

Z Boson Cross Section Measurement using CMS at the LHC

Jessica Leonard University of Wisconsin – Madison

22 July, 2011

Standard Model

- $Z \rightarrow ee$
- Large Hadron Collider
- **Compact Muon Solenoid**
- Simulation
- **Event Selection**
- Results
- Conclusions

Current framework of knowledge about fundamental particles

- Matter particles
 - Leptons
 - Quarks
- Force carriers
 - Photons
 - Gluons
 - W,Z

Everyday matter

Three Generations of Matter

Antiparticles: similar properties, opposite charge

Particle Interactions

Proton Structure

Proton: *uud* Constituents (quarks, gluons) = "partons" Parton distribution functions f_i(x) (PDFs)

i = quark flavor

- x = quark's fraction of proton momentum
- PDFs measured experimentally

Proton includes *all* quark flavors

The Z Boson

History

- Proposed in 1968 for unification between electromagnetic and weak forces
- Discovered in 1983 at CERN in UA1 and UA2 experiments

Role in physics

- Mediates weak force (interacts with all fermions)
- Lifetime gives prediction for number of neutrino flavors

 $Z \rightarrow ee$

Why look at $Z \rightarrow ee$?

- High rate, very clean signal, virtually no background → ideal "standard candle" for detector calibration
- Clean signal → test between PDF sets
- High end of mass spectrum may show signs of new physics

$$M_{inv} = \sqrt{(E_1 + E_2)^2 - \|\mathbf{p}_1 + \mathbf{p}_2\|^2}$$

- Aim: Measure cross section of Z \rightarrow ee within detector acceptance and mass window 60 < M < 120 GeV
 - Cross section σ : "probability" of interaction

$$\sigma_Z \times \text{BR} (Z \to ee) = \frac{n_{Z \to ee}}{\mathcal{L} \times \epsilon \times A}$$

- n_{Z->ee}: number of Z candidate events
- A: acceptance, fraction of events visible in CMS
- ε: efficiency of event reconstruction
- L: luminosity, total data taken

Proton-proton interactions at LHC

LHC Magnets

Superconducting NbTi magnets require T = 1.9K

- 1232 dipoles bend proton beam around ring, B = 4T
- Quadrupoles focus beam

Instantaneous measurement done using CMS forward hadronic calorimeter (HF)

- Average transverse energy per HF tower

Normalized via van der Meer scan

Current CMS Status

7 TeV collision run began March 2010

 2010: 36.1 pb⁻¹ good data recorded, all subdetectors good (43 pb⁻¹ total recorded)

 Z cross section analysis first electroweak analysis published. Many more analyses published, as well

- 2011: 1.23 fb⁻¹ and counting...

Seeing Particles in CMS

Tracker

Measures momentum and position of charged particles

75 million total channels

maximum analyzing power in $|\eta| < 1.6$

U. Wisconsin

Electromagnetic Calorimeter (ECAL)

Measures electron/photon energy and position to $|\eta|<3$

~76,000 lead tungstate (PbWO₄) crystals

- High density
- Small Moliere radius (2.19 cm) compares to 2.2 cm crystal size

Resolution:
$$\left(\frac{\sigma}{E}\right)^2 = \left(\frac{2.8\%}{\sqrt{E}}\right)^2 + \left(\frac{41.5 MeV}{E}\right)^2 + \left(0.30\%\right)^2$$

HCAL samples showers to measure energy/position of hadrons, vetoes electrons

- HB/HE -- barrel/endcap region
 HF -- forward region
 - Brass/scintillator layers
 - Eta coverage $|\eta| < 3$

• Resolution:
$$\left(\frac{\sigma}{E}\right)^2 = \left(\frac{0.847 \, GeV}{E}\right)^2 + (7.4\%)^2$$
 • Resolution:

- - Steel plates/quartz fibers
 - Eta coverage to ±5

Calorimeter Geometry

 $\Delta R = \sqrt{\Delta \eta^2 + \Delta \phi^2}$

Ø

Level-1 Trigger

Regional Calorimeter Trigger

Level-1 Electron Algorithms

Electron (Hit Tower + Max)

- $\begin{array}{rl} & 2 \text{-tower } \sum \mathsf{E}_{_{\mathsf{T}}} + & \text{Hit tower} \\ & & \text{H/E} \end{array}$
- Hit tower 2x5-crystal strips >90% E_T in 5x5 (Fine Grain)

Isolated Electron (3x3 Tower)

