

A Search for Doubly Charged Higgs Production at 8 TeV Using the CMS Detector at the LHC

Devin Taylor – UW-Madison – Preliminary Examination

Outline

- The Standard Model
- Doubly Charged Higgs
 - Motivation
 - Type II Seesaw Mechanism
- The Large Hadron Collider
- CMS Detector
- CMS Cathode Strip Chamber System
- Analysis
 - Monte Carlo Production
 - Reconstruction of Data
 - Event Selection
 - Expected Limits
- 13 TeV Outlook
- Conclusions and Going Forward

The Standard Model

The Standard Model Higgs

- The standard model Higgs gives mass to the gauge bosons via symmetry breaking
 - Without this mechanism, they would be massless
 - Acquires a vacuum expectation value (vev) of 246 GeV
- The standard model Higgs could be part of a larger non-standard model Higgs multiplet
- Announcement of the discovery of a particle matching the Higgs boson at ~125 GeV on July 4, 2012 by CMS and ATLAS GeV

Neutrino Mixing

- Atmospheric and solar neutrino oscillation experiments have shown neutrinos do have mass
 - Three mixing angles θ_{12} , θ_{13} , and θ_{23} and one CP violating phase δ
 - Three masses m₁, m₂, and m₃
- Atmospheric oscillation experiments cannot measure sign of the splitting
 - Gives rise to two possible orderings, normal and inverted hierarchy
- The mixing angles have also been measured

Doubly Charged Higgs Motivation

- Experimental evidence of non-zero neutrino masses
 - Observation of neutrino oscillations provide evidence of non-zero neutrino masses
 - Cosmological observations give most stringent upper bounds of neutrino masses
 - Sum of neutrino masses < 0.32 eV
 - Many parameters not measurable in oscillation experiments
 - Mass hierarchy
 - Lightest neutrino mass
 - Majorana phases
 - Yukawa coupling to standard model Higgs would not naturally result in such small masses
- Light standard model Higgs boson
 - Such a small mass relative to the Planck scale
- Type II seesaw mechanism possible explanation (next slide)
 - Can result in small masses for left-handed neutrinos
 - Gives rise to a Higgs triplet

Type II Seesaw Mechanism

• Includes a Higgs triplet, Φ

 $SU(2)_L \times U(1)_Y, \Phi(3,2)$

• Gives rise to a new interaction term that allows lepton flavor violation

$$L = i\overline{\ell_{Li}^c}\tau_2 Y_{\Phi}^{ij}(\tau \cdot \Phi)\ell_{Lj} + h.c.$$
$$\Phi = \begin{pmatrix} \frac{\Phi^+}{\sqrt{2}} & \Phi^{++} \\ \Phi^0 & \frac{-\Phi^+}{\sqrt{2}} \end{pmatrix}$$

- Φ vacuum expectation value arises from the neutral component coupling to the standard model Higgs doublet (not symmetry breaking)
- The decay to W⁺W⁺ is suppressed with the assumption that the VEV is small
 - Natural assumption from non-observation in precision data and small neutrino masses
- Neutrino masses (in flavor basis) would then be extracted from the mass of the Φ^{++} and Yukawa coupling strengths (and thus the branching fractions to various lepton final states)

Pair and Associated Production

- Pair production
 - 4 lepton final states

- ℓ^{+}_{α} Z/γ^* Φ^{++} ℓ_{\sim}^{-} Φ ℓ_{δ}^{-} ℓ^+_{α} W^* Φ^+ ℓ_{γ}^{-} Φ ν_{δ}
- Associated production
 - 3 lepton final states
 - The focus of this talk

Scenario	CMS 7 TeV	CMS 8 TeV	ATLAS 7 TeV	ATLAS 8 TeV
$BR(\Phi^{\pm\pm} \rightarrow e^{\pm}e^{\pm}) = 100\%$	445 GeV		409 GeV	551 GeV
$BR(\Phi^{\pm\pm}\to e^\pm\mu^\pm)=100\%$	455 GeV	Vsis	375 GeV	468 GeV
$BR(\Phi^{\pm\pm} \rightarrow e^{\pm}\tau^{\pm}) = 100\%$	410 GeV	hal (¹⁻¹)	_	-
$BR(\Phi^{\pm\pm} \to \mu^{\pm}\mu^{\pm}) = 100\%$	459 GeV	Z Z Z	398 GeV	516 GeV
$BR(\Phi^{\pm\pm} \rightarrow \mu^{\pm}\tau^{\pm}) = 100\%$	396 GeV	147.	-	-
$BR(\Phi^{\pm\pm} \rightarrow \tau^{\pm}\tau^{\pm}) = 100\%$	228 GeV		-	-
Equal Branching Fractions	441 GeV		_	_

