

Measurement of W+bb and Search for MSSM Higgs Bosons with the CMS Detector at the LHC

Ms. Isobel Rose Ojalvo

February 11th 2014

Overview

1500 m_{ττ} [GeV]

2

observed

bkg. un m^h_{max} (m_A=160 GeV, tanβ=8)

Ζ→ττ

tť electroweak QCD

Standard Model of Particle Physics

Fermions split into 3 Generations of Quarks and Leptons

→Each fermion has an anti-particle partner with the same mass and opposite charge

Fundamental Forces associated with the spin 1 mediator gauge bosons →photons and gluons massless →W/Z heavy -> gain mass by Spontaneous Symmetry Breaking

Scalar Higgs boson completes the SM

 $(\langle \langle \rangle \rangle \langle \rangle \rangle \langle \rangle \rangle \langle \rangle \rangle \langle \rangle \langle \rangle \rangle \langle \rangle \langle$

Spontaneous Symmetry Breaking

In SU(2)_LxU(1) Symmetry →Gauge Bosons massless

Electroweak Symmetry Breaking needed to give Gauge Bosons mass

→Two component complex scalar field (4 degrees of freedom)

- \rightarrow 3 needed to give mass to W/Z
- → fourth appears as a physical particle: higgs boson
- Fermions can acquire mass through interaction with the Higgs field (Yukawa coupling)

 \rightarrow Recent evidence for H $\rightarrow \tau\tau$!

$$V = \frac{1}{2}\mu^2(\phi_1^2 + \phi_2^2) + \frac{1}{4}\lambda(\phi_1^2 + \phi_2^2)^2$$

Translating the potential to a new minimum , $\lambda > 0$ and $\mu^2 < 0$ $M_W = \frac{1}{2}vg$ $m_h = \sqrt{2\lambda v^2}$ $\cos \theta_W = \frac{M_W}{M}$

Thesis Defense Isobel Ojalvo

Beyond the SM: Supersymmetry

SM: A theory of almost everything!

What happens beyond the Electroweak Scale?

 $\rm m_{\rm H}$ is sensitive to loop corrections

Loop corrections to m_H become divergent ($\Lambda_{UV} \rightarrow$ infinity?)

→Higgs is ~low mass! So excessive fine tuning is needed

Supersymmetry solves this problem:

Introduces a new symmetry between fermions and bosons

Each SM fermion has a boson Super-partner

Each SM boson has a fermion Super-partner

- \rightarrow Double the particle spectrum
- \rightarrow Divergences cancel by construction!

Minimal Supersymmetric Extension to the Standard Model

Higgs Sector of MSSM

Higgs to $\tau\tau$

τ : Most massive Lepton \rightarrow Presents

opportunities to search for new physics

Lifetime: 2.9 x 10⁻¹³ s Mass: 1.776 GeV

Decays via the Weak Interaction To muon/electron + 2 neutrinos (35%) \rightarrow Labeled τ_{μ} and τ_{e} To Hadrons+neutrino (65%) \rightarrow Labeled τ_{h}

Experimental solution:

Identify hadronic/leptonic τ indirectly

W+bb production

W Production @LHC

W Produced through annihilation of an up-type quark and anti-down type quark

W coupling is favored within quark generations

bb Production

At leading order from gluon splitting

Double Parton Scattering

 \rightarrow Non-negligible Contribution

The CKM matrix parameterizes quark mixing across generations

q'=Vq

Constructed such that: Cabbibo rotated states d',s',b' have no mixing across generations

Heavy Flavor Quarks/Hadronization

gluon→qq

At ~10⁻¹⁵ m the strong interaction causes new quarks and anti-quarks to be produced

gluon→bb

For a b-Hadron very little energy loss due to formation of light quarks

 \rightarrow Energy is carried by the b-Hadron

Mean lifetime of a b-hadron is 1.55 x 10⁻¹² s

→Allows for the identification of Secondary Vertices! (used in W+bb analysis)

LHC

Proton-Proton or Heavy-Ion Collider

27km in circumference, 100m underground

Center of Mass Energy 7 TeV 2011, 8TeV 2012

Four Major Detectors

Two General Purpose, mainly proton physics CMS, ATLAS

Dedicated Heavy Ion ALICE

Forward Detector for b-Physics LHCb

LHC: Operating Conditions

Number of Events for a Given Process $N = \sigma \int L dt$

σ: Cross Section of ProcessL: Instantaneous Luminosity of the collider Units: Particle Flux/time