- Quiet neighbors: all towers pass Fine Grain & H/E
- One group of 5 EM
 E_T < Threshold
- Electron triggers
 - Required one electron object above 5 or 8 GeV (evolved with luminosity)

Reconstruction done using High-Level Trigger (HLT) -- computer farm

Reduces rate from Level-1 value of up to 100 kHz to final value of ~300 Hz

Slower, but determines energies and track-cluster matching to high precision

Electron triggers: one reconstructed electron above threshold (15 or 17 GeV), later triggers had stricter requirements (higher luminosity)

Electron Reconstruction: Energy Clustering

- Create "superclusters" (SC) from clusters of energy deposits in ECAL
 - Must have E_T greater than some threshold
 - Seed crystals: E_T higher than neighboring crystals
 - Energy grouped into clusters, which make up superclusters

Hybrid (barrel)

Multi5x5 (endcap)

Electron Reconstruction: Tracking

Pixels

- Match superclusters to hits in pixel detector
 - Electrons create a hit (photons do not!)
 - Search for successive pixel hits
- Combine with full tracking information
 - Track seeded with pixel hit
 - Hits sought in successive tracker layers
 - Series of hits forms trajectory

Simulation

How do we know all our algorithms actually work?

- Simulate the entire event
- Run it through the actual reconstruction.
- We know what the "right" answer is, so we can tell how well our reconstruction algorithms work.
- Framework for reconstruction is CMS SoftWare (CMSSW)

Monte Carlo (MC)

- Acceptance (A): Fraction of events that can theoretically be seen by detector
 - Determined by solid-angle coverage, low end of energy sensitivity
- Must be determined from MC: need to know how many events the detector *didn't* see

Sample used: $Z \rightarrow ee POWHEG$

Generator-level acceptance:

In Z mass window 60 GeV < M_{inv} < 120 GeV:

2 final-state electrons from Z, $E_{_{T}}$ > 25 GeV, $|\eta|$ < 2.5

A: 0.423

- "ECAL Acceptance" (matched to supercluster) to account for SC reconstruction efficiency:
 - 2 final-state electrons from Z matched to supercluster within $\Delta R = 0.2$.
 - SC: $E_{\tau} > 25 \text{ GeV}, (|\eta| < 1.4442 \text{ or } 1.566 < |\eta| < 2.5)$

A_{ECAL}: 0.387

Backgrounds

Anything that can look like two electrons from a Z

- Jets faking electrons: QCD
- Real electrons from t's
- 1 real electron from W decay, one fake electron
- Real or fake electrons from top pair decays
- Diboson (WW, WZ, ZZ)
 - Includes Z production, but considered background because can't distinguish electrons

Electron Selection Variables

Conversion rejection

- Require track in full tracker: number of missing hits
- Require no partner tracks: distance (dist) or angle (Δcotθ)

Isolation: make sure electron isolated in

- Tracker cone
- ECAL radius
- HCAL radius

Electron Identification

- Match track to cluster in η : $\Delta \eta_{in}$
- Match track to cluster in ϕ : $\Delta \phi_{in}$
- Require cluster to be narrow: σ_{inin}
- Require cluster to be mostly in ECAL (H/E ratio)

Event Selection

Require two electrons $|\eta| < 1.4442 \text{ or } 1.566 < |\eta| < 2.5$ Supercluster $E_T > 25 \text{ GeV}$ Passing "good electron" selection cuts At least one electron passing trigger Mass window: $60 < M_{inv} < 120$

 $|\eta| \sim 1.5$: ECAL barrel/endcap overlap region, poor electron reconstruction performance

WP80	Barrel	Endcap	
Conversion Rejection			
Missing Hits	0	0	
dist	0.02	0.02	
$\Delta cot \theta$	0.02	0.02	
Relative Iso	olation		
ECAL	0.07	0.05	
HCAL	0.10	0.025	
Track	0.09	0.04	
Electron Identification			
$\sigma_{i\eta i\eta}$	0.01	0.03	
$\Delta\phi_{in}$	0.06	0.03	
$\Delta \eta_{in}$	0.004	0.007	
H/E	0.04	0.025	

* Selection plots on following slides show MC only (QCD MC samples include isolation cuts, disagree with data until all cuts applied)

Reject electron pairs from photon conversions (y->ee)

These electrons originate far from interaction point, are very close together

Require electron to pass missing hits requirement and either dist or $\Delta \cot\theta$ requirement (allows for anomalous dist or $\Delta \cot\theta$ value)