Current Experimental Limits

- Limits at LHC
 - CMS
 - e, μ, τ with 4.9 fb⁻¹ (7 TeV)
 - 3 and 4 lepton final states
 - Atlas
 - e, μ with 4.7 fb⁻¹ (7 TeV) and 20.3 fb⁻¹ (8 TeV)
 - 2 lepton final state

The Large Hadron Collider

- Proton-proton collider near Geneva, Switzerland
 - 27 km circumference
 - Design center of mass energy of 14 TeV
- 4 Experiments
 - ATLAS, CMS: general purpose
 - LHCb: b-physics

Year	LHC Energy
2010-2011	7 TeV
2012	8 TeV
2015	13 TeV

Luminosity and Beam Parameters CMS Integrated Luminosity, pp

- **Recorded luminosity**
 - 4.9 fb⁻¹ (7 TeV) + 19.7 fb⁻¹ (8 TeV)
 - 50 ns bunch spacing
- Expected in 2015
 - 1 fb⁻¹ (50 ns) + 10 fb⁻¹ (25 ns)
- **Expected Run 2**
 - 100-120 fb⁻¹
- Doubly charged Higgs production cross section (500 GeV)
 - Associated: ~0.5 fb, Pair: ~0.4 fb

Parameter	2011	2012	2015	Design
Beam energy (TeV)	3.5	4.0	6.5	7.0
Bunch spacing (ns)	75/50	50	50/25	25
Number of bunches	1380	1380	~2800	2808
Peak Luminosity (1/cm ² s)	3.5e33	7.6e33	1.2e34	1e34
Peak pile-up	17	38	40/20	26

 $N = \sigma$

Devin Taylor January 20, 2015

The Compact Muon Solenoid

Solenoid and p_T Measurement

- The central feature of CMS is the large 3.8 T solenoid magnet
 - Length: 12.5 m, diameter: 6.3 M
 - Cooled to 4.7 K
- Drove the design of the rest of the detector systems
 - All calorimetry inside solenoid for good energy resolution
- Good p_T measurement of charged particles due to strong magnetic field

Pixel and Silicon Tracker

- Silicon Pixel Detector
 - 3 barrel layers, 2 disks each endcap
- Silicon Strip Detector
 - Outside pixel detector
 - Inner and outer barrel and endcap
- Coverage: |η| < 2.5
- Resolution (in barrel): $\frac{\delta p_T}{p_T} = \left(15 \frac{p_T}{TeV} \oplus 0.5\right)\%$

Electromagnetic Calorimeter

- PbWO₄ Crystals with photodetectors
 - Barrel Region, |η| < 1.479
 - Length 230 mm, 25.8 X₀
 - Endcap Region, 1.479 < |η| < 3.0
 - Length 220 mm, 24.7 X₀
- Preshower detector
 - 1.653 < |η| < 2.6
 - Silicon strips
- Resolution: $\left(\frac{\sigma}{E}\right)^2 = \left(\frac{2.8\%}{\sqrt{E}}\right)^2 + \left(\frac{0.12}{E}\right)^2 + (0.3\%)^2$

Devin Taylor January 20, 2015

Hadronic Calorimeter

- Brass and steel absorbers
 - Steel outer and inner absorber layers
 - 14 brass absorber layers
- Scintillator
 - Between absorber layers
- HCAL Barrel (HB)
 - $|\eta| < 1.3$ $\left(\frac{\sigma}{E}\right)^2 = \left(\frac{115\%}{E}\right)^2 + (5.5\%)^2$
 - 5.8-10.6 λ (+1.1 λ from ECAL)
- HCAL Endcap (HE)
 - 1.3 < $|\eta|$ < 3.0 $\left(\frac{\sigma}{E}\right)^2 = \left(\frac{280\%}{E}\right)^2 + (11\%)^2$
 - ~10 λ (including ECAL)
- HCAL Outer (HO)
 - 5 rings outside the solenoid (not used)
- HCAL Forward (HF)
 - 3.0 < |η| < 5.2
 - Cherenkov-based detector