Optimize Luminosity

 →High Particle Density (per Bunch)
 →Maximize the number of bunches per beam and Revolution Frequency
 →Minimize Bunch Size

	Design	2011	2012	2015
Beam Energy	7 TeV	3.5 TeV	4 TeV	6.5 TeV
Bunches/ Beam	2835	1380	1380	~2800
Bunch Crossing	25 ns	50 ns	50 ns	25 ns
Protons/ bunch	1.15x10 ¹¹	1.5x10 ¹¹	1.5x10 ¹¹	
Peak Luminosity	10 ³⁴ cm ⁻² s ⁻¹	2x10 ³³ cm ⁻² s ⁻¹	7.7x10 ³³ cm ⁻² s ⁻¹	2x10 ³⁴ cm ⁻² s ⁻¹
Integrated Luminosity		6.1 fb ⁻¹	23.3 fb ⁻¹	

Mean Number of Interactions/Crossing

$$u = \frac{L\sigma_T}{R_B f_B}$$

Instantaneous Luminosity:

$$L = \frac{N_b^2 n_b f_{rev} \gamma_r}{4\pi\epsilon_n \beta *} F$$

Thesis Defense Isobel Ojalvo

LHC Total Integrated Luminosity

CMS Integrated Luminosity, pp

CMS:Compact Muon Solenoid

Solenoid

- Solenoid Magnet provides bending power for momentum measurement
- Sagitta of a particle trajectory,

$$s = \frac{L^2}{8r} = \frac{qBL^2}{8p}$$

Momentum Resolution,

$$\frac{dp}{p} = \frac{p}{BL^2}$$

High Strength Magnetic Field to provide optimal resolution

3.8 Tesla

6.3 m in Diameter, 12.5 m Long

4 Layer Winding, Flux Returned by 10,000 ton Iron Yoke

$$B = \mu_0 n I$$

Tracker

Identifies Tracks, Measures Charge and Transverse Momentum Silicon Technology (5.4m x 2.4m)

Inner Pixel Detector

Close to interaction point

High Granularity

 \rightarrow Reduce occupancy per cell

Outer Strip Detectors

Further from interaction point Smaller particle flux

Electromagnetic Calorimeter

The ECAL measures the Energy of Electrons/Photons out to $|\eta| < 3$

Lead Tungstate Crystals (~75,848)

High Density (8.2 g/cm³) Short Radiation Length (8.9 mm) Total Crystal Length 230 mm \rightarrow 25.8 X₀ Small Moliere Radius (22 mm) 2 x 2 cm² crystal area 80% of light is emitted from PbWO₄ in 25 ns Resolution: $\left(\frac{\sigma}{E}\right)^2 = \left(\frac{2.83\%}{\sqrt{E}}\right)^2 + \left(\frac{0.124}{E}\right)^2 + (0.3\%)^2$

Here, E is in GeV

Hadronic Calorimeter

Sampling calorimeter

Layers of Scintillators and Absorbers \rightarrow Covers 6-8 Interaction Lengths Needed for measuring MET and Jets Covers $|\eta| < 5$

Barrel and Endcap Region

Brass and Scintillator Barrel: $|\eta| < 1.4$ Endcap: $1.4 < |\eta| < 3$ Resolution: $\left(\frac{\sigma}{E}\right)^2 = \left(\frac{115\%}{\sqrt{E}}\right)^2 + (5.5\%)^2$

Forward Hadron Calorimeter

Steel and quartz fiber 3<| η |<5 Resolution: $\left(\frac{\sigma}{E}\right)^2 = \left(\frac{280\%}{\sqrt{E}}\right)^2 + (11\%)^2$

Thesis Defense Isobel Ojalvo

Muon System

Barrel Drift Tube Chambers |η|<1.3 Resistive Plate Chambers |η|<1.3 Endcap

Cathode Strip Chambers 0.9<|η|<2.4 Resistive Plate Chambers |η|<1.6

Designed for Efficient Muon Measurement: Low P_T Muons: the p_T is assigned by the Tracker High P_T Muons: the Tracker and Muon Chambers contribute to the p_T measurement

