

Precision Measurements and the Search for New Physics in WZ→3ℓv Events with the CMS Detector

Kenneth Long University of Wisconsin - Madison

Outline

1. Physics Overview

- 2. WZ Production at the LHC
- 3. Predictions for Precision Measurements
- 4. The Large Hadron Collider
- 5. The Compact Muon Solenoid
- 6. Physics Objects and Event Reconstruction
- 7. Analysis Overview
- 8. Results
- 9. Moving Forward

Outline

1. Physics Overview

- 2. WZ Production at the LHC
- 3. Predictions for Precision Measurements
- 4. The Large Hadron Collider
- 5. The Compact Muon Solenoid
- 6. Physics Objects and Event Reconstruction
- 7. Analysis Overview
- 8. Results
- 9. Moving Forward

The Standard Model

- Concise, elegant theory of the fundamental particles and their interactions
- Particles and interactions described by the standard model Lagrangian in the language of Quantum Field Theory
 - Matter composed of spin 1/2 fermions
 - Interactions mediated by spin 1 vector bosons
 - Mass arises from interactions with scalar Higgs field

Does not include gravity, dark matter, or dark energy

6 leptons (+6 anti-matter)

electro-weal

symmetry breaking

2nd generation evervdav matter exotic matter force particles

increasing mass -

CMS

Interactions in the Standard Model

- Interactions of quarks and leptons are mediated by vector bosons
 - Act as force carriers
- Electromagnetic Force
 - Mediated by photons
 - Long range
 - Responsible for familiar electromagnetic processes
- Weak Force
 - Mediated by massive W and Z bosons
 - Short range
 - Responsible for some nuclear decays
- Strong Force
 - Mediated by gluons
 - Short range
 - Forms bound states of quarks
- Interactions with the Higgs
 - Leads to particles acquiring mass

Motivation for Diboson Studies

- Standard Model (SM) predicts direct interactions of electroweak bosons
 - Couplings predicted precisely
 - Deviations from SM predictions sign of New Physics (NP)
- Production of pairs of electroweak
 vector bosons (dibosons) at the Large
 Hadron Collider (LHC)
 - Standard production: Bosons radiated from the quarks
 - Electroweak (EWK) production
 - Triple gauge couplings (TGC)
 - Quartic gauge coupling (QGC) in vector boson scattering (VBS)
 - Higgs scattering (in VBS)
 - QGC and Higgs scattering of massive vector bosons not yet observed

$\sigma(pp \rightarrow WZ \rightarrow 3\ell v)$ at 13 TeV (in fb)

Fiducial Selection	$\sigma_{\text{Std+TGC}}$	$\sigma_{ m VBS}$
Inclusive WZ	280	3.5
VBS (with 2 jets)	0.96	0.67

New Physics in Diboson Production

10

10³

 10^{2}

10

Events / 50 GeV

- Can probe fundamental aspects of (new) physics CMS Preliminary
 - New scalar particles
 - Example: Additional Higgs bosons in extended Higgs sectors (SUSY)
 - New gauge bosons

Example: Unification models predict extended gauge sectors with additional gauge bosons

- Direct production of new particles with resonant decay to dibosons
- Indirect indications of new physics
 - Observable as deviations from SM prediction
 - Total cross section
 - Differential cross sections
 - Example: transverse momentum (p_T) of Z
 - Observable even when new particles are very massive (possibly above LHC energy scale)
 - Produced in s-channel but off-shell
 - Present only in t-channel or loops

Kenneth Long

WZ aTGC ($\Delta \kappa^2 = 0.6$)

19.6 fb⁻¹ (8 TeV)

top and Z+iets

WZ

Thesis Physics Goals

- ✓ Observe WZ production at 13 TeV
- Precision measurement of WZ production cross section
- Differential measurements of WZ production
 - Focussing on distributions with NP potential
 - Z p_T and WZ (transverse) mass
 - WZ mass set by the scattering interaction in VBS
 - for anomalous TGC (aTGC) or QGC (aQGC) NP contribution
 - Jet kinematics (experimental observations of final state partons)
 - Understand two jet events in vector boson scattering
 - Observe EWK vector boson scattering including QGC and Higgs scattering
- Searches for new physics
 - Resonant searches
 - Some 700 GeV diphoton resonance models predict WZ signals
 - Non resonant contributions causing anomalous TGCs and QGCs