Devin Taylor January 20, 2015

The Muon System

- Embedded in CMS solenoid return yoke
 - 2 T magnetic field
- Drift Tubes
 - Barrel region, |η| < 1.2
- Cathode Strip Chambers
 - Endcap region, 0.9 < |η| < 2.4
- Resistive Plate Chambers
 - Barrel and Endcap, |η| < 1.6
- Relative p_T resolution (with tracker)
 - 2% in barrel
 - 6% in endcap

- Addition of descoped ME4/2
 - Add 4 chamber segment coverage for 1.2 < |η| < 1.8
 - Manufacture, assembly, testing, and installation of 67 new chambers + extras
 - My summer 2013 work
- Upgrade of ME1/1 electronics
 - Replace old analog readout electronics
 - Upgraded to faster optical readout
 - Ungang ME1/1a strips (nearest beampipe)
- Additional work
 - Validation of chamber performance
 - Post long shutdown 2 (LS2) studies
 - CSC data visualization
 - Preparation for Run 2 CSC prompt feedback

Cathode Strip Chambers Upgrade

CSC Upgrade Performance

- ME4/2 performance increase
 - Reduced trigger rate
 - CSC track finder required 2/3 chamber coincidence to trigger
 - Can now trigger on 3/4 chamber coincidence
 - Increased muon efficiency in ME 4/2 eta region
 - ~2% at p_T < 60 GeV
- ME1/1 performance increase
 - Unganging of strips in ME1/1a
 - Removes ambiguity on triggering
 - New electronics
 - Able to handle higher rates (even SLHC)
- Further upgrades in LS2 and beyond
 - Currently under study
 - Replacement of inner ring (or all) electronics (as done with ME1/1)
 - New muon chambers in high eta region

Devin Taylor January 20, 2015

CMS Trigger System

- Level 1 Trigger
 - Separate calorimeter and muon trigger paths
 - Dedicated on detector and peripheral electronics
 - At 25 ns, must reduce 40 MHz event rate to 100 kHz
- High Level Trigger (HLT)
 - Large, dedicated computer farm
 - Combine information from all detector systems
 - Allows easily programmable trigger paths similar to offline reconstruction
 L1 Accept
 - Further reduce rate to 500 Hz

Monte Carlo Generation

- Events are simulated using the MC method
- Underlying vertex first generated in
 - Madgraph (most processes)
 - POWHEG (some diboson, single top)
 - Pythia (pair production signal)
 - Calchep (associated production signal)
- The underlying event is then passed to Pythia (or Tauola) for hadronization and decays
- The event is combined with minimum bias data to simulate pile-up effects
- Finally, the event is passed to a detailed GEANT4 simulation of the CMS detector to simulate the particle interaction
- Simulated events are then digitized and follow the rest of the event reconstruction chain the same as data

Devin Taylor January 20, 2015

Event Reconstruction

- CMS uses Particle Flow (PF) to combine information from each detector and select physics objects
 - Improves resolution and identification
 - Charged and neutral hadrons, photons, electrons, and muons
- Algorithm
 - First muon detector tracks are matched to tracks in the inner tracker
 - Remaining tracks are then associated with energy deposits in ECAL (electrons) and HCAL (charged hadrons)
 - Remaining energy deposits are called photons (ECAL) or neutral hadrons (HCAL)

Muon Reconstruction

- Combine muon system for identification and tracker for better \mathbf{p}_{T} assignment
 - Muon subdetectors able to function as a standalone system
 - Reconstruction requires a standalone muon track to match with a tracker track to produce a "global" muon
- "Tight" muon selections
 - Good vertex
 - Hits in muon system (>1 chambers)
 - Pixel and tracker hits
 - Track quality requirements

Electron Reconstruction

- Use energy deposits in ECAL and tracker for $p_{\rm T}$ assignment
- Cut based and multivariate analysis selections
 - Optimized for high purity
 - Good vertex selections
 - Reject photon conversions (missing hits)

