimeters and muon detectors
● Implements basic particle ID in 

firmware and LUTs
● Forwards all objects to the Global 

Trigger
● Global Trigger produces decision 

if the event is stored

● Output rate ~100kHz
  

Muon Trigger
HF HCAL ECAL RPC CSC DT

Pattern
Comparator

 Trigger

Regional
Calorimeter

Trigger

4 µ

e, J, ET, HT, MET

Calorimeter Trigger

max. 100 kHz      L1 Accept 

Global Trigger

Global Muon Trigger

Global
Calorimeter

Trigger

Local  
DT Trigger

Local 
CSC Trigger

DT Track
Finder

CSC Track
Finder

40
 M

H
z 

pi
pe

lin
e,

  l
at

en
cy

 <
 3

.2
 µ

s 

Muon Trigger
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High Level Trigger
● Processes events selected by L1 
● Implements more complex 

algorithms
● Written in C++, running in commercial 

processor farm(Scientific Linux)
– Each working node processes one event
– Events that pass are stored 

● Algorithms similar or identical to 
offline reconstruction  

● Trigger path implementation 
optimized for speed
● Simpler algorithms run first
● If event passes , complex algorithms 

run after

● Event rate reduced to ~300 Hz

Readout Units

Event Builder

Worker 
Nodes

Storage Manager
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Event Simulation
● HEP experiments 

● Large and complicated

● Precise simulation
● Essential for experiment 

design and validation of 
experimental techniques

● Performed using Monte Carlo 
Methods

● Modular design of simulation
● Physics Event Generators
● Simulation of Particles 

through the detector
● Hardware emulation

Physics Event
Generator

Interaction in
The detector

Hardware
Emulators

Four vectors

Detector Hits

Digits
Same format
As the data!
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Event Reconstruction+Analysis
Event Reconstruction
● Processes RAW data and 

creates physics objects
● Electrons , Muon, Taus , Jets etc

● Runs Centrally in the stored 
datasets
● Users usually access the 

reconstructed data for analysis

● Implemented in CMS 
SoftWare (CMSSW)
● Framework for reconstruction 

and data analysis
– Implemented in C++/Python

● Any new reconstruction 
algorithm is implemented and 
integrated in CMSSW

 

Data Analysis
● Custom User code to analyze 

specific final states
● Implemented in CMSSW
● Running on datasets  using 

the GRID
● The presented analysis was 

exclusively processed at 
Wisconsin T2 /Condor 
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Analysis Strategy
● Select events in the following ττ final states

●    ττ → μτ 3 ν
– Branching ratio ~23%. Clean final state

●    eττ → τ 3 ν
– Branching ratio ~23%. High background from Z → ee
– Electrons have very similar detector signature with taus

●    eμττ →  3 ν
– Branching ratio ~6%. Almost background free

● Measure Z production cross section
● Establish performance of tau ID and experimental techniques 

on data

● Use the sample to search for SM and MSSM Higgs 
bosons
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Principles of Particle Identification

muon

tau

jet

electron

photon

Missing
transverse 
energy
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Electron Identification
● Requires a track matched 

to an electromagnetic 
deposit
● Electromagnetic deposit 

formed as a supercluster
– Cluster of clusters growing in 

the bending direction
– To account for material effects

● Supercluster must have low 
hadronic activity
– H/E<0.05

● Additional rejection of 
photon conversions
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Muon Identification
● Three types of muon reconstruction

● Standalone muon
– Track reconstructed in muon system

● Tracker muon
– Tracker track extrapolated to match hits in 

muon system
● Global Muon

– Muon track reconstructed both in tracker and 
muon system

● Requirements
● Muon identified as tracker and global 

muon
● At least one pixel hit,muon hit
● At least 10 tracker hits
● At least two segment matches
● χ2/NDOF<10

Validation with Z → μμ
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The Particle Flow Algorithm
● Uses information from all sub-detectors

● Combines tracks with calorimeter deposits
● Provides unique event description

– PF candidates (muons, electrons, charged hadrons, neutral 
hadrons, photons)

● PF candidates can be used to form higher level objects
● Jets , Taus, missing transverse energy,  isolation deposits

