

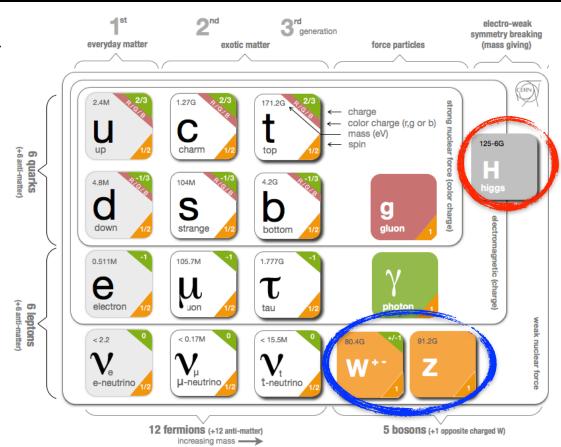
January 21, 2015

Precision Measurements and the Search for New Physics in WZ→3ℓv Events with the CMS Detector

Kenneth Long
University of Wisconsin - Madison

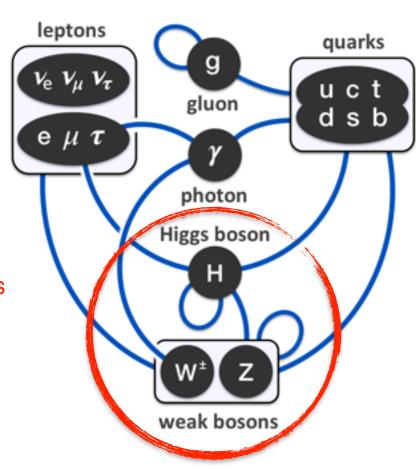
- 1. Physics Overview
- 2. WZ Production at the LHC
- 3. Predictions for Precision Measurements
- 4. The Large Hadron Collider
- 5. The Compact Muon Solenoid
- 6. Physics Objects and Event Reconstruction
- 7. Analysis Overview
- 8. Results
- 9. Moving Forward

1. Physics Overview


- 2. WZ Production at the LHC
- 3. Predictions for Precision Measurements
- 4. The Large Hadron Collider
- 5. The Compact Muon Solenoid
- 6. Physics Objects and Event Reconstruction
- 7. Analysis Overview
- 8. Results
- 9. Moving Forward

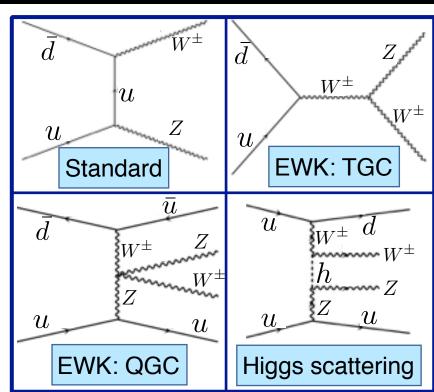
The Standard Model

- Concise, elegant theory of the fundamental particles and their interactions
- Particles and interactions described by the standard model Lagrangian in the language of Quantum Field Theory
 - Matter composed of spin
 1/2 fermions
 - Interactions mediated by spin 1 vector bosons
 - Mass arises from interactions with scalar Higgs field


- Spectacularly precise and successful theory
- Does not include gravity, dark matter, or dark energy

Interactions in the Standard Model

- Interactions of quarks and leptons are mediated by vector bosons
 - Act as force carriers
- Electromagnetic Force
 - Mediated by photons
 - Long range
 - Responsible for familiar electromagnetic processes
- Weak Force
 - Mediated by massive W and Z bosons
 - Short range
 - Responsible for some nuclear decays
- Strong Force
 - Mediated by gluons
 - Short range
 - Forms bound states of quarks
- Interactions with the Higgs
 - Leads to particles acquiring mass

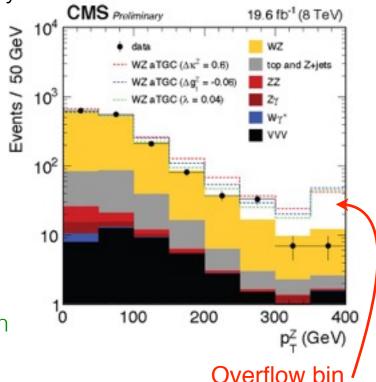


Motivation for Diboson Studies

- Standard Model (SM) predicts direct interactions of electroweak bosons
 - Couplings predicted precisely
 - Deviations from SM predictions sign of New Physics (NP)
- Production of pairs of electroweak vector bosons (dibosons) at the Large Hadron Collider (LHC)
 - Standard production: Bosons radiated from the quarks
 - Electroweak (EWK) production
 - Triple gauge couplings (TGC)
 - Quartic gauge coupling (QGC) in vector boson scattering (VBS)
 - Higgs scattering (in VBS)
 - QGC and Higgs scattering of massive vector bosons not yet observed

$\sigma(pp \rightarrow WZ \rightarrow 3\ell v)$ at 13 TeV (in fb)

Fiducial Selection	$\sigma_{ ext{Std+TGC}}$	$\sigma_{ extsf{VBS}}$
Inclusive WZ	280	3.5
VBS (with 2 jets)	0.96	0.67


Kenneth Long

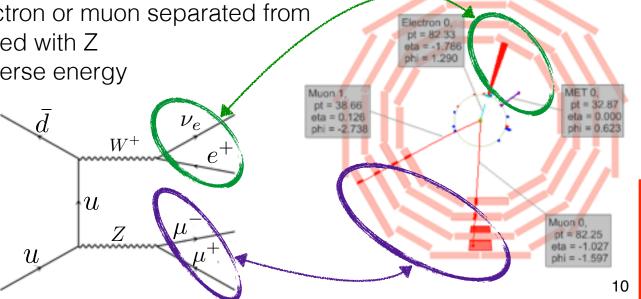
New Physics in Diboson Production

- Can probe fundamental aspects of (new) physics
 - New scalar particles
 Example: Additional Higgs bosons in extended Higgs sectors (SUSY)
 - New gauge bosons
 Example: Unification models predict extended gauge sectors with additional gauge bosons
 - Direct production of new particles with resonant decay to dibosons
- Indirect indications of new physics
 - Observable as deviations from SM prediction
 - Total cross section
 - Differential cross sections
 - Example: transverse momentum (p_T) of Z
 - Observable even when new particles are very massive (possibly above LHC energy scale)
 - Produced in s-channel but off-shell
 - Present only in t-channel or loops

Thesis Physics Goals

- √ Observe WZ production at 13 TeV
- Precision measurement of WZ production cross section
- Differential measurements of WZ production
 - Focussing on distributions with NP potential
 - Z p_T and WZ (transverse) mass
 - WZ mass set by the scattering interaction in VBS
 - for anomalous TGC (aTGC) or QGC (aQGC) NP contribution
 - Jet kinematics (experimental observations of final state partons)
 - Understand two jet events in vector boson scattering
 - Observe EWK vector boson scattering including QGC and Higgs scattering
- Searches for new physics
 - Resonant searches
 - Some 700 GeV diphoton resonance models predict WZ signals
 - Non resonant contributions causing anomalous TGCs and QGCs

- 1. Physics Overview
- 2. WZ Production at the LHC
- 3. Predictions for Precision Measurements
- 4. The Large Hadron Collider
- 5. The Compact Muon Solenoid
- 6. Physics Objects and Event Reconstruction
- 7. Analysis Overview
- 8. Results
- 9. Moving Forward