Devin Taylor January 20, 2015

Pile-up

- To achieve large integrated luminosity, many collisions occur at each bunch crossing
 - This leads to pile-up, many uninteresting QCD events that act as a background to the event that was triggered
 - Particle flow (via the excellent pixel detector) can mitigate some of the tracks associated with these pile-up events
 - Energy deposits not associated with a pile-up track are more difficult
 - At the analysis level, require objects from primary vertex to reduce pileup effects

Lepton Isolation

- Leptons must be well isolated
 - Sum energy deposited within $\Delta R = 0.3$ of the lepton
 - Relative isolation < 0.12 (0.15) for muons (electrons)
 - Corrections are applied to account for pile-up
 - Charged hadron pile-up already removed with vertex cuts
 - To reduce neutral hadron pile-up, subtract 0.5 * charged hadron pile-up
 - Known composition of jet: 2/3 charged hadrons, 1/3 neutral hadrons

$$I_{rel}^{\mu} = \frac{\sum p_T^{charged} + max[\sum E_T^{neutral} + \sum E_T^{photon} - 0.5 \cdot \sum p_T^{charged, PU}, 0.0]}{p_T}$$

$$I_{rel}^{e} = \frac{\sum p_T^{charged} + max[\sum E_T^{neutral} + \sum E_T^{photon} - \Delta \rho \cdot E.A., 0.0]}{p_T}$$

Missing Energy

- Neutrinos and potentially other beyond the standard model particles will not deposit energy in the CMS detector
 - Leads to missing energy (MET)
 - Sum energy from all detectors
 - Use sum of particle flow objects
 - Missing energy can only be resolved in φ
- Pile-up also contributes to errors in the MET measurement

Signal and Backgrounds

- Backgrounds simulated with Madgraph and hadronized with Pythia, Tau decays simulated with Tauola
- Backgrounds
 - Single top production: t_s, t_t, t_tW
 - ttbar+Jets
 - Z+Jets
 - ttbarV
 - VVV
 - VV+Jets
- Largest backgrounds come from VV and ttV where we have 3 real leptons, especially ttW where we cannot reduce the contribution via a Z mass veto
- Signal generated in Pythia for pair production (4 lepton) and in Calchep for associated production (3 lepton)

Event Preselection

- Multi-lepton trigger
 - 2 muons, 2 electrons, 3 electrons, or muon and electron
- Leptons in detector fiducial
 - |η_e| < 2.5, |η_μ| < 2.4
- Lepton p_T
 - p_T^{leading} > 10 GeV
- Lepton ID
 - Electrons and muons must pass tight cut-based selections
 - Electrons must additionally pass a multivariate analysis trained tight selection
- Lepton isolation
 - Relative isolation < 0.12 (0.15) for muons (electrons)
- QCD suppression
 - M_{II} > 12 GeV
- Require ++- or --+ charge triplets
- Veto on 4th lepton
 - Event would be included in 4l analysis
- 3570 events after preselection

Devin Taylor January 20, 2015

Analysis Selections

- Optimization of signal region
 - Maximize $\frac{S}{\sqrt{B}}$
- Variables of interest
 - $M_{\ell^{\pm}\ell^{\pm}}$ ($\Phi^{\pm\pm}$ mass)
 - $M_{\ell^\pm\ell^\mp}$ (Z mass)
 - $\Delta \phi(\ell^{\pm}, \ell^{\pm})$
 - $S_T = \Sigma p_T^{lepton}$

Cut	ее, еµ, µµ
S _T	> 1.1 m _o + 60
$ m(l^+l^-) - m_Z $	> 80
Δφ	< m _o /600 + 1.95
Mass Window	[0.9 m _o , 1.1 m _o]

$Lepton \ p_T \ Sum \ Selection$

Z Mass Veto

 Veto on Z mass windows removes contributions for Drell-Yan and diboson production

12

19.7 fb⁻¹ (8 TeV)

Simulation Preliminary

CMS

Same Sign Lepton Separation

Devin Taylor January 20, 2015

Mass Window Selection

Analysis Selection Event Numbers

- Associated Production channel
- Event selections assuming $m_{\Phi^{++}} = 500 \ GeV/c^2$
- Full selection: $\frac{S}{\sqrt{B}} = 6.47$