● PF provides the most precise measurement of the 
particle energy
● Charged Hadrons are measured dominantly by the tracker
● Electrons and photons are measured dominantly by the 

ECAL
● Neutral Hadrons are measured with the calorimeters
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Lepton isolation
● Leptons from tau decays are 

isolated in the detector
● Leptons from QCD processes are 

inside jets
● Isolation: 

● Very important discriminator 
against QCD background

● Using PF candidates in a cone of  
ΔR=0.4

● Defined as sum of the candidate Pt 
divided by the lepton Pt(relative)

●  Corrected for PU effects
● Charged particles coming from 

primary vertex
● Neutral particle deposit corrected  

by   Δβ  corrections

Δβ corrections

Primary vertex

Lepton

Predict neutral fraction in original 
cone via charged fraction from PU

PU vertex
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Jet and missing ET reconstruction
● Jets

● Particle clusters created using 
PF candidates

● Using the anti-kt algorithm 

● Full set of energy corrections is 
applied
● L1 FastJet:

– Removes energy coming from PU
● L2Relative

– Equalizes the jet response within 
the detector

● L3Absolute
– Equalizes the jet response in 

different Pt
● Residual corrections

– Applied on data to account residual 
differences with the simulation

● b-jet  identification
● Jets originating by b quarks

– Several B hadrons
– Have long lifetime
– Exploit the displacement of the 

tracks from the vertex

● Missing transverse energy
● Neutrinos cannot be detected
● The overall invisible energy is 

estimated in the transverse 
direction
– Balancing visible products
– Using Particle Flow
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Hadronic Tau Identification
● Traditional Tau ID

● Cone based
● Requires Narrow jet 

● The HPS Algorithm
● Reconstructs the 

individual decay modes
– One charged hadron
– One charged hadron+ 1 π0

– Three charged hadrons

● Reconstruction of π0s 
● Challenging due to 

material effects
● Introduce an EM strip

2.5
 x b

ette
r p

erfor m
a

nce  th
an

 co
ne ba

sed

hadron hadron+strip 3 hadrons
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Data sample

● After data certification, 4.9fb-1 of data were used for 
analysis 
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Selection of tau pairs
● Muon+Tau

● muon+tau trigger
● muon Pt>17 GeV, η<2.1
● tau Pt>20 GeV, η<2.3

● Electron+Tau
● electron+tau trigger
● electron Pt>20 GeV, η<2.1
● tau Pt>20 GeV, η<2.3

● Electron+Muon
● electron+muon trigger(17/8)
● Leading Lepton Pt>20
● Sub-leading Lepton Pt>10
● Muon η<2.1 ,Electron η<2.3

● All final states
● Opposite charge
● Veto on Z/γ* → μμ/ee

Veto W+jets events using 
The transverse mass
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● Light Lepton Trigger /ID
● Using Z → μμ/ee events

● Tau ID 
●  Independent 

measurement of Z → ττ 
events (uncertainty. 6%)

● Tau Trigger
● With Z → ττ that fire 

lepton triggers

● Missing Transverse 
Energy
● Calibrated with Z → μμ 

data

 Corrections to the Simulation
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● In e/μ+τ final states
● W extrapolated from high MT 

region
● QCD estimated from SS events

– After subtracting W and 
Electroweak/tt backgrounds

● In e+μ final state
● Measuring an extrapolation ratio 

from non-isolated to isolated 
leptons in SS region

● Apply it in OS region  

μ+τ e+τ e+μ

Exp 46364±2292 31467±1709 18530±797

Obs 46244 30679 18316

Background Estimation

A
OS

Both Legs
Isolated

B
OS

Both Legs
Anti-Isolated

D
SS

Both Legs
Isolated

C
SS

Both Legs
Anti-Isolated
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● Good agreement with simulation
● Within background uncertainties
● In all final states

● No first sign of new physics
● Not expected to show up on those 

distributions

Results after full selection

μ+τ e+τ

e+μ
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Cross section calculation

Data Background

Branching Ratio
(ττ → final state)

Acceptance x efficiency
=(A xε)  from MC x corr.factors

Luminosity
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Systematic uncertainties