38553 out of 49962 events kept

Isolation Cuts

Electrons from background (esp. QCD) more likely to have surrounding energy

Keep only events with isolated electrons to cut out backgrounds

10529 out of 38553 events kept

Electron Identification Cuts Cluster-Track Matching

Δη and Δφ between track and cluster

Barrel

Ensure a clean sample

9086 out of 10529 events kept

Electron Distributions

Good agreement between data and MC after all cuts – MC models data well

Calculation of Efficiency

Tag and Probe method:

- Select sample of probable Z \rightarrow ee events using mass window 60-120 GeV
- Identify well-reconstructed electron object as "Tag"
- Partner object is "Probe"
- Efficiency = (probes passing given selection)/(total probes)
- Determined by simultaneous fit to Tag+Passing Probe and Tag+Failing Probe invariant mass spectra
 - Signal: Z mass distribution from simulation, convolved with function to describe detector behavior
 - **Background: exponential function**
- Strategy: Identify Monte Carlo "true" efficiency, correct by data/MC ratio from Tag and Probe

Example of Efficiency Fit Plots

Very good fit to passing probes, all probes General agreement for failing probes – very few events

Efficiency Results

Step	True MC	MC T&P	Data T&P	Ratio	Eff
Reconstruction	0.965	0.972	0.971 +/- 0.002	0.999 +/- 0.002	0.964 +/- 0.002
Isolation	0.926	0.927	0.910 +/- 0.003	0.976 +/- 0.003	0.905 +/- 0.003
Electron ID	0.906	0.907	0.897 +/- 0.003	0.989 +/- 0.003	0.896 +/- 0.003
Trigger	0.959	0.941	0.972 +/- 0.001	1.032 +/- 0.001	0.991 +/- 0.001
Event selection	0.654	0.665	0.621 +/- 0.005	0.933 +/- 0.007	0.610 +/- 0.005

$$\epsilon^{corrected} = \epsilon^{true}_{MC} \times \left(\frac{\epsilon^{T\&P}_{data}}{\epsilon^{T\&P}_{MC}}\right)$$

Overall event efficiency: 0.610 +/- 0.005

- Errors include statistical and fit systematic uncertainties
- Relative uncertainty: 0.005/0.610 = 0.76%

Invariant Mass

Dielectron Invariant Mass After All Cuts

Peak shift: data does not include transparency corrections. Very small effect, accounted for in systematic errors.

Data yield: 8453

Estimated BG from MC: 18.5

- EWK: 6.7, ttbar: 5.8, Diboson: 6.0, QCD: 0

Z Boson Distributions

Z boson p_{τ}

Z boson rapidity

Z boson ϕ

Good agreement between data and simulation

Data well-understood

Confirmation of Background Estimate

Verify MC prediction of zero QCD background Template Technique

- 1. Choose variable with different signal/background distributions (here, track isolation)
- 2. Get "signal-rich" and "background-rich" data samples with adjusted selections, as well as "standard data" sample
- 3. Find composition of signal+background samples that best fits standard data sample
- Only useful for QCD background (EWK background too similar to signal)

Working Point:

WP80	Barrel	Endcap	
Conversion	Rejecti	on	
Missing Hits	0	0	
dist	0.02	0.02	
$\Delta cot \theta$	0.02	0.02	
Relative Iso	lation		
ECAL	0.07	0.05	
HCAL	0.10	0.025	
Track	0.09	0.04	
Electron Identification			
$\sigma_{i\eta i\eta}$	0.01	0.03	
$\Delta\phi_{in}$	0.06	0.03	
$\Delta \eta_{in}$	0.004	0.007	
H/E	0.04	0.025	

Template Method Implementation

Modified working points for data/template selections:

- Semi-Tight: working point without track isolation
- Tight: Semi-Tight plus several thresholds modified
 Δφ_{in}: 0.03 (barrel), 0.02 (endcap)

 $\Delta \eta_{in}$: 0.005 (endcap)

H/E: 0.025 (barrel)

• Loose: thresholds x 5 for all isolation, ID variables Additional loosening for better statistics: ECAL isolation: 2.5 (barrel), 1.0 (endcap) SC E_T cut (25 \rightarrow 20 GeV)

Data and template selections

Data: two electrons passing Semi-Tight

Signal: two electrons passing Tight, opposite sign

Background: two electrons, one passing Semi-Tight, one passing Loose, same sign

Template Method Results

Results over full range: Signal fraction: 0.998 +/- 0.014 Background fraction: 0.0016 +/-0.0020

Results below threshold (readding track isolation cut) Signal fraction: 1.000 +/- 0.014 Background fraction: 0.000 +/-0.002

Estimated number of QCD background events:

