Search for $Z' \rightarrow \mu^+ \mu^$ in 14 TeV pp Collisions Preliminary Exam

Theoretical Background

- The Standard Model
- Motivation for a Z'
- Z' Production in pp Collisions

The Experiment

- The Large Hadron Collider
- The Compact Muon Solenoid

Monte Carlo Simulations and Analysis

- How We Simulate $Z' \rightarrow \mu^+ \mu^-$ and Backgrounds
- Simulation of Muon Finding Efficiency
- Distinguishing Signal Over Background

Conclusions & Future Plans

The Standard Model

Fermions (matter)

Bosons (forces)

Leptons spin =1/2			Quarks spin =1/2			Unified Electroweak spin = 1			Strong (color) spin =1		
Flavor	Mass GeV/c ²	Electric charge	Flavor	Approx. Mass GeV/c ²	Electric charge	Name	Mass GeV/c ²	Electric charge	Name	Mass GeV/c ²	Electric charge
VL lightest neutrino*	(0-0.13)×10 ⁻⁹	0	U up	0.002	2/3	γ photon	0	0	gluon	0	0
V _M middle neutrino*	0.000511 (0.009-0.13)×10 ⁻⁹	-1 0	C charm	1.3	-1/3	W	80.39	-1	Lligge		
μ muon	0.106	-1	S strange	0.1	-1/3	W ⁺ W bosons	80.39	+1	Source of EWK Symm. Breaking spin = 0, charge = 0 Yet to be found		
VH heaviest neutrino*	(0.04-0.14)×10 ⁻⁹	0	t top	173	2/3	Z	91.188	0			
T tau	1.777	-1	b bottom	4.2	-1/3	2.005011					
		70 、	+		7	'+	7		/		
			μμ		L	$\rightarrow \mu$	μ :				

Phenomena Outside the Standard Model

- The SM doesn't explain:
 - Dark matter
 - Neutrino masses
- Many new models unify the forces and account for these non-SM phenomena
 - GUTs unify SM forces
 - ToEs also include gravity
 - Z' particles could be a TeVscale observable

5

Motivation for a Z'

- A well-motivated extension to the SM
 - Derives from any extra *U*(1) symmetry
 - Many GUTs use expanded gauge groups
 - Extra dimensions could allow higher-mass excitations of the Z⁰
- Example model: E_6
 - Breaks to SM, leaving two U(1) symmetries
 - Common GUT that can include SUSY
 - SUSY provides a dark matter candidate

*Z*⁰ Production in 14 TeV *pp* Collisions

Z' production will show a sharp resonance

- Properties of the Z⁰
 - Neutral gauge boson coupling to weak flavor
 - $m_Z = 91.2 \text{ GeV}$, produces ~ 45 GeV muons
 - Narrow resonance; width is 2.5 GeV
- Z⁰ produced from quark-antiquark annihilation
 - No valence antiquarks in proton; sea dominates
 - Forward-backward asymmetry probes antiquark component of proton PDF
 - High energy means the Z^0 will be abundant
 - $\sigma_{Z,Total} \sim 11 \text{ nb}, \ \sigma_{Z \rightarrow \mu\mu} \sim 370 \text{ pb}$
- Important for *Z*' search
 - Useful calibration to prepare for Z'
 - Early test of tracker & muon system efficiencies
 - Drell-Yan is primary background for Z' search

The Drell-Yan Process

 $\gamma^*/Z/Z$

Status of Z' Searches and Expected Properties

 σ .Br(Z'

- Mass has been excluded below 900 GeV
 - Nearly exhausts Tevatron's energy reach
 - Nearly exhausts Tevatron's energy reach LHC should easily see 1.5 TeV in early data, eventual reach beyond 4 TeV ۵ eventual reach beyond 4 TeV
 - New challenges to measure 500+ GeV ۵ muons
- Expected properties
 - σ is an exponential function of mass
 - ~ 470 fb for 1 TeV
 - Width scales with mass (0.5% to 4%)
- Models have various predictions for production cross sections and decay widths
- Large deviations from the expected width would indicate decays to new particles