Source μ+τ e+τ e+μ

Muon ID/Trigger 1% - 2%

Electron ID/Trigger - 1% 2%

Tau ID 6% 6% -

Tau Trigger 3.3% 3.3% -

Tau energy Scale 3% 3% -

Topological Requirements 0.5% 0.5% -

Luminosity 2.2% 2.2% 2.2%

P.D.Fs 2% 2% 2%

NNLO effects 0.5% 0.5% 0.5%
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● Shape fit performed on all final states
● All channels in agreement with theoretical prediction
● Combined fit constrains the tau ID to 3%
● Combined cross section:

● σ= 955 ± 7 (stat) ± 33 (syst) ± 20 (lumi) pb

Cross section results
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Search for  Higgs bosons
●  Z → ττ  cross section doesn't show any excess of events

● Higgs production overwhelmed by Z background
● Higgs signal would not be visible in the visible mass distributions

● Better sensitivity can be achieved in specific final states
● Vector boson fusion for the SM Higgs
● Associated Production with b-quarks for the MSSM Higgs

● Distinct VBF forward jet signature and presence of b-tagged 
jets suppress Z → ττ background

H H/h/A

b

b

W/Z

W/Z
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Event Categorization
● Separate events into event classes with different 

expected sensitivity
● Combine different categories as separate final states
● All the events are used in the search

SM

VBF
At least 2 jets Pt>30,η<4.5

Δη>4,Mjj>400
Jet veto in the gap 

NoVBF
Events failing VBF 

category 

MSSM

B
At least 1 btagged jet

Pt>20 GeV
<2 Jets Pt>30

NoB
Events failing B 

category 
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Z → ττ Background Estimation
Embedding Technique

τ
vis

μ ν ν ν μ
μ

● Reconstruct Z → μμ events in data
● Replace μ with decay the event
● Mix the simulated tau pair event with 

the initial events without the muon
● PU/UE and jets from data!  

jet jet

Z normalization
● Scaled based on the number of Z → 

μμ observed events
● MC scaling factor = 0.99 +-0.03
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Muon+Tau

NoB B

NoVBF VBF

Exp. Obs.
NoB 50565±

2603
50532

B 730±42 681

NVBF 46311 ±
2493

46389

VBF 73±7 74
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Electron+Tau

NoB B

NoVBF VBF

Exp. Obs.

NoB 35939±
1829

35189

B 415±28 398

NVBF 36221 ±
1842

35479

VBF 51±6 44
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Electron+Muon

NoB B

NoVBF VBF

Exp. Obs.

NoB 18797±
798

18092

B 564±49 519

NVBF 18646 ±
659

18521

VBF 40±3 29
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Statistical Analysis
● No significant excess is observed in any final states 

in the SM or the MSSM Higgs searc
● 95% CL Upper limits are set 

● In the SM Higgs production cross section

● In the MSSM parameter space (m
A
,tanβ)

● Using modified frequentist approach (CLs) 
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Upper Limits on SM Higgs

● Expected To exclude ~3.5xSM at M
H
 between 110-130 

GeV

● Observed exclusion 2.56 x SM at M
H
=115 GeV

● Need more data to derive conclusions
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Upper Limits in the MSSM

● Excluding tanβ <8 at low MA
● Observed in agreement with expected at low MA
● Small excess of events at high mass 

– Local significance = 1.5 standard deviations at M
A
=350 tanβ=20
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Conclusions
● A complete study of the di-tau final state was performed 

using ~5 fb-1 of data collected with CMS in 2011
● Novel Tau identification and lepton isolation techniques 

were proposed and implemented
● The Z → ττ cross section was measured in the full dataset 

in agreement with the theoretical prediction
● A search for SM and MSSM Higgs bosons was presented

● No significant deviation from the background only hypothesis 
observed

● Stringent new bounds are set to the SM Higgs production and 
MSSM parameter space

●  More data in 2012 will shed light about  the existence of 
the Higgs boson
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Backup
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Event Simulation packages
● Physics Generators