0 +/- 16.8

Relative uncertainty on number of signal events: 0.2%

U. Wisconsin

Z mass peak

Signal Extraction Fit

Z mass peak

:) / st 10³

10²

10

60

70

80

90

100

110

Verify MC prediction for all backgrounds

Fit invariant mass spectrum with signal+background shape

Same lineshapes as for Tag and Probe

Signal: 8453 +/- 18, Background: 0 +/- 14 Zero background, confirms MC prediction

Upticks due to fluctuations in base lineshape, but very few events negligible effect

120

mass

Background Estimation Summary

All estimates consistent:

MC: 18.6 events

Template fit: 0 +/- 16.8

Z mass fit: 0 +/- 14

Take most conservative value, error Value: 19 events (MC estimate) Error: 17 events (template method)

Systematic Errors

Theoretical uncertainty

- Varied PDF, renormalization scale; calculated ISR/FSR corrections, other >LO corrections
- Total theoretical uncertainty on yield: +/-1.7%

Electron energy scale

- Varied electron energy by ECAL energy scale uncertainty: 2/3% in barrel/endcap (conservative)
- Uncertainty on yield: +0.82%, -1.1%. Average = 0.95%
- Varied sample for MC efficiency
 - POWHEG vs. PYTHIA, different parameter sets for underlying event
 - Evaluated efficiency using each sample
 - Systematic = spread/2 between values for the three samples
 - Syst = 1.2%

Summary of Uncertainties

Source	Value
Luminosity Uncertainty	4%
Statistical Uncertainty	1.1%
Theoretical Systematics	1.7%
Experimental Systematics	1.7%
Electron Energy Scale	0.95%
MC Sample for Efficiency	1.2%
Efficiency Fitting	0.76%
Background Subtraction/Modeling	0.2%
All error sources combined	4.8%

Cross Section

Cross section:

Quantity	Value
Α	0.387
ε	0.610
L	36.1
n_{Total}	8453
n_{BG}	19

$$\sigma \times BR = (n_{Total} - n_{BG}) / A * \epsilon * L$$
$$= 990 \pm 48 \text{ pb}$$

NNLO theoretical from FEWZ: 972 ± 40 pb

Agreement to theory within errors

Comparison with Other Experiments

Cross section of $Z \rightarrow ee$ measured with 36.1 pb⁻¹ 7 TeV data

 $-\sigma = 990 \pm 48 \text{ pb}$

Uncertainties determined to be reasonable

- Measured value agrees with theoretical value within errors
- This measurement laid the ground for measurements and searches being completed this summer

Data

/EG/Run2010A-Dec22ReReco_v1/AOD

/Electron/Run2010B-Dec22ReReco_v1/AOD

Monte Carlo	Generator	Number of Events	Cross section (pb)
Signal			
Z -> e e	POWHEG	1998990	1666.
Background			
QCD EM 20 to 30	PYTHIA	36920242	235500000.
QCD EM 30 to 80	PYTHIA	71834019	59300000.
QCD EM 80 to 170	PYTHIA	8073559	906000.
QCD BCtoE 20 to 30	PYTHIA	2243439	235500000.
QCD BCtoE 30 to 80	PYTHIA	1995502	59300000.
QCD BCtoE 80 to 170	PYTHIA	1043390	906000.
TTbar	PYTHIA	1099550	94.3
Z -> tau tau	PYTHIA	2057446	1666.
W -> e nu	PYTHIA	4856474	6153.
W -> tau nu	PYTHIA	5207750	7899.
WW	PYTHIA	110000	2.9
WZ	PYTHIA	110000	0.34
ZZ	PYTHIA	2113368	4.297

Trigger Efficiencies

Trigger efficiencies from T&P method on data

Trigger	Efficiency	Error (fit)
HLT_Photon15_Cleaned_L1R	0.976	0.002
HLT_Ele15_LW_L1R	0.961	0.005
HLT_Ele15_SW_L1R	0.981	0.003
HLT_Ele15_SW_CaloEleId_L1R	0.986	0.003
HLT_Ele17_SW_CaloEleId_L1R	0.992	0.002
HLT_Ele17_SW_TightEleId_L1R	0.973	0.002
HLT_Ele17_SW_TighterEleIdIsol_L1R_v1	0.973	0.003
HLT_Ele17_SW_TighterEleIdIsol_L1R_v2	0.977	0.002
HLT_Ele17_SW_TighterEleIdIsol_L1R_v3	0.974	0.003
Overall	0.9763	0.0009

Invariant Mass by η

Dielectron Invariant Mass After All Cuts, Barrel-Endcap