Observing WZ→3ℓv at CMS

- W and Z bosons too short-lived for direct observation
 - Properties inferred by from decay products
 - Decays to electrons (e) and muons (µ) are ideal
 - Very accurately reconstructed by CMS
 - Final state of 3 e, μ is a unique signature
 - Z boson
 - Identify 2 opposite sign, same flavor (e or μ), high momentum, isolated leptons
 - Invariant mass consistent with Z
 - W boson

 Additional electron or muon separated from those associated with Z

Missing transverse energy

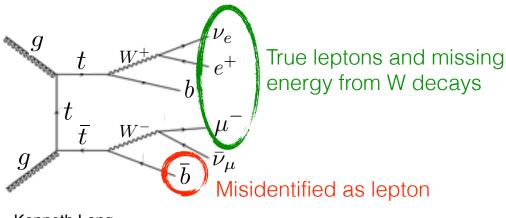
Kenneth Long

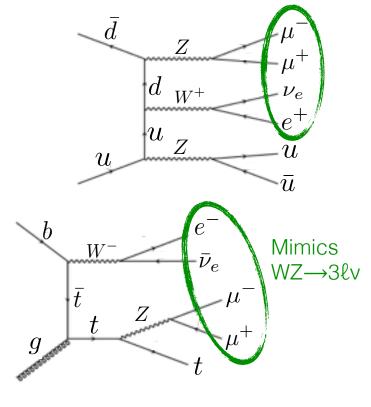
Major Backgrounds to WZ→3ℓv

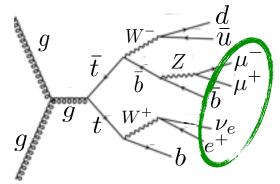
- ➤ Other processes can mimic WZ→3ℓv
 - With or without misidentification of final state particles
 - Contribution can be minimized, but cannot be completely removed
 - Critical to understand these "background" contributions
- Z (Drell-Yan) and Zγ production
 (55% of total background contribution)
 - Produced at very high rate
 - Passes Z candidate requirement
 - Third lepton and missing energy from misidentification
 - Misidentified leptons are not isolated from other detector objects
- ► ZZ→4ℓ production (~20% total background)
 - Passes Z candidate requirement
 - Overlaps WZ→3ℓv signal when one lepton escapes detection

Misidentified as lepton from W \bar{u} uPasses Z requirement \bar{u} uMisidentified as lepton from W d

Escapes detector acceptance


Other Backgrounds to WZ→3ℓv



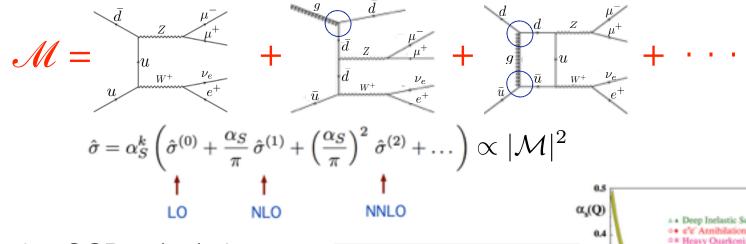

- VVV, ttV, tV, (V = W, Z) production (~10% of background contribution)
 - Small rate of production
 - Can precisely mimic WZ→3ℓv
- ▶ tt̄ production

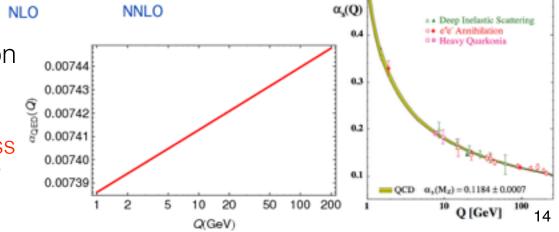
(~15% of background contribution)

- Large rate of production
- True leptons and missing energy from W decays (from top decay)
- Extra leptons from misidentification
- No resonant decay of a Z

- 1. Physics Overview
- 2. WZ Production at the LHC

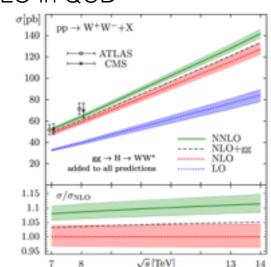
3. Predictions for Precision Measurements

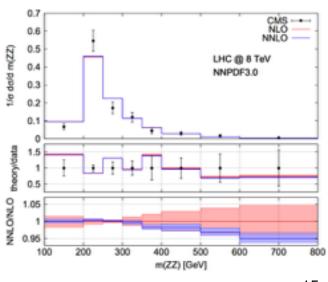

- 4. The Large Hadron Collider
- 5. The Compact Muon Solenoid
- 6. Physics Objects and Event Reconstruction
- 7. Analysis Overview
- 8. Results
- 9. Moving Forward


Predictions from the Standard Model

- Extracting predictions for LHC collisions is not trivial!
- For weakly interacting fields, observables from a scattering process can be studied from a perturbative expansion
 - Coupling constants of fundamental forces express strengths of interactions
 - Perturbative expansion in "orders" as a function of coupling constant (α_s , α_{QED})

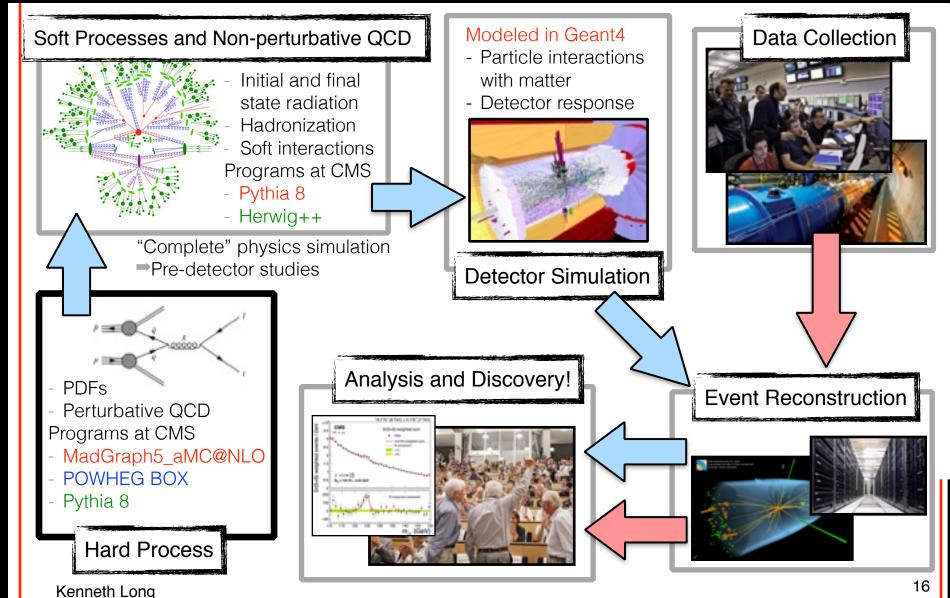
- Perturbative QCD calculation possible at LHC energies
 - Calculation in NLO minimum for accurate cross section prediction. NNLO?