Outline

1. Physics Overview

2. WZ Production at the LHC

- 3. Predictions for Precision Measurements
- 4. The Large Hadron Collider
- 5. The Compact Muon Solenoid
- 6. Physics Objects and Event Reconstruction
- 7. Analysis Overview
- 8. Results
- 9. Moving Forward

Observing WZ→3ℓv at CMS

 ν_e

 W^+

Z

 $\cdot u$

U

- W and Z bosons too short-lived for direct observation
 - Properties inferred by from decay products
 - Decays to electrons (e) and muons (μ) are ideal
 - Very accurately reconstructed by CMS
 - Final state of 3 e, μ is a unique signature
 - Z boson
 - Identify 2 opposite sign, same flavor (e or μ), high momentum, isolated leptons
 - Invariant mass consistent with Z
 - W boson
 - Additional electron or muon separated from those associated with Z
 - Missing transverse energy

Electron 0, pt = 82.33

Muon 1, pt = 38.66 eta = 0.126

phi = -2.738

eta = -1.786 phi = 1.290

MET 0

Muon 0.

pt = 82.25 eta = -1.027

phi = -1 597

Major Backgrounds to $WZ \rightarrow 3\ell v$

Misidentified as

lepton from W

Passes Z

Misidentified as

11

lepton from W

requirement

Other Backgrounds to $WZ \rightarrow 3\ell v$

- VVV, ttV, tV, (V = W, Z) production (~10% of background contribution)
 - Small rate of production
 - Can precisely mimic $WZ \rightarrow 3\ell v$
- tt production
 - (~15% of background contribution)
 - Large rate of production
 - True leptons and missing energy from W decays (from top decay)
 - Extra leptons from misidentification
 - No resonant decay of a Z

- Extracting predictions for LHC collisions is not trivial!
- For weakly interacting fields, observables from a scattering process can be studied from a perturbative expansion
 - Coupling constants of fundamental forces express strengths of interactions
 - Perturbative expansion in "orders" as a function of coupling constant (as, aQED)

- Cross sections and distributions for $WZ \rightarrow 3\ell v$ known at NLO in QCD
 - Change in cross section from LO to NLO ~100%
 - Significant affect on distributions
- NNLO QCD corrections calculated for ZZ and WW
 - For ZZ, σ_{NLO} to σ_{NNLO} is ~15%, uncertainty ~3%
 - Improves agreement with experiment
 - Work in progress for WZ
- NLO EWK Corrections (Assume EWK/QCD factorize)
 - Affect on total cross section *negative* and ~5%
- NLO with parton shower (NLO+PS)
 - Generate extra partons and jet structure using soft radiation approximation (Crucial for accurate simulation of distributions)
- My work: Determine 13 TeV cross sections for CMS diboson Monte Carlo
 - Liaison with theory community for NNLO diboson cross sections
 - Run and validate NLO and NLO+PS programs for WZ (all decays) and ZZ processes

Kenneth Long

theory/data

NNLO/NLO

Outline

1. Physics Overview

- 2. WZ Production at the LHC
- 3. Predictions for Precision Measurements

4. The Large Hadron Collider

- 5. The Compact Muon Solenoid
- 6. Physics Objects and Event Reconstruction
- 7. Analysis Overview
- 8. Results
- 9. Moving Forward

The LHC: Overview

- 27 kilometer circumference collider at CERN outside of Geneva, Switzerland
 - Used for proton-proton and heavy-ion collisions
 - Currently colliding protons at a center of mass energy of 13 TeV
- Supports 4 large experiments
 - Alice
 - Heavy Ion Physics
 - LHCb
 - Forward Hadronic and b-quark physics
 - Atlas and CMS
 - Exploration of the Standard Model
 - Characterization of the Higgs Boson
 - Searches for new physics