The Large Hadron Collider

14 TeV total collision energy

27 km in circumference

Counter-rotating beams of protons

Design luminosity of 10³⁴ cm² s⁻¹

100 m below ground

Proton Collisions

- 2835 bunches/beam
- ▲ 10¹¹ protons/bunch
- Design luminosity = 10^{34} cm⁻² s⁻¹
- Crossing rate = 40 MHz
- 10⁹ collisions/second
- $\sigma_{Z'} \sim 470$ fb for $m_{Z'} = 1$ TeV
 - ♦ 47 events per 100 pb⁻¹ of data
 - 1 in 10¹¹ interactions!
 - 1 event every 4 minutes at design luminosity

Compact Muon Solenoid

Tracker

Electromagnetic Calorimeter

Hadronic Calorimeter

Solenoid

Muon System

П

Particle Detection in CMS

Tracker and Muon Layout

$$\eta = -ln\left(tan\frac{\theta}{2}\right)$$

Full 2π coverage in φ

Coverage in η : to 2.5 in tracker to 2.4 in muon system

The CMS Tracker

- Silicon-based tracker
 - Barrel and forward disk design
 - Silicon pixels close to beam
 - Strips at larger radius
- Excellent transverse momentum resolution
 - Strip pitch of 80-180 μm
 - Immersed in 4 T magnetic field
 - Radius = 1.2 m, Length = 5.6 m
 - 1 radiation length of material
 - For a 45 GeV muon, resolution ~ 0.8%
 - ♦ For a 1 TeV muon, resolution ~ 15%

The CMS Muon System

3 types of detectors

- Drift tubes in the barrel (precise)
- Cathode strip chambers in endcaps (precise and radiation resistant)
- Resistive plate chambers throughout (fast, redundancy for trigger)
- Barrel region in 1.8 T return field
- Radius = 4 to 7.5 m, Length = 20 m
- At least 10λ of material before muon system, another 10λ to the last station
- Tracks from muon system and tracker are matched
 - For low p_T , the muon system provides redundant ID, but becomes key to good resolution at higher momentum
 - We can achieve a combined p_T resolution better than 5% for 1 TeV muons!

Simulation Workflow

Generation of Physics Events

- Hard scattering matrix element calculations
 - Alpgen (fixed order) specifically for boson + jets processes
 - Pythia (leading order) for others
 - Subsequent jet evolution using Pythia
 - Underlying event
 - Jets from initial and final state radiation
 - Fragmentation and hadronization of partons into jets

Detector Simulation

- Geant4 simulates the passage of particles through the detector
- Signal digitization is simulated for all components of detector, readout, and trigger.
- Key to understanding (eventually from data):
 - Realistic rates for mis-ID of hadrons as muons
 - Realistic detector resolutions
 - Efficiencies

THE UNIVERSITY

- Trigger
 - Early muon system info gives independent p_T measurement
 - Muons from Z' easily pass 20 GeV threshold
- Full reconstruction
 - Produce muon system tracks
 - Independently produce tracker system tracks
 - Perform a global fit to tracker + muon system hits

Momentum Resolution

Sources of Inefficiency

- Barrel Region
 - /η/ < 0.9
- Overlap Region
 - $0.9 < |\eta| < 1.2$
- Endcap Discs
 - $|\eta| > 1.2$

Central-to-forward

Transition Region

Tracker efficiency drops in the range $|\eta| > 2.2$

CMS,

Outline of Analysis

- Simulated Z' data
 - $m_{Z'} = 1$ TeV, just beyond Tevatron limit
 - Z'_{SSM} with SM couplings included in Pythia
 - One of the highest σ models: 470 fb
 - Width may be detectable (3% of mass)
- Preparation for data-taking
 - Determine acceptance of Z' events
 - Compare backgrounds and signal to choose cuts
 - Apply our selection cuts to determine sensitivity