Kenneth Long



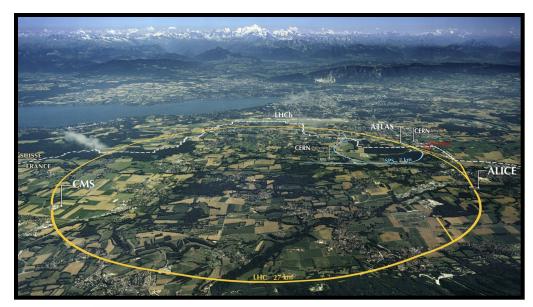
Predictions for WZ \rightarrow 3 ℓv at the LHC

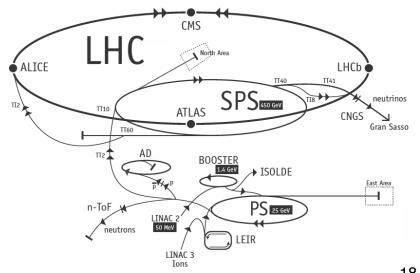
- ▶ Cross sections and distributions for WZ→3ℓv known at NLO in QCD
 - Change in cross section from LO to NLO ~100%
 - Significant affect on distributions
- NNLO QCD corrections calculated for ZZ and WW
 - For ZZ, σ_{NLO} to σ_{NNLO} is ~15%, uncertainty ~3%
 - Improves agreement with experiment
 - Work in progress for WZ
- NLO EWK Corrections (Assume EWK/QCD factorize)
 - Affect on total cross section *negative* and ~5%
- NLO with parton shower (NLO+PS)
 - Generate extra partons and jet structure using soft radiation approximation (Crucial for accurate simulation of distributions)
- My work: Determine 13 TeV cross sections for CMS diboson Monte Carlo
 - Liaison with theory community for NNLO diboson cross sections
 - Run and validate NLO and NLO+PS programs for WZ (all decays) and ZZ processes



arXiv:1408.5243 and1507.06257

Simulating Events at the LHC


- 1. Physics Overview
- 2. WZ Production at the LHC
- 3. Predictions for Precision Measurements
- 4. The Large Hadron Collider
- 5. The Compact Muon Solenoid
- 6. Physics Objects and Event Reconstruction
- 7. Analysis Overview
- 8. Results
- 9. Moving Forward



The LHC: Overview

- 27 kilometer circumference collider at CERN outside of Geneva, Switzerland
 - Used for proton-proton and heavy-ion collisions
 - Currently colliding protons at a center of mass energy of 13 TeV
- Supports 4 large experiments
 - Alice
 - Heavy Ion Physics
 - LHCb
 - Forward Hadronic and b-quark physics
 - Atlas and CMS
 - Exploration of the Standard Model
 - Characterization of the Higgs Boson
 - Searches for new physics

Luminosity and Beam Parameters

- Beams brought to collision at four detector sites
- Luminosity quantifies delivered beam
 - Derive number of events for a given process by integrating over time

$$N = \sigma \int L \ dt$$

- L = instantaneous luminosity
- σ = cross section of process

 $\sigma_{tot}(WZ \rightarrow 3\ell v) \sim 300 \text{ fb} 13 \text{ TeV}$ $\sigma_{VBS}(WZ \rightarrow 3\ell v) \sim 3 \text{ fb}$

- 1	MS/	LHC Deliv	ered: 4.22 fb		
.0	- 20	CMS Reco	rded: 3.81 fb	1	
.5					
0.0	Offline Lur	ninosity			- 1
:.5					
.0					
.5				/	
.0					
.5					

	Design	2011	2012	2015	2016-2018 (projected)
Beam Energy (TeV)	7.0	3.5	4.0	6.5	6.5
Bunches/beam	2808	1380	1380	2808	2808
Bunch spacing (ns)	25	75/50	50	50/25	25
Peak luminosity (cm ⁻² s ⁻¹)	1×10^{34}	3.5×10^{33}	7.6×10^{33}	~4 × 10 ³³	1×10^{34}
Integrated luminosity (fb-1)	_	8	21	3.8	100

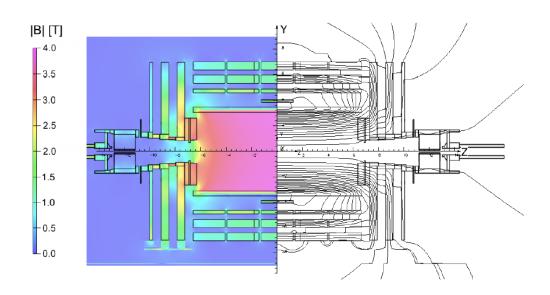
Kenneth Long

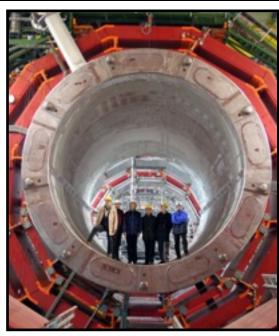
- 1. Physics Overview
- 2. WZ Production at the LHC
- 3. Predictions for Precision Measurements
- 4. The Large Hadron Collider

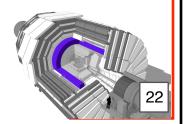
5. The Compact Muon Solenoid

- 6. Physics Objects and Event Reconstruction
- 7. Analysis Overview
- 8. Results
- 9. Moving Forward

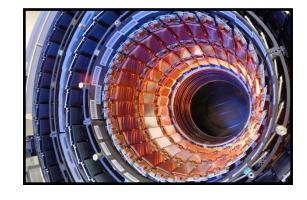
The Compact Muon Solenoid

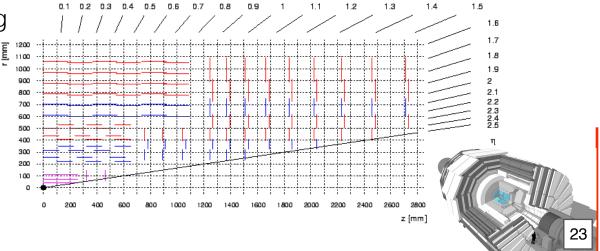





Solenoid

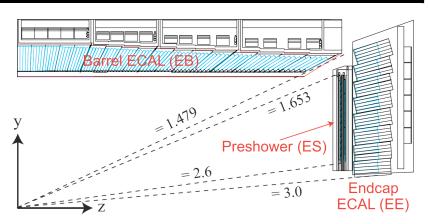
- CMS detector designed around a 3.8 T superconducting solenoid magnet
 - 12.5 m length
 - 6.3 m diameter
 - Cooled to to 4.7 K
 - 2.0 T field in iron return yoke
- ▶ Allows precise measurement of transverse momentum (p_T) for charged particles


Silicon Tracker

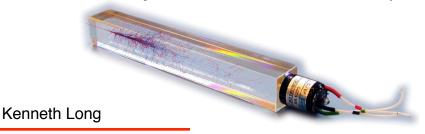

- Interactions of charged particles with silicon detectors used to reconstruct particle tracks
 - Magnetic field allows precise p_T measurement
 - Coverage: $|\eta| < 2.4$
 - Over 200 m² of silicon
 - Resolution (in barrel):

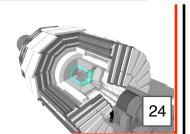
$$\frac{\delta p_T}{p_T} = \left(15 \frac{p_T}{TeV} \oplus 0.5\right) \%$$

- Silicon pixel detector
 - 66M channels, fine grain resolution
 - 100 μm x 150 μm pixels
 - Important for identifying track vertex
- Silicon strip detector
 - 9.6M channels
 - 80 μm -180 μm x
 4.3 cm -10 cm strips