New Cathode Strip Chambers and RPC's (Yellow)

Resolution: 6-20% < 100 GeV 15-35% > 100 GeV

22

Thesis Defense Isobel Ojalvo

CMS Trigger System

Beams are designed to cross every 25 ns (50 ns)

20 pp interactions per crossing \rightarrow Pile Up

.5 Billion particles per second grouped in 40 Million beam crossings per second with up to 1 MB data stored/event

 \rightarrow CMS trigger must reduce this to a recordable rate

2-Stage Trigger System:

1 GHz

Level 1 Trigger High-speed Custom Hardware Specialized Algorithms

100 kHz

300 Hz

High Level Trigger Software running on Commercial Processor Farm Algorithms similar to offline Reco

Level 1 Trigger

Calorimeter Trigger

Regional Calorimeter Trigger (RCT) Finds e/γ energy deposits And regional energy deposits Calculate τ Veto Bit Forwards RCT objects to GCT Global Calorimeter Trigger (GCT) Sorts RCT Objects Calculates Missing E_{T} Performs Jet Clustering **Muon Trigger Regional Triggers** CSC, DT find tracks

Global Muon Trigger Sorts Muons

Global Trigger

Makes Acceptance Decision

Passes to HLT

RCT: Overview of My Work

High Level Trigger

Processes events selected by Level 1 Algorithms Similar to Offline Reconstruction

Written in C++ run on commercial processor farm

Optimized for Speed

Simple Algorithms run first After passing Simple Selections, Complex Algorithms are run Tag Events for Analysis Event Rate Reduces to ~100Hz

Particle Reconstruction and Simulation

EUC.

Electron ID

- Requires a track matched to an ECAL deposit
- Electromagnetic deposit formed as a Super Cluster in ECAL
 - SC \rightarrow Cluster of Clusters, Grows in φ
 - →Accounts for electron-material interactions
- SCs must have low hadronic activity HCAL Energy/ECAL Energy<0.05
- \rightarrow MVA used to improve Identification

Uses 'training events' for which the output is known to determine a mapping function for that describes a classification or a regression

Also reject Converted Photons

Muon ID

Three types of muon Reconstruction

Standalone Muon

Track Reconstructed in Muon

System

Tracker Muon

Constructed in Tracker with at least one hit in muon system

Global Muon

Tracker Muon Matched to tracks in Muon System

Muon Requirements for Analysis:

Global Muon, Good fit to extrapolated muon trajectory, Minimum number of "Hits" in muon chambers

Hadronic Tau Reconstruction

Tau reconstruction: hadron+strip Particle-flow based algorithm to reconstruct different hadronic tau decay modes

 τ_h identification: efficiency ~ 60% fake rate ~ 1%

The τ_h mass distribution is used to control the tau energy-scale within 3%

Thesis Defense Isobel Ojalvo

Isolation

Leptons from QCD processes are inside jets Electron/muon Isolation

Uses Particle Candidates in a cone of 0.4 Relative Isolation:

 $\frac{\Sigma Particles_{cone<0.4}}{P_{T}Lepton}$

Including Pile-Up Corrections

 →Neutral/Charged Particle Total Energy≈0.5
 →Subtract Estimate of Neutral Energy deposit in Jet Cone using Charged Energy

 $I_{\rm rel} = \frac{\sum p_{\rm T}(\rm charged) + \max\left(\sum E_T(\rm neutral) + \sum E_T(\rm photon) - \Delta\beta, 0\right)}{p_{\rm T}(\mu \text{ or } e)}$

Tau Isolation → Absolute Isolation

$$I_{\tau_{had}} = \sum P_T^{charged}(\Delta z < 2 \text{ mm}) + \max\left(P_T^{\gamma} - \Delta\beta, 0\right)$$

Jet ID and MET

Jet clustering

Performed using particle candidates

Energy Corrections Applied

L1 FastJet –Remove energy from PU

L2 Relative – Equalize Jet Response in the Detector

L3 Absolute –Equalize jet response with different P_T

Residual Corrections Applied to data to account for further differences with simulation