Monte Carlo Sample	Preselection	S _T	Z Veto	Δφ	Mass Window
Single Top	13.75	0.00	0.00	0.00	0.00
TT+Jets	90.90	0.05	0.00	0.00	0.00
Z+Jets	544.46	1.11	0.00	0.00	0.00
VVV	27.10	0.71	0.19	0.15	0.02
TTV+Jets	62.94	0.32	0.11	0.11	0.05
Diboson	2561.81	5.22	0.39	0.35	0.01
Signal (500 GeV/c ²)	3.27	2.64	2.44	2.34	1.88

19.7 fb⁻¹ (8 TeV) Events/5.0 GeV 160 CMS Data Preliminary Single Top 140 ti lots ttV+Jets 120 Z+Jets VVV+Jets 77 100 wz Φ⁺⁺Φ⁻→3I (500 GeV) 80 60 40 20 Data/MC 180 200 80 100 120 140 160 M^W_T (GeV)

WZ Control Region

- In addition to the analysis preselections:
 - Z selection
 - p_T^{leading} > 20 GeV
 - $|m(l^+l^-) m_Z| < 20 \text{ GeV}$
 - W selection
 - $p_T^{W \text{ lepton}} > 20 \text{ GeV}$
 - $E_T^{miss} > 30 \text{ GeV}$
 - $\Delta R(Z \text{ lepton}, W \text{ lepton}) > 0.1$
 - M_{3l} > 100 GeV
- 1274 events pass selection

Devin Taylor January 20, 2015

Devin Taylor January 20, 2015

38

 $t\bar{t}$ Control Region

- In addition to the analysis preselections:
 - Require OS leptons
 - Invert 3rd lepton isolation
 - $E_T^{miss} > 30 \text{ GeV}$
 - $|m(l^+l^-) m_Z| > 20 \text{ GeV}$
- 3589 events pass selection

TTV Control Regions

- In addition to the analysis preselections:
- TTW
 - 2 SS leptons
 - p_T^{leading} > 40 GeV
 - Jet selection
 - 3 jets, 1 b-tagged
 - 3rd lepton veto if forms Z
 - $|m(l^+l^-) m_Z| > 20 \text{ GeV}$
 - 37 events pass selection
- TTZ
 - Jet selection
 - 4 jets, 2 b-tagged
 - Require Z
 - $|m(l^+l^-) m_Z| < 20 \text{ GeV}$
 - 6 events pass selection

Sideband Method

- Using the doubly charged Higgs invariant mass, define a sideband away from a given mass hypothesis and a signal region in data with only the preselection applied
 - SB = (12 GeV, 150 GeV) and (1.1m₀, 800 GeV)
 - SR = $(0.9m_{\oplus}, 1.1m_{\oplus})$
- Look at the ratio of the event count in the signal region to the sideband to estimate the background in the signal region after the full selection

$$N_{BGSR} = \alpha \cdot (N_{SB}^{Data} + 1) \quad \alpha = \frac{N_{SR}}{N_{SB}}$$

Mass (GeV)	MC Estimate	Sideband
170	1.95±0.80	1.51±0.34
200	1.29±0.59	0.90±0.23
250	1.04±0.45	0.41±0.13
300	0.59±0.29	0.10±0.05
350	0.25±0.11	0.05±0.03
400	0.12±0.08	0.02±0.01
450	0.08±0.05	0.01±0.01
500	0.07±0.05	0.00±0.00
600	0.03±0.02	0.00±0.00
700	0.00±0.00	0.00±0.00

Systematic Errors

- Systematic errors included
 - Luminosity measurement
 - Lepton ID and isolation
 - Uncertainties in Monte Carlo cross sections
 - Derived from CMS measurements for diboson, ttbar, Drell-Yan
 - All others from uncertainties on the parton distribution functions

Uncertainty Type	Value
Luminosity	2.6%
Muon ID	0.5%
Muon Isolation	0.2%
Electron ID/Isolation	1%

Monte Carlo Sample	Value
Signal	15%
ttbar	2.4%
WW	4.1%
WZ	5.6%
ZZ	10.5%
TTW	28.9%
TTZ	10.5%
ZZZ	2.6%
WZZ	5.1%
WWZ	5.1%
WWW	4.3%