Luminosity and Beam Parameters

- Beams brought to collision at four detector sites
- Luminosity quantifies delivered beam
 - Derive number of events for a given process by integrating over time

$$N = \sigma \int L dt$$

- L = instantaneous luminosity
- σ = cross section of process

σ_{tot}(WZ→3ℓv) ~300 fb 13 TeV σ_{VBS}(WZ→3ℓv) ~3 fb

	Design	2011	2012	2015	2016-2018 (projected)
Beam Energy (TeV)	7.0	3.5	4.0	6.5	6.5
Bunches/beam	2808	1380	1380	2808	2808
Bunch spacing (ns)	25	75/50	50	50/25	25
Peak luminosity (cm-2s-1)	1 × 10 ³⁴	3.5 × 10 ³³	7.6 × 10 ³³	~4 × 10 ³³	1 × 10 ³⁴
Integrated luminosity (fb-1)	_	8	21	3.8	100
Kenneth Long					

Outline

1. Physics Overview

- 2. WZ Production at the LHC
- 3. Predictions for Precision Measurements
- 4. The Large Hadron Collider

5. The Compact Muon Solenoid

- 6. Physics Objects and Event Reconstruction
- 7. Analysis Overview
- 8. Results
- 9. Moving Forward

Solenoid

- CMS detector designed around a 3.8 T superconducting solenoid magnet
 - 12.5 m length
 - 6.3 m diameter
 - Cooled to to 4.7 K
 - 2.0 T field in iron return yoke
- Allows precise measurement of transverse momentum (p_T) for charged particles

Silicon Tracker

- Interactions of charged particles with silicon detectors used to reconstruct particle tracks
 - Magnetic field allows precise pt measurement
 - Coverage: |ŋ| < 2.4
 - Over 200 m² of silicon
 - Resolution (in barrel):

$$\frac{\delta p_T}{p_T} = \left(15 \frac{p_T}{TeV} \oplus 0.5\right)\%$$

Silicon pixel detector

- 66M channels, fine grain resolution
- 100 µm x 150 µm pixels
- Important for identifying track vertex
- Silicon strip detector
 - 9.6M channels
 - 80 µm -180 µm x
 4.3 cm -10 cm strips

Electromagnetic Calorimeter

- Measures energy of electromagnetic particles
 - Crucial for electron and photon energy measurement and ID
 - High granularity provides position measurement
 - Coverage: |η| < 3.0
 - Resolution (in barrel):

$$\frac{\sigma}{E} = \frac{2.8\%}{\sqrt{E}} \oplus \frac{0.128}{E} \oplus 0.3\%$$

- Lead tungstate (PbWO4) crystal scintillators read out by photodetectors
 - Dimensions: 2.2 cm x 2.2 cm x 23 cm
 - 61,200 crystals in barrel
 - 7,324 crystals in each endcap

Properties of PbWO₄

Density	8.3 g/cm ²
X ₀	0.89 cm
Molière radius	2.19 cm
Peak Emission	430 nm
Light yield	~50 y / MeV

Hadronic Calorimeter

- Measures energy of charged and uncharged hadrons
 - Crucial for charged and neutral hadron energy measurement and ID
 - Hermeticity (up to |η| < 5.0) crucial for calculation of missing energy

Sampling calorimeter

 alternating layers of "absorber" (brass) and fluorescent "scintillator" materials

HCAL Barrel (HB)

- |η| < 1.3

HCAL Endcap (HE)

- $1.3 < |\eta| < 3.0$
- HCAL Forward (HF)
 - $-3.0 < |\eta| < 5.2$
 - Cherenkov detector
 - Steel absorber

Resolution

- HB/HE:
$$\left(\frac{\sigma}{E}\right)^2 = \left(\frac{115\%}{\sqrt{E}}\right)^2 + (5.5\%)^2$$

- HF:
$$\left(\frac{\sigma}{E}\right)^2 = \left(\frac{280\%}{\sqrt{E}}\right)^2 + \left(11\%\right)^2$$

Muon System

My Work on the CSC System

- Each detector system at CMS is carefully monitored.
 - Problematic system can make data unusable
 - As CSC certification expert, I approve/flag CSC performance
 - Data Acquisition (DAQ) information used to monitor many aspects of CSC performance
 - Timing, reconstructed x-y positions (recHits), gas gain, timing...
 - LHC upgrade performance and longevity studies
 - Luminosity upgrade to LHC will increase particles per event and luminosity by ~7 times
 - Study affects on CSC performance and aging at Gamma Irradiation Facility (GIF++) at CERN
 - 14 TBq 137Cs source (662 keV gammas)
 - 100 GeV muon beam
 - Secondary particle flux approximates HL-LHC environment
 - System commissioned and filters calibrated to simulate range of HL-LHC radiation conditions