Electromagnetic Calorimeter

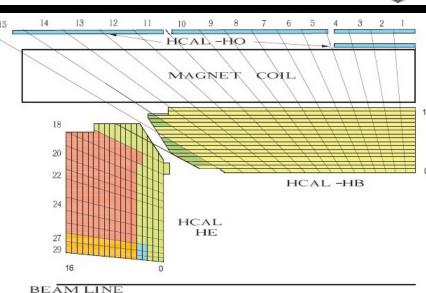
- Measures energy of electromagnetic particles
 - Crucial for electron and photon energy measurement and ID
 - High granularity provides position measurement
 - Coverage: $|\eta| < 3.0$
 - Resolution (in barrel):


$$\frac{\sigma}{E} = \frac{2.8\%}{\sqrt{E}} \oplus \frac{0.128}{E} \oplus 0.3\%$$


- Lead tungstate (PbWO₄) crystal scintillators read out by photodetectors
 - Dimensions: 2.2 cm x 2.2 cm x 23 cm
 - 61,200 crystals in barrel
 - 7,324 crystals in each endcap

Properties of PbWO₄

Density	8.3 g/cm ²
X_0	0.89 cm
Molière radius	2.19 cm
Peak Emission	430 nm
Light yield	~50 y / MeV


Hadronic Calorimeter

- Measures energy of charged and uncharged hadrons
 - Crucial for charged and neutral hadron energy measurement and ID
 - Hermeticity (up to $|\eta| < 5.0$) crucial for calculation of missing energy
- Sampling calorimeter
 - alternating layers of "absorber" (brass)
 and fluorescent "scintillator" materials

- $|\eta| < 1.3$
- HCAL Endcap (HE)
 - $-1.3 < |\eta| < 3.0$
- HCAL Forward (HF)
 - $-3.0 < |\eta| < 5.2$
 - Cherenkov detector
 - Steel absorber

Resolution

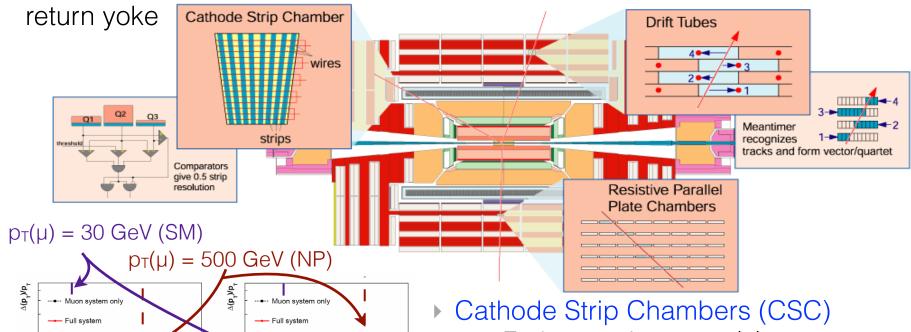
- HB/HE:
$$\left(\frac{\sigma}{E}\right)^2 = \left(\frac{115\%}{\sqrt{E}}\right)^2 + (5.5\%)^2$$

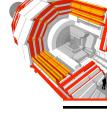
- HF:
$$\left(\frac{\sigma}{E}\right)^2 = \left(\frac{280\%}{\sqrt{E}}\right)^2 + \left(11\%\right)^2$$

0 < n < 0.8

Kenneth Long

p_{_} [GeV/c]

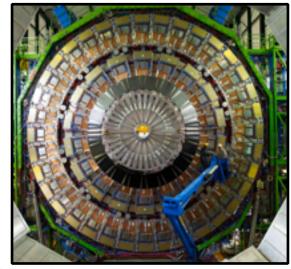

Muon System

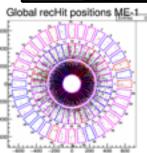

Combination of several detector technologies embedded within iron

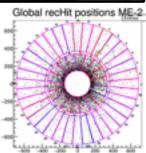
 $1.2 < \eta < 2.4$

p_r [GeV/c]

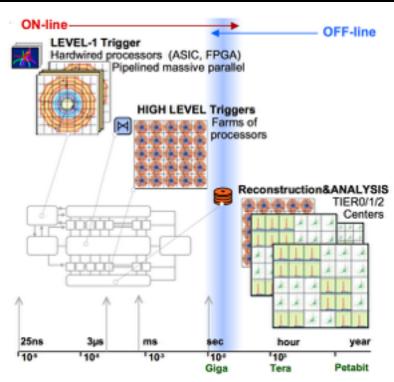
- Endcap region, $0.9 < |\eta| < 2.4$
- $40 150 \, \mu m$, ~2 ns
- Resistive Plate Chambers (RPC)
 - Barrel and endcap region, $|\eta| < 1.6$
 - ~2 ns
- Drift tubes (DT)
 - Barrel region, $|\eta| < 1.2$
 - 80 120 μm, ~3 ns






My Work on the CSC System

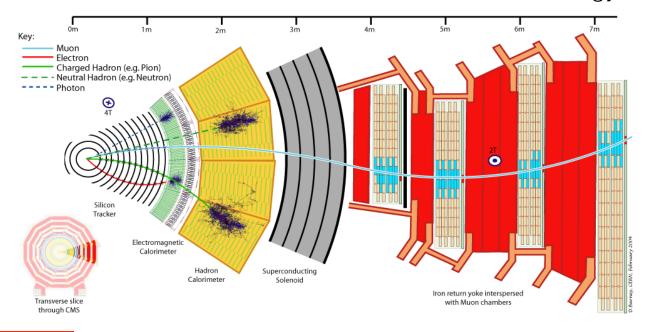
- Each detector system at CMS is carefully monitored.
 - Problematic system can make data unusable
 - As CSC certification expert, I approve/flag CSC performance
 - Data Acquisition (DAQ) information used to monitor many aspects of CSC performance
 - Timing, reconstructed x-y positions (recHits), gas gain, timing...
- LHC upgrade performance and longevity studies
 - Luminosity upgrade to LHC will increase particles per event and luminosity by ~7 times
 - Study affects on CSC performance and aging at Gamma Irradiation Facility (GIF++) at CERN
 - 14 TBq 137Cs source (662 keV gammas)
 - 100 GeV muon beam
 - Secondary particle flux approximates
 HL-LHC environment
 - System commissioned and filters calibrated to simulate range of HL-LHC radiation conditions



Trigger System

- LHC delivers collisions proton bunches at 40 MHz
 - ~1 Mb of storage required for each collision event
 - Cannot store every event!
 - Trigger system makes first decision on interesting vs. uninteresting events
- Level-1 Trigger
 - Custom hardware
 - Constructs simple physics objects with information from muon detectors and calorimeters
 - Reduces data rate to 100 kHz
- ▶ High Level Trigger (HLT)
 - Compute farm of ~16,000 commercial CPU cores
 - Subset of same software used offline run in an optimized way
 - Reduces data rate to ~1kHz
 - Datasets dived by HLT "paths"

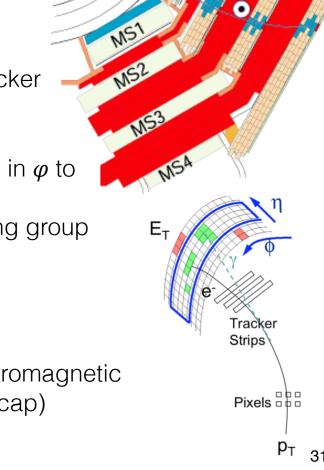
- 1. Physics Overview
- 2. WZ Production at the LHC
- 3. Predictions for Precision Measurements
- 4. The Large Hadron Collider
- 5. The Compact Muon Solenoid
- 6. Physics Objects and Event Reconstruction
- 7. Analysis Overview
- 8. Results
- 9. Moving Forward



Kenneth Long

Particle Flow Reconstruction

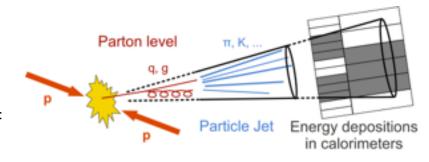
- Provide unique identification and accurate kinematic measurements
 - Combine contributions of different detector systems
- Start with systems essential for basic reconstructed
 - 1. Muons: Matched tracks in muon system and silicon tracker
 - 2. Electrons: Match tracks to ECAL energy deposits
 - 3. Charged Hadrons: Match tracks to ECAL and HCAL energy deposits
 - 4. Photons: Unmatched ECAL deposits
 - Neutral Hadrons: Unmatched ECAL and HCAL deposits
- Refine with additional information: Isolation, ratio HCAL/ECAL energy, etc.