Met is summed using, E_{T}^{mi}

iss
$$= -\sum_{i} p_T$$

Thesis Defense Isobel Ojalvo

32

and corrected for recoil mismodelling using $Z \rightarrow \mu \mu$ events

b-Jet ID

Events / 15 GeV

W→uν+bb

W→uv+i

Z+jets/VV

t/Ŧ

QCD

No-tag

jet1 Pt [GeV]

40 60 80 100 120 140 160 180 20

W→μν+cc W→uv+c 300

250

200

150

100

50

b-hadrons have a long life time + high mass

→Can be identified via secondary vertices, displaced tracks and soft leptons

Jet Variables are combined in a Multivariate Likelihood to produce a single discriminator

Secondary Vertices are found in Jets by fitting tracks associated to the Jet

Efficiency of 50% with reduction of light jets by a factor of ~100

60

40

20

Events

Z+iets/VV

0.8

Events

10⁶

10⁴

 10^{3}

10²

0

0.2

0.4

0.6

CSV b-Discriminator

 $(10^3 \text{ CMS Preliminary})$

Simulation

Precise Simulation

- Essential for experiment design
- + validation
- Performed using Monte Carlo Method

Simulation Steps

Physics Event Generator Simulation of Passage of Particles through matter Hardware Emulation

Detector Simulation performed using GEANT

→ Final Output identical to Data

Monte Carlo Generators

MCFM

Gives NLO predictions for wide range of Events, Uses Final State Parton Jets, Not Adequate for DPS Simulation MADGRAPH

Matrix Element Calculator for SM processes at any collider,

Includes MPI simulation

PYTHIA

Good simulation of hadronization, uses Lund String Model POWHEG

Alternate method for hadronization modeling→ Generates hardest radiation and uses a shower generator for subsequent softer radiation

Tauloa

Used to simulation tau-leptons including polarizations

CMS Experiment at the LHC, CERN

Data recorded: 2012-Jun-05 09:58:43.400262 GMT(11:58:43 CEST) Aun / Event: 195552 / 61758463

http://www.dylapy

W+bb Cross Section Measurement

Goal: Measure W→munu + 2 b-Jet cross section at 7TeV

Motivations:

Background to W+h \rightarrow bb, h \rightarrow $\tau\tau$ + b

+many other physics searches

Previous Studies:

Independent studies have shown tensions in W+1b vs. W+2b

ATLAS study performed in completely separate phase-space

W+bb: W+1b

W+bb: Selection of Muon + Jets

Muon Selection:

Muon + Tau Trigger Muon P_T>25 GeV Muon |Eta|<2.1 Isolation Required

Jet Selection:

2 Jets P_T>25 GeV Eta<2.4

 M_T >45 GeV

~eliminates QCD M_T<45 GeV used as a control region Veto Events with Extra Leptons, Jets

$$M_{\rm T} = \sqrt{2 {\rm p}_{\rm T}}^{\ell} E_{\rm T}^{\rm miss} \left(1 - \cos \Delta \phi\right)$$

Thesis Defense Isobel Ojalvo

b-Jet Selection

Start with two jets that exhibit qualities of b-Jets →Minimum number of Tracks, Secondary Vertex

Makes use of Multivariate Analysis

→Uses 'training events' for which the output is known to determine a mapping function for that describes a classification or a regression

CSV Multi-Variate Algorithm

→Uses Jet Variables to create a
 discriminator separating b-Jets from light
 →Requiring a Secondary Vertex

Data/MC corrections applied \rightarrow Measured in QCD and top events

Backgrounds to W+bb

tt

Largest Irreducible background →Single Muon + 2 b-Jets + W W→jj used for simultaneous fit