<image>

Trigger System

- collision event
 - Cannot store every event!
- Trigger system makes first decision on interesting vs. uninteresting events
- Level-1 Trigger
 - Custom hardware
 - Constructs simple physics objects with information from muon detectors and calorimeters
 - Reduces data rate to 100 kHz
- High Level Trigger (HLT)
 - Compute farm of ~16,000 commercial CPU cores
 - Subset of same software used offline run in an optimized way
 - Reduces data rate to ~1kHz
 - Datasets dived by HLT "paths"

- 2. WZ Production at the LHC
- 3. Predictions for Precision Measurements

Outline

- 4. The Large Hadron Collider
- 5. The Compact Muon Solenoid
- 6. Physics Objects and Event Reconstruction
- 7. Analysis Overview
- 8. Results
- 9. Moving Forward

Particle Flow Reconstruction

- Provide unique identification and accurate kinematic measurements
 - Combine contributions of different detector systems
- Start with systems essential for basic reconstructed
 - 1. Muons: Matched tracks in muon system and silicon tracker
 - 2. Electrons: Match tracks to ECAL energy deposits
 - 3. Charged Hadrons: Match tracks to ECAL and HCAL energy deposits
 - 4. Photons: Unmatched ECAL deposits
 - Neutral Hadrons: Unmatched ECAL and HCAL deposits
- Refine with additional information: Isolation, ratio HCAL/ECAL energy, etc.

Electrons and Muons

- Electrons and Muons
 - Low χ^2 for track fit quality
 - matched to primary vertex
 - p_T > 10 GeV
 - $|\eta(e)| < 2.5, |\eta(\mu)| < 2.4$
- Muons for WZ cross section measurement
 - Global matched track in muon system to tracker
 - Few missing hits in muon system and tracker
- Electrons for WZ cross section measurement
 - Energy in ECAL summed using "superclusters" in φ to capture photons radiated by electron
- "Medium working point" defined by CMS e /γ working group Selections include:
 - ≤ 1 layer with missing hits in pixel tracker barrel ≤ 2 in endcap ($\eta \geq 1.479$)
 - Reject $\gamma \rightarrow e^+e^-$
 - Ratio of energy in Hadronic calorimeter to electromagnetic energy (H/E) < 0.0876 in barrel (0.0678 in endcap)
 Reject hadrons

Kenneth Long

Tracker Strips

Pixels

Eт

Jets and Lepton Isolation

- Final state quarks and gluons hadronize into bound states
 - Observed as collimated hadrons and decay products called jets
- Clustering algorithms define grouping of objects to form jets
 - Cluster by "distance" until all objects
 - CMS uses anti-k_T distance parameter
 - Form well defined analysis objects
 - Allow consistent comparison with theory

$$d_{ij} = \min(\frac{1}{k_{ti}^2}, \frac{1}{k_{tj}^2}) \frac{\Delta_{ij}^2}{R^2}$$
$$\Delta_{ij}^2 = (\eta_i - \eta_j)^2 + (\phi_i - \phi_j)^2$$

- Hadronic decays often produce leptons as constituents of jets
 - Isolation used to separate from leptons produced in hard interaction Isolation in this analysis
 - μ: < 0.12
 - *e*: < 0.0766 in barrel
 < 0.0678 in endcap

$$\begin{split} I_{rel}^{\mu} &= \frac{\sum p_T^{charged} + max[\sum E_T^{neutral} + \sum E_T^{photon} - 0.5 \cdot \sum p_T^{charged, PU}, 0.0]}{p_T} \\ I_{rel}^e &= \frac{\sum p_T^{charged} + max[\sum E_T^{neutral} + \sum E_T^{photon} - \Delta \rho \cdot E.A., 0.0]}{p_T} \end{split}$$

Missing Transverse Energy

- Neutrinos will not interact CMS Experiment at LHC_CERN ata recorded: Thu Apr 19 09:14:14 2012 CEST CMS with the CMS detector Orbit/Crossing: 28960009 / 815 Total transverse energy _ of the event should sum to zero Infer the presence of neutrinos from an imbalance in transverse momentum known as Missing Transverse Energy (MET, or ∉_T)
- Particle Flow calculates MET after all particles have been constructed
 - Allows MET to be associated to a single primary vertex