Electrons and Muons

- Electrons and Muons
 - Low χ^2 for track fit quality
 - matched to primary vertex
 - $p_T > 10 \text{ GeV}$
 - $|\eta(e)| < 2.5, |\eta(\mu)| < 2.4$
- Muons for WZ cross section measurement
 - Global matched track in muon system to tracker
 - Few missing hits in muon system and tracker
- Electrons for WZ cross section measurement
 - Energy in ECAL summed using "superclusters" in φ to capture photons radiated by electron
- "Medium working point" defined by CMS e/y working group Selections include:
 - ≤1 layer with missing hits in pixel tracker barrel \leq 2 in endcap ($\eta \geq 1.479$)
 - Reject $y \rightarrow e^+e^-$
 - Ratio of energy in Hadronic calorimeter to electromagnetic energy (H/E) < 0.0876 in barrel (0.0678 in endcap)
 - Reject hadrons

Kenneth Long



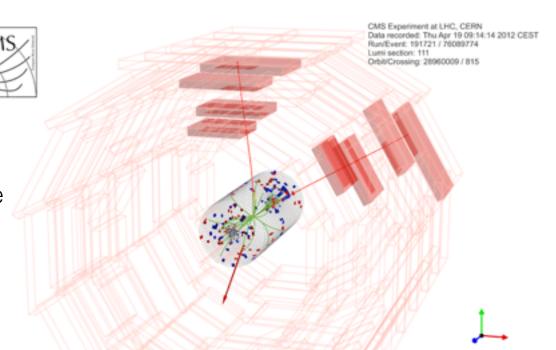
Jets and Lepton Isolation

- Final state quarks and gluons hadronize into bound states
 - Observed as collimated hadrons and decay products called jets
- Clustering algorithms define grouping of objects to form jets
 - Cluster by "distance" until all objects
 - CMS uses anti-k_T distance parameter
 - Form well defined analysis objects
 - Allow consistent comparison with theory

$$d_{ij} = \min(\frac{1}{k_{ti}^2}, \frac{1}{k_{tj}^2}) \frac{\Delta_{ij}^2}{R^2}$$
$$\Delta_{ij}^2 = (\eta_i - \eta_j)^2 + (\phi_i - \phi_j)^2$$

- ▶ Hadronic decays often produce leptons as constituents of jets
 - Isolation used to separate from leptons produced in hard interaction
- Isolation in this analysis

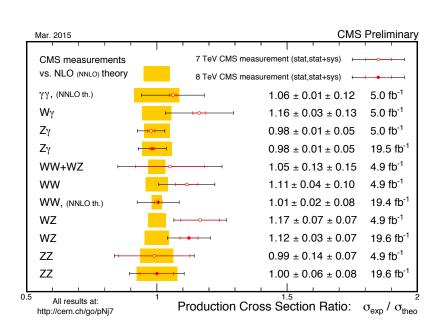
$$-\mu$$
: < 0.12

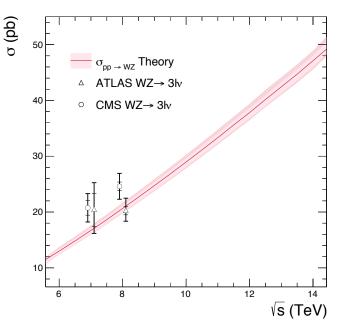

$$\begin{split} I_{rel}^{\mu} &= \frac{\sum p_{T}^{charged} + max[\sum E_{T}^{neutral} + \sum E_{T}^{photon} - 0.5 \cdot \sum p_{T}^{charged,PU}, 0.0]}{p_{T}} \\ I_{rel}^{e} &= \frac{\sum p_{T}^{charged} + max[\sum E_{T}^{neutral} + \sum E_{T}^{photon} - \Delta \rho \cdot E.A., 0.0]}{p_{T}} \end{split}$$

Missing Transverse Energy

- Neutrinos will not interact with the CMS detector
 - Total transverse energy of the event should sum to zero
 - Infer the presence of neutrinos from an imbalance in transverse momentum

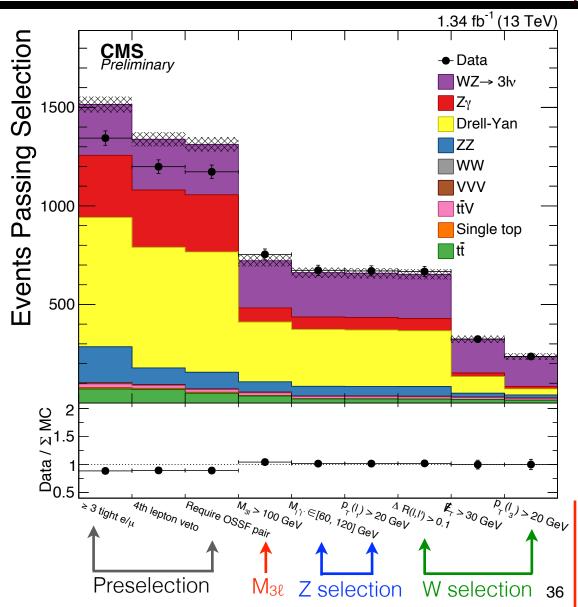
- Particle Flow calculates MET after all particles have been constructed
 - Allows MET to be associated to a single primary vertex


- 1. Physics Overview
- 2. WZ Production at the LHC
- 3. Predictions for Precision Measurements
- 4. The Large Hadron Collider
- 5. The Compact Muon Solenoid
- 6. Physics Objects and Event Reconstruction
- 7. Analysis Overview
- 8. Results
- 9. Moving Forward



Previous Measurements and Limits

- WZ production first observed at the Tevatron in 2006 at 1.96 TeV with 1.1 fb⁻¹
- Cross section measured at 7 and 8 TeV by CMS and ATLAS
- Constraints on deviations from SM predications from LEP, Tevatron, CMS, and ATLAS


- All previous measurements consistent with SM predictions
 - None preclude new physics at 13 TeV

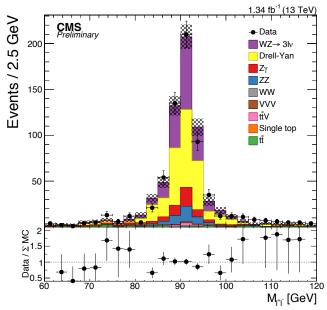
Overview of WZ-3lv Selections

- This analysis is performed on data collected by CMS from ~100 trillion collisions
 - ~1 billion of these were stored
 - ~100 million fall into the HLT datasets used for this analysis
 - ⇒ 236 pass final WZ selections
- Apply selection in stages
 - Target specific backgrounds with each selection
 - Understand modeling of each background