● PYTHIA
– General purpose leading 

order(LO) generator
– Includes hadronization and 

parton shower
● POWHEG

– Improvement to PYTHIA
– NLO calculation

● MADGRAPH
– Tree level generator 
– Ideal for processes witrh 

multiple objects (e.g Z+jets)
● TAUOLA

– Simulation of the tau decay

● Particles Interaction in 
the detector
● GEANT4
● Using precise detector 

description
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Tranvserse momentum resolution

● One and three prong ecay modes dominated by 
the tracker
● Excellent resolution

● Hadron+strip decay mode dominated by energy 
loss
● Material effects , mis-identification of neutral pions

hadron hadron+strip 3 hadrons
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The Hadrons+Strips (HPS) Algorithm
● Start from a jet
● Build combinatorially tau 

decay modes using PF 
candidates
● One charged hadron
● Three charged hadrons
● One hadron+ strip

– Strip is introduced to account for 
material effects 

● As in electrons

● Apply mass requirements on 
the decay mode

● Apply isolation on a solid 
cone of 0.5
● After subtracting tau 

constituents 

h+s

hhh
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HPS Efficiency and fake rate

● Efficiency calculated on simulation
● Fake rate calculated on data

● +compared to simulation

● HPS Algorithm achieves an efficiency of 50-60% for a fake 
rate <= 1%
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Hadronic Tau identification
● Traditional Tau ID method in hadron 

colliders
● Start from a jet
● Create a narrow signal cone and 

isolation annulus
● Assume signal cone constituents = tau
● Apply Isolation

● Caveats
● Energy measurement not precise
● Sensitive to PU
● Not using additional decay mode info

● Solution:
● Propose Decay Mode Tau ID

Cone based

Decay mode based



 57

Muon+Tau
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Electron+Tau
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Electron+Muon
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Alternative W/tt rejection
● Exploit the fact that the tau 

decay products are 
boosted
● Neutrinos near visible 

products
● Form ζ variables(used in 

CDF)

● Require 
– P

ζ
 -1.25 P

ζ,vis
>-25 GeV (e/μ)
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Background Estimation (e+μ)
● TTBar: Dominant + 

~Irreducible
● Estimated by MC using 

CMS measurement

● QCD: ABCD method 
(isolation vs charge)

● Non QCD fakes(small) 
MC +40% uncertainty A

OS
Both Legs

Isolated

B
OS

Both Legs
Anti-Isolated

D
SS

Both Legs
Isolated

C
SS

Both Legs
Anti-Isolated

e+μ

Exp 18530+-797

Obs 18316
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Acceptance Modeling
● Acceptance is calculated with visible products using 

POWHEG+TAUOLA
● We don't calculate acceptance in Mass window

● No way to restrict the reconstructed Z to a Z mass 
window due to invisible products

●   To compare with Z → ll results:
● We estimate the cross section at M>20 GeV

– However more than 97% of the events with M>50
● Then we extrapolate the measurement to M>50 GeV 

mass window using theoretical predictions  
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Theoretical systematics
● Effect of PDFs in 

acceptance : 2% 
● FSR:negligible
● ISR+NNLO effects + higher 

order weak corrections
● Those affect the Z Pt
● We compare Z pt in POWHEG 

and μμ data
● We reweigh the POWHEG 

spectrum to match data 
● Assigning the full difference in 

acceptance as systematic
– <0.5%
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Likelihood definition
Applying a shape fit with backgrounds and systematic uncertainties
floating around the estimated values

The likelihood is:

: product of constraints 

The shape part is  a stack of all visible mass distributions 
multiplied by their normalizations

Signal Backgrounds

Finally the signal coefficient is modified so that we can extract 
the cross section 



 65

VBF kinematics
● Most of the VBF 

events have 2 jets 
within η<4.5 and 
Pt>30

● The mass of the two 
jets is much higher 
than Z background

● The jets appear in 
high η difference
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MSSM Higgs search categorization
● Split the data into two 

categories
● MSSM-VBF:

● Require onje b-tagged jet>20 
GeV

● To reduce ttbar require less than 
two jets with Pt>20

● MSSM-NoVBF:
● All events failing B selection

● Signal has mostly one b-jet 
tagged

● Good agreement with 
simulation
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VBF candidate event
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