Outline

1. Physics Overview

- 2. WZ Production at the LHC
- 3. Predictions for Precision Measurements
- 4. The Large Hadron Collider
- 5. The Compact Muon Solenoid
- 6. Physics Objects and Event Reconstruction

7. Analysis Overview

- 8. Results
- 9. Moving Forward

Previous Measurements and Limits

- WZ production first observed at the Tevatron in 2006 at 1.96 TeV with 1.1 fb⁻¹
 Cross section measured at 7 and 8 TeV by CMS
 - and ATLAS
 - Constraints on deviations from SM predications from LEP, Tevatron, CMS, and ATLAS

- All previous measurements consistent with SM predictions
 - None preclude new physics at 13 TeV

Overview of WZ→3ℓv Selections

- This analysis is performed on data collected by CMS from ~100 trillion collisions
 - ~1 billion of these were stored
 - ~100 million fall into the HLT datasets used for this analysis
 - 236 pass final WZ selections
- Apply selection in stages
 - Target specific
 backgrounds with each
 selection
 - Understand modeling of each background

WZ \rightarrow 3 ℓ v: Preselection

Study lepton efficiencies and misidentification	Dataset	Event Counts
rates after making only HLT requirements	WW	0.9
- Double μ	VVV	3.2
1 with $p_T > 8 \text{ GeV}$	Single Top	5.3
- Double e/γ	t ī V	13.6
- 1 candidate with $p_T > 17$ GeV,	tī	48.8
1 with $p_T > 12 \text{ GeV}$	ZZ	83.8
 Single e /γ + Single μ μ candidate with p_T > 17 GeV, e /γ candidate with p_T > 12 GeV e /γ candidate with p_T > 8 GeV, μ candidate with pT > 12 GeV 	Ζγ	306.1
	Drell-Yan	610.8
	WZ→3ℓv	256.22
	Sum MC	1328.7
Preselection: initial selection used to narrow	Data	1173
phase space to WZ-like region - At least one of the of HLT requirements		

- Has exactly 3 muons and electrons
- At least one pair of opposite sign, same flavor (OSSF) leptons

Require $M_{3\ell} > 100 \text{ GeV}$

WZ→3ℓv Selections: M_{3ℓ} Cut

	Before cut	After cut	Ratio
Data	1173	754	0.64
MC	1312	722	0.55
WZ→3ℓv	256	240	0.94
WZ / ∑MC	0.20	0.33	1.70

WZ→3ℓv Selections: Z Mass Window

- When ambiguous, choose pair which minimizes |m_{ll} M_z|
- Require $|m_{\ell\ell} M_Z| \in [60, 120]$ GeV
- At least one lepton associated with Z candidate has p_T > 20 GeV
- Reduce background without Z resonance
 - Study Drell-Yan modeling

	Before cut	After cut	Ratio
Data	754	670	0.89
∑MC	722	660	0.91
WZ→3ℓv	240	225	0.94
WZ / ∑MC	0.33	0.34	1.03

WZ→3ℓv Selections: W selection

- Separation between lepton associated with W and leptons associated with Z: $\Delta R(I_{1,2}, I_3) > 0.1$
- Missing E_T > 30 GeV
- p_T(ℓ₃) > 20 GeV
- Final analysis selection

	Before cut	After cut	Ratio
Data	670	236	0.35
MC	662	234	0.35
WZ→3ℓv	225	152	0.68
WZ / ∑MC	0.34	0.65	1.91

Outline

1. Physics Overview

- 2. Diboson Production at the LHC
- 3. The Large Hadron Collider
- 4. The Compact Muon Solenoid
- 5. Event Simulation for Precision Measurements
- 6. Physics Objects and Event Reconstruction
- 7. Analysis Strategy
- 8.Results
- 9. Moving Forward

WZ Cross Section Measurement

Dataset	Events	Estima	Estimated from		
WW	0.1	data fo	data for CMS resu		t
VVV	2.2	Single	Single top		
t ī ∨	8.4	tī		13.5	
ZZ	15.6	Drell-Y	an	31.0	
Ζγ	13.3	Expect	152 V	VZ event	ts
<u>236 Data events - \sum MC Bkgd = 151 events</u>					<u>ts</u>
Presented CMS Result					
Total Background		85.0		101.6	
Signal Strength		0.99		0.86	
- · · - ·					