Kenneth Long

WZ→3ℓv: Preselection

- Study lepton efficiencies and misidentification rates after making only HLT requirements
 - Double μ
 - 1 μ candidate with p_T > 17 GeV,
 1 with p_T > 8 GeV
 - Double e/γ
 - 1 candidate with p_T > 17 GeV,
 1 with p_T > 12 GeV
 - Single e/γ + Single μ
 - μ candidate with $p_T > 17$ GeV, e/γ candidate with $p_T > 12$ GeV
 - e/γ candidate with $p_T > 8$ GeV, μ candidate with pT > 12 GeV
- Preselection: initial selection used to narrow phase space to WZ-like region
 - At least one of the of HLT requirements
 - Has exactly 3 muons and electrons
 - At least one pair of opposite sign, same flavor (OSSF) leptons


Dataset	Event Counts
WW	0.9
VVV	3.2
Single Top	5.3
t ī ∨	13.6
t t	48.8
ZZ	83.8
Ζγ	306.1
Drell-Yan	610.8
WZ→3ℓv	256.22
Sum MC	1328.7
Data	1173

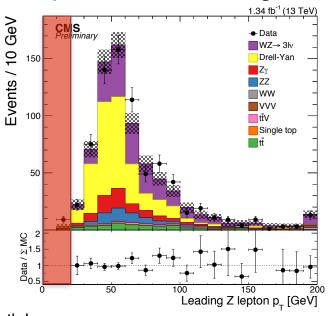
WZ→3ℓv Selections: M_{3ℓ} Cut

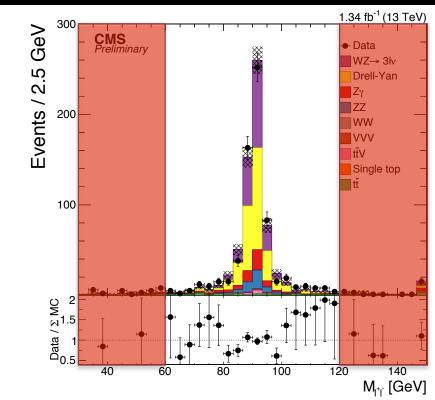
- ▶ Require M_{3ℓ} > 100 GeV
 - Backgrounds with Z boson + fake third lepton have $M_{3\ell} \approx M_Z$
 - e.g. Z→ℓℓ' with radiated photon which fakes an electron
 - M_{3ℓ} approaches M_{WZ} for true WZ events
- Study modeling of Drell-Yan and Zγ background (largest contributions)

After requiring $M_{3\ell} > 100 \text{ GeV}$

Kenneth Long

	1.34 fb ⁻¹ (13 TeV)
Z50 CMS Preliminary 150	→ Data _ WZ→ 3lv _
10 200 = 10 10 10 10 10 10 10 10 10 10 10 10 10	□ Drell-Yan □ Zγ □ ZZ □ WW □
150 -	VVV
100	■ ti =
50 -	
Data / S MC Z / Data / D MC Z / D M	
0 10	0 200 300 M _{3I} [GeV]

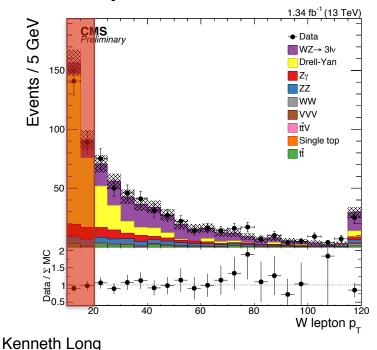

	Before cut	After cut	Ratio
Data	1173	754	0.64
MC	1312	722	0.55
WZ→3ℓv	256	240	0.94
WZ / ∑MC	0.20	0.33	1.70

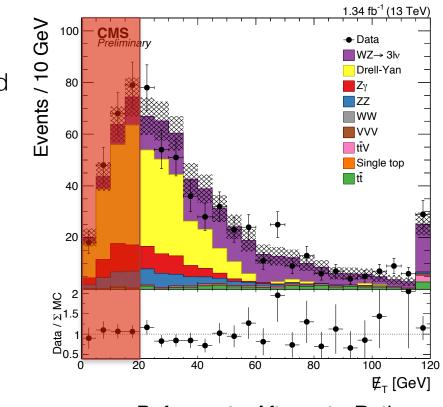


WZ→3ℓv Selections: Z Mass Window

- Form Z candidate formed from OSSF lepton pair
 - When ambiguous, choose pair which minimizes |m_{ℓℓ} M_Z|
 - Require |m_{ℓℓ} M_Z| ∈ [60, 120] GeV
- At least one lepton associated with Z candidate has p_T > 20 GeV
- Reduce background without Z resonance
 - Study Drell-Yan modeling

	Before cut	After cut	Ratio
Data	754	670	0.89
ΣMC	722	660	0.91
WZ→3ℓv	240	225	0.94
WZ / ∑MC	0.33	0.34	1.03


Kenneth Long



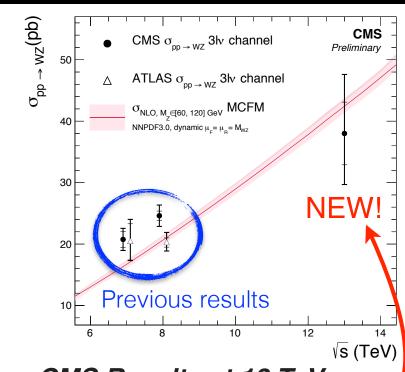
WZ→3ℓv Selections: W selection

- W kinematics cannot be fully inferred from decay products
 - Separation between lepton associated with W and leptons associated with Z:
 ΔR(I_{1,2}, I₃) > 0.1
 - Missing E_T > 30 GeV
 - $p_T(\ell_3) > 20 \text{ GeV}$
- → Final analysis selection

	Before cut	After cut	Ratio
Data	670	236	0.35
MC	662	234	0.35
WZ→3ℓv	225	152	0.68
WZ/∑MC	0.34	0.65	1.91

Outline

- 1. Physics Overview
- 2. Diboson Production at the LHC
- 3. The Large Hadron Collider
- 4. The Compact Muon Solenoid
- 5. Event Simulation for Precision Measurements
- 6. Physics Objects and Event Reconstruction
- 7. Analysis Strategy
- 8. Results
- 9. Moving Forward


WZ Cross Section Measurement

Dataset	Events	Estimated f	rom
WW	0.1	data for CN	1S result
VVV	2.2	Single top	0.7
t ī ∨	8.4	t ī	13.5
ZZ	15.6	Drell-Yan	31.0
Ζγ	13.3	Expect 152 V	VZ events
236 Data events - ΣMC Bkgd = 151 events			

	Presented	CMS Result
Total Background	85.0	101.6
Signal Strength	0.99	0.86

- CMS released the first 13 TeV WZ cross section measurement in December 2015
 - Agrees with SM NLO prediction
- My work (also for ZZ measurement)
 - Validation of MC signal modeling
 - Use theory tools to produce and understand theoretical predictions

CMS Results at 13 TeV

CMS-PAS-SMP-15-006

$$\sigma_{\text{fid}}(\text{pp} \to \ell \ell' \ell \nu) = 239^{+61}_{-51} \text{ fb}$$