Expected Limits

- Limits are presented for the electron and muon final states
 - 100% branching fractions in the ee, eµ, and μµ
 - 4 benchmark modes, each targeting different physical scenarios
 - BP1: tribimaximal neutrino mixing, no CP violation, normal hierarchy
 - Tribimaximal: $\theta_{13} = 0$, lightest neutrino massless
 - Leads to $BR(\mu\mu) \approx BR(\mu\tau) \approx BR(\tau\tau) \approx 1/3$
 - BP2: tribimaximal neutrino mixing, no CP violation, inverted hierarchy
 - Electron decays become import
 - BP3: BP1 with assumption of lightest neutrino mass of 0.2 GeV
 - No lepton flavor violation
 - BP4: equal branching fractions
 - Doubly charged Higgs Monte Carlo samples are generated with equal branching fraction to all final states (electron, muon, tau), including flavor violating modes
 - Various benchmarks are achieved with reweighting of final selection channels

Expected Limits at 8 TeV

Mode	7 TeV	7 TeV Exp. (3l)			MC BG Exp. (3l)			Data driven BG Exp. (3l)		
100% ee	~375	~375 GeV			508 GeV			462 GeV		
100% еµ	~390	~390 GeV		5	568 GeV			523 GeV		
100% μμ	~390	GeV		517 GeV			478 GeV			
3P1	~360	~360 GeV		4	457 GeV			418 GeV		
3P2	~400	~400 GeV		4	468 GeV			429 GeV		
3P3	~400	~400 GeV		478 GeV			439 GeV			
3P4	~390	~390 GeV		474 GeV			439 GeV			
	Mode	/lode ee em			et	mm	mt		tt	
	BP100.01BP20.500		0.01		0.01	0.30	0.3	8	0.30	
			0		0	0.125	0.2	5	0.125	
BP3		0.34	0		0	0.33	0		0.33	
	BP4 1/6 1/6			1/6 1/6 1/6		1/6)	1/6		

 Measurements of these branching fractions would lead to significant insight into neutrino parameters, including a solution to the mass hierarchy problem

100% Branching Fraction MC Background Estimation Limits

We first note that the 100% branching fraction limits can be extended to >500 GeV with the full 8 TeV dataset with just the associated production channel

700

Neutrino Mass Hypotheses MC Background Estimation Limits

100% Branching Fraction Data-driven Sideband Estimation Limits

Neutrino Mass Hypotheses Data-driven Sideband Estimation Limits

Analysis at 13 TeV

- In June, the LHC will restart with 13 TeV center of mass energy
- Performance changes at 13 TeV
 - Increased pile-up
 - High trigger thresholds
 - Reduced isolation performance
 - Larger cross sections
 - Signal: ~4x increase
 - WZ: ~2x increase
 - ttbar: ~3.3x increase
- Same sensitivity of current (8 TeV) analysis could be reached with about half the data (~6 months of 2015 running)
- With the Run II data will see vast increase in statistics
 - From ~20 fb⁻¹ for 8 TeV Run I to ~ 75 fb⁻¹ for 13 TeV by the end of 2016
 - Combine with effective quadrupling of signal would expect 10X more statistics, extending our mass range by ~300 GeV beyond 500 GeV 8 TeV expected limits

Devin Taylor January 20, 2015

Conclusions and Going Forward

- An in progress search for doubly charged Higgs decay to three and four leptons has been performed
 - We have shown expected limits that outperform the CMS 7 TeV analysis and are comparable to ATLAS 8 TeV limits
 - Expected Physics Analysis Summary approval soon
- Preliminary look at 13 TeV
 - Expect improvements in the analysis, despite larger backgrounds
 - Additionally, analysis to be extended at 13 TeV to include taus
 - Taus were included for CMS 7 TeV analysis
- Exciting prospects for vastly extending the mass range at 13 TeV
 - Potentially 300+ GeV further reach with Run II dataset
 - As much as 100 fb⁻¹ of additional data for the next couple years

•

Events/25.0 GeV/c²

 10^{3}

 0^2

10

1 0

100

19.7 fb⁻¹ (8 TeV) CMS

45E

Devin Taylor January 20, 2015

Devin Taylor January 20, 2015