CMS released the first 13 TeV WZ cross section measurement in December 2015

- Agrees with SM NLO prediction
- My work (also for ZZ measurement)
 - Validation of MC signal modeling
 - Use theory tools to produce and understand theoretical predictions Kenneth Long

Outline

1. Physics Overview

- 2. Diboson Production at the LHC
- 3. The Large Hadron Collider
- 4. The Compact Muon Solenoid
- 5. Event Simulation for Precision Measurements
- 6. Physics Objects and Event Reconstruction
- 7. Analysis Strategy
- 8. Results
- 9. Moving Forward

Precision Cross Section Measurement

Goal: reduce uncertainty to level of theory prediction (expect 3-5% at NNLO)
 Currently 25% for 13 TeV

 $\sigma(\text{pp} \rightarrow \text{WZ}) = 36.8 \pm 4.6 \,(\text{stat})^{+8.1}_{-6.2} \,(\text{syst}) \pm 0.6 \,(\text{theo.}) \pm 1.7 \,(\text{lum.}) \,\text{pb}$

 $\begin{array}{lll} \sigma({\rm pp} \to {\rm WZ}; \ \sqrt{s} = 7 \ {\rm TeV}) &=& 20.76 \pm 1.32 \ ({\rm stat.}) \pm 1.13 \ ({\rm syst.}) \pm 0.46 \ ({\rm lumi.}) \ {\rm pb.} \\ \sigma({\rm pp} \to {\rm WZ}; \ \sqrt{s} = 8 \ {\rm TeV}) &=& 23.89 \pm 0.81 \ ({\rm stat.}) \pm 1.34 \ ({\rm syst.}) \pm 0.62 \ ({\rm lumi.}) \ {\rm pb.} \end{array}$

- What are the sources of uncertainty?
 - Statistical: ~100 times current dataset by end of 2018 will reduce to < 1%
 - Systematic: dominated by 40% error on background estimation (11% of events)
 - Much more background than at 7 and 8 TeV
 - Target: 5-6%
 - Within reach if we achieve systematic and luminosity error from Run I
- How can we reduce the uncertainty?
 - Reduce background estimation error (difficult!)
 - Reduce background with improved selections Kenneth Long

19.6 fb⁻¹ (8 TeV)

Thesis Goals: aQGC Measurement

- Differential measurements of WZ production for anomalous couplings
 - Z pT (for aTGC NP contribution)
 - WZ (transverse) mass
 - for New Physics via anomalous couplings

- No visible excess in high p_T(Z) or high M_T(WZ) region
- Expect sensitivity at ~20 fb⁻¹

$$M_T = \sqrt{(E_T^Z + E_T^W)^2 - (p_x^Z + p_x^W)^2 - (p_y^Z + p_y^W)^2}$$

Thesis Goals: EWK Scattering

- Differential measurements of WZ production to observe EWK vector boson scattering
 - Jet kinematics
 - VBS contribution in 2-jet events
 - Additional selections
 - Exactly two high p_T jets (j)
 - p_T(j) > 50 GeV
 - $|\eta(j)| < 4.7$
 - $\Delta \eta_{jj} > 4.0$
 - $m_{jj} > 600 \text{ GeV}$
- Initial studies made in CMS result FTR-13-006
 - Indicate that EWK contribution of WZ production can be observed with Run II luminosity (100 fb⁻¹)
 - Observation (3 σ confidence) with 75 fb⁻¹
 - Discovery (5 σ confidence) with 185 fb⁻¹
 - This study did not investigate optimization of the analysis
 - We can do better!