 $\sigma(\text{pp} \to \text{WZ}) = 36.8^{+9.5}_{-7.9} \text{ pb}$

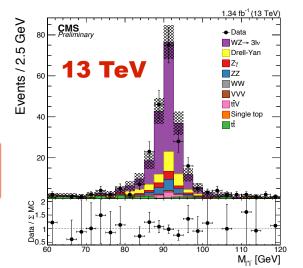
$$\sigma_{\rm th(NLO)}(pp \to WZ) = 42.7^{+1.6}_{-0.8} \text{ pb}$$

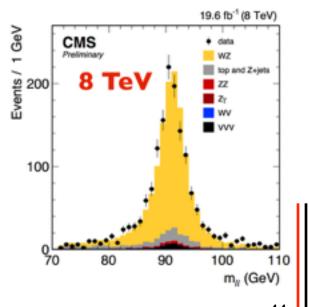
Kenneth Long

Outline

- 1. Physics Overview
- 2. Diboson Production at the LHC
- 3. The Large Hadron Collider
- 4. The Compact Muon Solenoid
- 5. Event Simulation for Precision Measurements
- 6. Physics Objects and Event Reconstruction
- 7. Analysis Strategy
- 8. Results
- 9. Moving Forward

Precision Cross Section Measurement

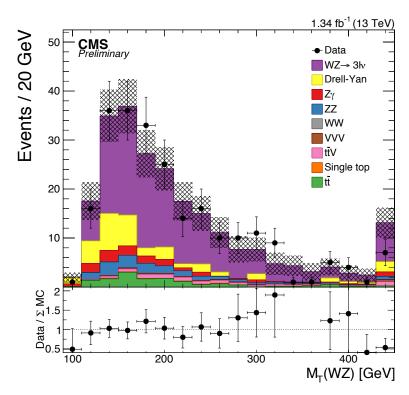


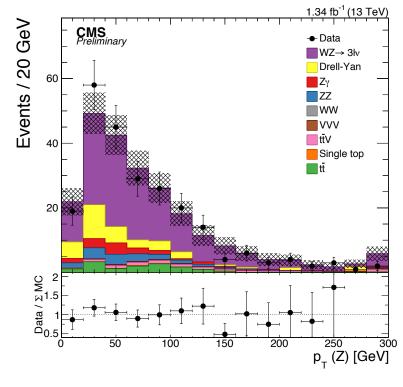

- Goal: reduce uncertainty to level of theory prediction (expect 3-5% at NNLO)
 - Currently 25% for 13 TeV

$$\sigma(pp \to WZ) = 36.8 \pm 4.6 \text{ (stat)}^{+8.1}_{-6.2} \text{ (syst)} \pm 0.6 \text{ (theo.)} \pm 1.7 \text{ (lum.) pb}$$

$$\sigma(\text{pp} \to \text{WZ}; \sqrt{s} = 7 \text{ TeV}) = 20.76 \pm 1.32 \text{ (stat.)} \pm 1.13 \text{ (syst.)} \pm 0.46 \text{ (lumi.)} \text{ pb.}$$
 $\sigma(\text{pp} \to \text{WZ}; \sqrt{s} = 8 \text{ TeV}) = 23.89 \pm 0.81 \text{ (stat.)} \pm 1.34 \text{ (syst.)} \pm 0.62 \text{ (lumi.)} \text{ pb.}$

- What are the sources of uncertainty?
 - Statistical: ~100 times current dataset by end of 2018 will reduce to < 1%
 - Systematic: dominated by 40% error on background estimation (11% of events)
 - Much more background than at 7 and 8 TeV
 - Target: 5-6%
 - Within reach if we achieve systematic and luminosity error from Run I
- How can we reduce the uncertainty?
 - Reduce background estimation error (difficult!)
 - Reduce background with improved selections

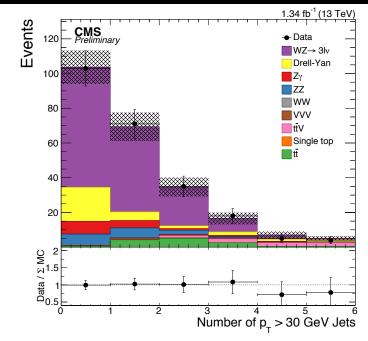


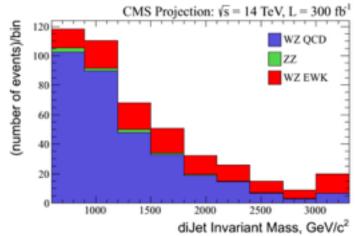


Thesis Goals: aQGC Measurement

- Differential measurements of WZ production for anomalous couplings
 - Z p_T (for aTGC NP contribution)
 - WZ (transverse) mass
 - for New Physics via anomalous couplings

- No visible excess in high p_T(Z) or high M_T(WZ) region
- Expect sensitivity at ~20 fb⁻¹


$$M_T = \sqrt{(E_T^Z + E_T^W)^2 - (p_x^Z + p_x^W)^2 - (p_y^Z + p_y^W)^2}$$



Thesis Goals: EWK Scattering

- Differential measurements of WZ production to observe EWK vector boson scattering
 - Jet kinematics
 - VBS contribution in 2-jet events
 - Additional selections
 - Exactly two high p_T jets (j)
 - $p_T(j) > 50 \text{ GeV}$
 - $|\eta(j)| < 4.7$
 - $\Delta \eta_{ii} > 4.0$
 - $m_{ii} > 600 \text{ GeV}$
- Initial studies made in CMS result FTR-13-006
 - Indicate that EWK contribution of WZ production can be observed with Run II luminosity (100 fb⁻¹)
 - Observation (3 σ confidence) with 75 fb⁻¹
 - Discovery (5 σ confidence) with 185 fb⁻¹
 - This study did not investigate optimization of the analysis
 - We can do better!

Conclusions

- ▶ Presented WZ→3ℓv analysis with focus on WZ cross section
- Contributed to the first measurement of WZ cross section at 13 TeV
 - Presented CMS results
 - Discussed differences
- ▶ Expect 100 fb⁻¹ (vs. 1.34 fb⁻¹ in this work) by end of 2018
 - Dataset sufficient for precision measurements
- Scope of analysis will be extended
 - Precision cross section measurement
 - Observation of electroweak boson scattering (100 fb⁻¹ sufficient)
 - Search for new physics in differential deviations from standard model predictions
- Foundation for this work is in place
 - Understanding theoretical predictions through state of the art calculations and simulations
 - Analysis framework and tools established and understood

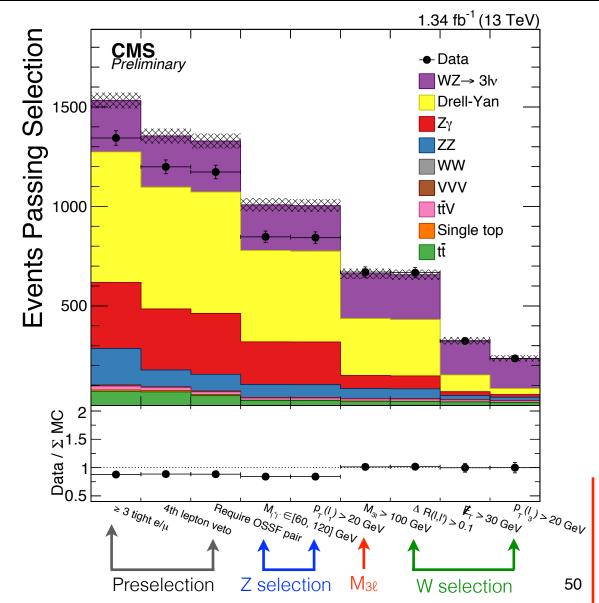
Backup

Cross Section Overview

$$\sigma(pp \to WZ + X) \cdot \mathcal{B}(W \to \ell\nu) \cdot \mathcal{B}(Z \to \ell'\ell') = \frac{N_{\text{obs}} - N_{\text{background}}}{A \cdot \epsilon \cdot \mathcal{L}}$$