Single Top Second Largest Background →1 b-Jet + 1 Forward Jet

Z+Jets

Very Small Contribution Control Region To Test Analysis Strategy

Yields/Systematic Uncertainties

Process	Wbb	W+l	W+c	$W + c\bar{c}$	Z+jets	$t \overline{t}$	Single- t	VV	QCD	Total	Total
										MC	Data
W+2jets	39333.1	378197.2	23502.8	284441.3	94169.7	74082.9	15880.3	10195.0	42276.7	962079.0	928445.0
$M_T > 45 \text{ GeV}$	30381.9	291990.5	18282.5	221570.1	35144.1	54095.4	11909.0	7780.7	8393.9	672138.2	642674.0
JetVeto $\eta < 2.4$	21605.7	237049.8	14498.1	175253.2	26490.8	9027.4	6599.4	5744.0	6520.0	498028.4	478315.0
JetVeto $\eta < 4.5$	17152.9	196618.2	11853.4	142711.5	21440.5	5390.2	4356.3	4727.3	5298	405888.5	408705.0
Lepton Veto	17125.9	196213.9	11836.3	142517.5	18994.8	4707.9	4155.8	4446.5	5284.3	401973.7	402742.0
2 CSV Tight Tags	356.5	47.3	1.7	56.3	34.5	620.6	168.0	19.9	36.3	1249.3	1387.0
>=1 SV	332.3	1.5	1.3	21.0	30.9	595.5	160.3	18.9	33.1	1194	1230.0
in each jet		± 0.2	± 0.3	± 4.3	± 2.9	± 32.8	± 7.8	± 0.8	± 2.7	± 78.0	± 35.0

Included in Final fit for Signal Extraction

Nuisance	Uncertainty
b-Tag Efficiency	6%
b-Tag Efficiency Top Samples	3%
b-Tag Efficiency Charm Sample	15%
b-Tag Fake Rate	12%
Luminosity	2.2%
Jet Energy Scale	1σ from Jet Database
Jet Energy Clustering	10%
Muon Energy Scale	1%

Signal Yield Extraction

Combined fit between Signal Region and largest background

Variable	Signal Region	$t\bar{t}$ Region
# Jets $p_T > 25 \text{ GeV} \eta < 2.4$	2	> 3
# Jets $p_T > 25 \text{ GeV} 2.4 < \eta < 4.5$	0	-
CSVT	2	2
$Mass(Z_{\mu\mu} > 60 \text{GeV})$	0	0
# Isolated Electrons	0	-
Secondary Vertex	1 per Jet	-

Cross Section Measurement

Hadronization correction (from bHadrons \rightarrow final state partonJets) for comparison with MCFM C_{b $\rightarrow B$} = 0.92 +-0.02

DPS contribution:

$$\sigma_{\rm DPS} = (\sigma_{\rm W} \times \sigma_{\rm b\bar{b}}) / \sigma_{\rm eff} = 0.08 \pm 0.05 pb$$

Final Cross Section Measurement:

 $\sigma = \sigma_{\text{MCFM}} \times C_{b \to B} + \sigma_{\text{DPS}}$

 $0.55 \pm 0.03 (\text{MCFM}) \pm 0.01 (\text{had}) \pm 0.05 (\text{DPS}) pb$

CMS Experiment at the LHC, CERN

Data recorded: 2012-Jun-05 09:58:43.400262 GMT(11:58:43 CEST) Aun / Event: 195552 / 61758463

MSSN WSSN Control of the second secon

http://www.dylapy

Search for MSSM higgs bosons

50r

Search with 4.9 fb⁻¹ of data at 7TeV and 19.3 fb⁻¹ at 8 TeV Final States: Semi-leptonic Tau + Hadronic Tau, $\tau_e \tau_h \tau_\mu \tau_h$

Analyzed in the mhmax Scenario

 \rightarrow Vary m_A and tan(β)

Background Estimation

Z→ee/µµ
Normalization scale factor from tag-and-probe in data
Shape from MC

QCD:

- Normalization from ratio of same-sign(SS) to opposite-sign (OS) data events
- Shape from SS data events

W+Jets/QCD Backgrounds

W+Jets

Normalization taken from high M_T sideband (M_T >70 GeV), Extrapolation from high M_T to low M_T from Monte Carlo Shape

QCD

Data Driven shape and Normalization Shape from Same Sign region Measure SS/OS ratio in Anti-Isolated Region

$Z \rightarrow \tau \tau$ embedding

Take Z→µµ events from data Reconstruct Event Remove muon objects Replace with simulated taus

MET, Jets, b-tagging from data! →Significant reduction in uncertainty for this background

Normalization taken from $Z \rightarrow \mu \mu$

Selection

$\tau_{u}\tau_{h}$ Selection:

Muon + Tau Trigger Muon P_T>20 (18) GeV for 2012(2011) Muon |Eta|<2.1, Isolated Tau P_{T} >20 GeV, eta<2.3, Isolated