Conclusions

- Presented WZ \rightarrow 3 ℓ v analysis with focus on WZ cross section
- Contributed to the first measurement of WZ cross section at 13 TeV
 - Presented CMS results
 - Discussed differences
- Expect 100 fb⁻¹ (vs. 1.34 fb⁻¹ in this work) by end of 2018
 - Dataset sufficient for precision measurements
- Scope of analysis will be extended
 - Precision cross section measurement
 - Observation of electroweak boson scattering (100 fb⁻¹ sufficient)
 - Search for new physics in differential deviations from standard model predictions
- Foundation for this work is in place
 - Understanding theoretical predictions through state of the art calculations and simulations
 - Analysis framework and tools established and understood

Backup

Kenneth Long

48

$$\sigma(pp \to WZ + X) \cdot \mathcal{B}(W \to \ell\nu) \cdot \mathcal{B}(Z \to \ell'\ell') = \frac{N_{\text{obs}} - N_{\text{background}}}{A \cdot \epsilon \cdot \mathcal{L}}$$

- \mathscr{L} = Luminosity
- $A = \text{Acceptance} = \sigma_{\text{fiducial(th.)}}/\sigma_{\text{tot(th.)}}$
 - What percentage of true WZ events fall outside the detector geometry or kinematic cuts? (e.g. μ decaying from Z with η < 2.4 or p_T < 20 GeV)
 - Depends only on theoretical prediction
- E = Efficiency
 - Percentage of true WZ events within acceptance not reconstructed

Equivalently $\sigma(pp \to WZ + X) \cdot \mathcal{B}(W \to \ell \nu) \cdot \mathcal{B}(Z \to \ell' \ell') = \frac{\mu \sigma_{\text{predicted}}}{A}$ Where μ is the Signal Strength: $\mu = \frac{N_{\text{obs}} - N_{\text{background}}}{N_{\text{expect}(WZ)}}$

- Fiducial cross section ($\sigma_{\rm fid}$)
 - Defined to minimize theoretical extrapolation
 - $\eta(\ell_1, \ell_2, \ell_3) < 2.5$
 - $p_T(\ell_1, \ell_3) > 20 \text{ GeV}, p_T(\ell_2) > 10 \text{ GeV}$
 - $|m_{\ell\ell} M_Z| \in [60, 120]$

Cut Flow: Z after preselection

WZ→3ℓv Selections: Z before M_{3I}

- Form Z candidate formed from OSSF lepton pair
 - When ambiguous, choose pair which minimizes |m_{ll} - M_z|
 - Require $|m_{\ell\ell} M_Z| \in [60, 120]$ GeV
- At least one lepton associated with Z candidate has p_T > 20 GeV
- Study modeling of Drell-Yan and Zγ background (largest contributions)

	Before cut	After cut	Ratio
Data	1173	843	0.72
∑MC	1329	1003	0.75
WZ→3ℓv	256	229	0.89
WZ / ∑MC	0.19	0.23	1.19
			51

WZ→3ℓv Selections: M_{3ℓ} After Z

- Require $M_{3\ell} > 100 \text{ GeV}$
 - Backgrounds with Z boson + fake third lepton have M_{3ℓ} ≈ M_Z
 - e.g. Z→ℓℓ' with radiated photon which fakes and electron
 - M_{3l} approaches M_{WZ} for true WZ events

	Before cut	After cut	Ratio
Data	843	670	0.79
MC	1003	662	0.66
WZ→3ℓv	229	225	0.98
WZ / ∑MC	0.23	0.34	1.49

Simulations for Precision Measurements

- Experimental measurements rely on precise theoretical predictions
 - Combine perturbative QFT with phenomenological models
 - Complex integrals calculated with Monte Carlo techniques
- Factorize calculations
 - Hard Processes
 - Matrix element calculations in perturbative QCD and QED
 - Increasingly complex at higher orders in coupling constants
 - Higher QCD orders contribute strongly
 - Soft processes
 - Parton shower model
 - Consider only soft/collinear contributions of higher order QCD and QED
 - Non-perturbative processes
 - Parton Distribution Functions
 - Hadronization
 - Decays

Monte Carlo Generators at CMS

- Event simulations at Next-to-leading order (NLO) in QCD are now the standard
- Two techniques for NLO event generation exist
 - POWHEG
 - Implemented in the POWHEG Box, a toolkit for NLO event generation
 - MC@NLO
 - Fully automated in MadGraph5_aMC@NLO
- Calculations inclusive and exclusive in QCD
 - Inclusive
 - Observables independent of the number of final state partons accurate at NLO
 - NLO calculation of pp $\rightarrow 3\ell v$

- Exclusive
 - Observables dependent on the number of final state partons accurate at NLO
 - Merge calculations of pp $\rightarrow 3\ell v$ and pp $\rightarrow 3\ell v + q$ (q is a light quark or gluon)