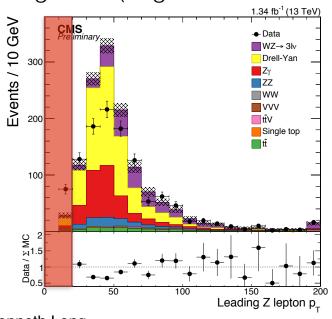
- \mathcal{L} = Luminosity
- $A = Acceptance = \sigma_{fiducial(th.)}/\sigma_{tot(th.)}$
 - What percentage of true WZ events fall outside the detector geometry or kinematic cuts? (e.g. μ decaying from Z with η < 2.4 or p_T < 20 GeV)
 - Depends only on theoretical prediction
- **E** = Efficiency
 - Percentage of true WZ events within acceptance not reconstructed

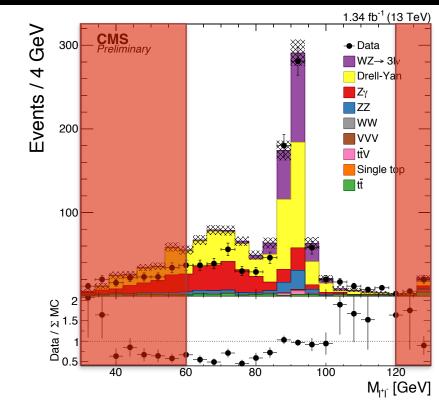
Equivalently
$$\sigma(pp \to WZ + X) \cdot \mathcal{B}(W \to \ell\nu) \cdot \mathcal{B}(Z \to \ell'\ell') = \frac{\mu \sigma_{\text{predicted}}}{A}$$


Where
$$\mu$$
 is the Signal Strength: $\mu = \frac{N_{\rm obs} - N_{\rm background}}{N_{\rm expect(WZ)}}$

- ightharpoonup Fiducial cross section ($\sigma_{
 m fid}$)
 - Defined to minimize theoretical extrapolation
 - $\eta(\ell_1, \ell_2, \ell_3) < 2.5$
 - $p_T(\ell_1, \ell_3) > 20 \text{ GeV}, p_T(\ell_2) > 10 \text{ GeV}$
 - $|m_{\ell\ell} M_Z| \in [60, 120]$

Cut Flow: Z after preselection



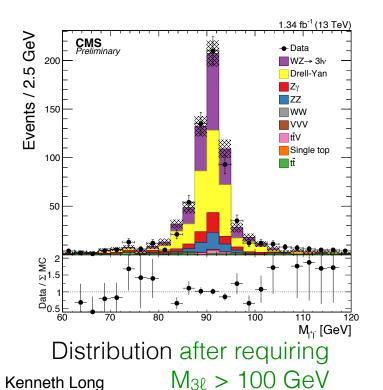


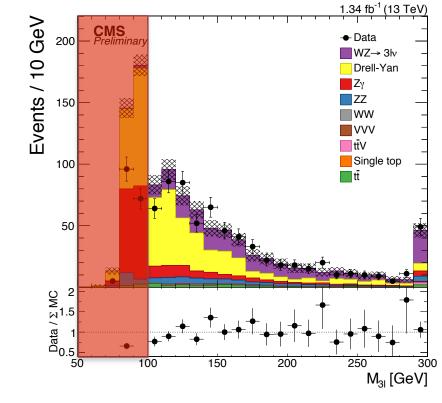
WZ→3ℓv Selections: Z before M₃₁

- Form Z candidate formed from OSSF lepton pair
 - When ambiguous, choose pair which minimizes |m_{ℓℓ} M_Z|
 - Require |m_{ℓℓ} M_Z| ∈ [60, 120] GeV
- At least one lepton associated with Z candidate has p_T > 20 GeV
- Study modeling of Drell-Yan and Zγ background (largest contributions)

	Before cut	After cut	Ratio
Data	1173	843	0.72
∑MC	1329	1003	0.75
WZ→3ℓv	256	229	0.89
WZ/∑MC	0.19	0.23	1.19

Kenneth Long

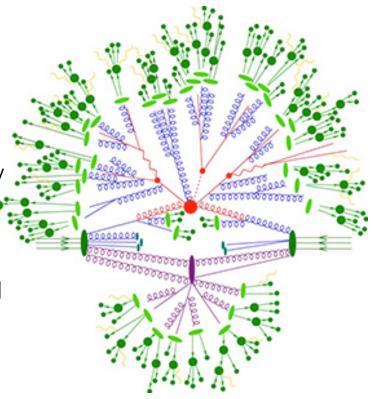

WZ→3ℓv Selections: M_{3ℓ} After Z



52

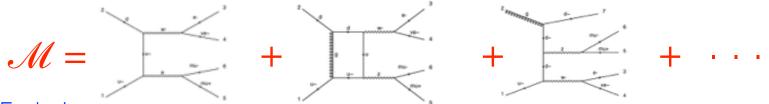
▶ Require M_{3ℓ} > 100 GeV

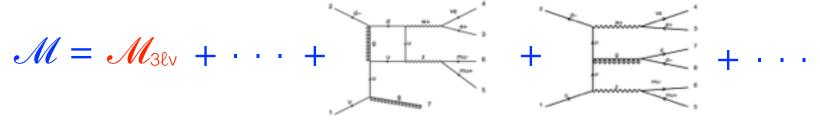
- Backgrounds with Z boson + fake third lepton have $M_{3\ell} \approx M_Z$
 - e.g. Z→ℓℓ' with radiated photon which fakes and electron
- M_{3l} approaches M_{WZ} for true WZ events


	Before cut	After cut	Ratio
Data	843	670	0.79
MC	1003	662	0.66
WZ→3ℓv	229	225	0.98
WZ/∑MC	0.23	0.34	1.49

Simulations for Precision Measurements

- Experimental measurements rely on precise theoretical predictions
 - Combine perturbative QFT with phenomenological models
 - Complex integrals calculated with Monte Carlo techniques
- Factorize calculations
 - Hard Processes
 - Matrix element calculations in perturbative QCD and QED
 - Increasingly complex at higher orders in coupling constants
 - Higher QCD orders contribute strongly
 - Soft processes
 - Parton shower model
 - Consider only soft/collinear contributions of higher order QCD and QED
 - Non-perturbative processes
 - Parton Distribution Functions
 - Hadronization
 - Decays




Monte Carlo Generators at CMS

- Event simulations at Next-to-leading order (NLO) in QCD are now the standard
- Two techniques for NLO event generation exist
 - POWHEG
 - Implemented in the POWHEG Box, a toolkit for NLO event generation
 - MC@NLO
 - Fully automated in MadGraph5_aMC@NLO
- Calculations inclusive and exclusive in QCD
 - Inclusive
 - Observables independent of the number of final state partons accurate at NLO
 - NLO calculation of pp $\rightarrow 3\ell v$

- Exclusive
 - Observables dependent on the number of final state partons accurate at NLO
 - ▶ Merge calculations of pp \rightarrow 3 ℓ v and pp \rightarrow 3 ℓ v + q (q is a light quark or gluon)