WISCONSIN

24

Gen/Reco Muon Matching

 $4\% p_T$ resolution agrees with previous simulations

Fiducial Cuts

Backgrounds to $Z' \rightarrow \mu^+ \mu^-$

- High-mass Drell-Yan
 - Only major background
- Top-antitop decay to muons
 - Produces a pair of W+jets events
- ♦ *W*+jets and *Z*+jets
 - Energetic jets produce muons from hadron decay

Distinguishing Signal vs. Background

100 pb⁻¹

Signal	Drell-Yan	Top-antitop	Boson+jets	
Peak in mass distribution	Peak at much lower mass	No peak	No peak	
Muons isolated in tracker	Muons isolated in tracker	Muons produced with jets	Muons produced with jets	
Muons in 500 GeV range (48 pairs)	Few muons in the 500 GeV range (7 pairs)	Muons in 80 GeV range	Muons in 40 GeV range	
No intrinsic missing E _T	No neutrinos	2 neutrinos	1 neutrino for W +jets	
Few energetic jets	No jets	2 or more jets	1 or more jets	

Drell-Yan

100 pb⁻¹

- Primary irreducible background is Drell-Yan with high mass
- Drell-Yan Sample from Pythia
 - Selected only $m_{\mu\mu} > 500 \text{ GeV}$
 - As $m_{\mu\mu}$ increases, cross section for Drell-Yan drops more quickly than for Z'
 - 48 events for $m_{Z'} = 1$ TeV
 - 2 events for $m_{Z'} = 2 \text{ TeV}$

Peak for Z' should be clearly visible over this distribution

Muon Isolation

100 pb⁻¹

- Calculate muon isolation
 - Cone of $\Delta r < 0.3$
 - Sum p_T of tracks in cone
- Muons from W have many closely associated jets. Top events have many jets.
- Z' events have few jets, so muons should be isolated

$$\Delta r = \sqrt{(\Delta \phi)^2 + (\Delta \eta)^2}$$

100 pb⁻¹

May be useful for suppressing *W*+jets

- Large false MET found for all samples in reconstruction
- For lower $\sigma_{Z'}$:
 - Potential requirement of MET below 200 GeV

Jets from Signal and Background

May be useful for suppressing top and *W*+jets

- Nearly all top background has 4 or more jets
- Also eliminates some boson + jets background
- For lower $\sigma_{Z'}$:
 - Potential requirement of fewer than 4 jets

Event Selection

100 pb⁻¹

	1 TeV Z'	Drell-Yan	Top-antitop	Boson+jets			
Acceptance, Reconstruction, $m_{\mu\mu} > 500 \text{ GeV}$	35.2 (78% of generated)	12.0	.14	.34			
Muons isolated $\Sigma p_T < 10 \text{ GeV}$	1000000000000000000000000000000000000		.09	.29			
MET < 200 GeV	33.1	11.1	.09	.10			
Fewer than 4 jets	31.6	10.7	.05	.05			
Potential Requirements							

Reconstructed Z'

100 pb⁻¹

- The Z'_{SSM} at 1 TeV should be observable well before 100 pb⁻¹ have been recorded
- Higher mass Z's will require more data
- Z'_{χ} is from an E_6 model
- Other Z' models have a much lower σ and possibly lower mass, i.e. gravitons
 - Consider additional cuts

Conclusions & Next Steps

- Conclusions
 - \diamond Z⁰ analysis will be an important calibration for early data
 - With the first 100 pb⁻¹ of data, we can find a light Z' and distinguish the signal from backgrounds
- Next Steps
 - Increase muon finding efficiency
 - Produce larger background samples
 - First CMS data
 - Measure muon finding efficiencies
 - Measure rates for misidentification of hadrons as muons
 - Analyze backgrounds in the region below 500 GeV
 - Apply complete analysis to CMS data
 - Apply analysis techniques to W' search