$\tau_{e}\tau_{h}$ Selection:

Electron + Tau Trigger Muon P_T>24 (20) GeV for 2012(2011) Muon |Eta|<2.1, Isolated Tau P_{T} >20 GeV, eta<2.3, Isolated

Jet Selection:

1 Jet P_T >25 GeV Eta < 2.4

 M_{T} <30 GeV

Reduces W+Jets

Veto Events with Extra Leptons

di-T Mass Reconstruction

Di-tau mass estimation uses visible decay products & missing ${\rm E}_{\rm T}$ in a maximum likelihood fit

The mass resolution is ~ 10-20% depending on channel/category

Visible mass

SV fit Reconstructed mass

Categories

Final Fit

Most Relevant Nuisance Parameters: Tau Energy Scale +/- 3% b-tagging efficiency and fake rate

Highest Yield Backgrounds fit to a falling exponential distribution to preserve integrity in low MC yield regions

Final Limit on 95% Upper CLs are set Using modified Frequentist Approach

Results: Mhmax

No Significant Excess is Observed in the search for MSSM higgs bosons

Results: Model Independent

Limits on $\sigma(gg \rightarrow \phi)xBR(\phi \rightarrow \tau\tau)$ and $\sigma(gg \rightarrow bb\phi)xBR(\phi \rightarrow \tau\tau)$

No Significant Excess is Observed in the search for MSSM higgs bosons

Conclusions

A cross section of W+bb was measured in the full 7TeV dataset

- This measurement was performed in a unique phase-space with a simultaneous fit between a Signal Region and ttbar Background Region
- Measurement Consistent with the Standard Model
- \rightarrow Only measurement of its type at the LHC
- A search for MSSM higgs bosons in the $\tau\tau$ final state were presented No significant deviation from background only hypothesis was observed
 - →Most Stringent Limits on the MSSM model in regions of tan(β)-M_A plane
- More data in 2015+ will continue the search for physics beyond the standard model

Back Up

2015 LHC Parameter Scenarios

Scenario	# bunches	I_p (×10 ¹¹)	Emittance (µm)	\mathcal{L} (Hz/cm ²)	Pile-up	L (fb ⁻¹)
25 ns	2760	1.15	3.5	9.2×10^{33}	21	24
25 ns	$ \land \land /$					
low emit	2320	1.15	1.9	1.6×10^{34}	43	42
50 ns	1380	1.6	2.3	$0.9-1.7 \times 10^{34}$	40–76	45
50 ns						
low emit	1260	1.6	1.6	2.2×10^{34}	108	-

EUC.

b-Jet selection

Start with two jets that exhibit qualities of b-Jets (CSV Medium working point)

CSV Algorithm is

The CSV b-tagging algorithm combines the following variables into a single discriminating variable using a Likelihood ratio technique: secondary vertex mass, multiplicity of charged particles associated to the secondary vertex, the flight significance associated to the secondary vertex, the energy of charged particles associated to the SV divided by the energy of all charged particles associated to the jet, the rapidities of charged particle tracks associated to the secondary vertex, and the track impact parameter significance exceeding the charm threshold.

If a jet does not have an SV then CSV algorithm computes "pseudo Vertex" and "No-Vertex" values

• In this Analysis the Final Selection Requires a Vertex!

Jet Variables

Two tight tags:Expected 2.15 WH \rightarrow bb EventsTwo Medium tags:Expected 3.20 WH \rightarrow bb EventsTwo Loose tags:Expected 4.14 WH \rightarrow bb Events(from Monte Carlo)Expected 4.14 WH \rightarrow bb Events

For Wbb analysis MET variable is created by:

$$E_{\rm T}^{\rm miss} = -\sum_i p_T$$

MC is corrected for recoil using:

 $E_{\rm T}^{\rm miss} + q_T + u_T = 0$

Where, q_T is the sum of non- Boson decay products u_T is the recoil which is corrected using $Z \rightarrow \mu \mu$ events

MVA E_{T}^{miss} : Uses MVA Regression to correct recoil for pile up

Z+Jets Estimate/Test of Analysis Strategy

Requirements

- Two identified isolated muons
- Each muon must have combined relative isolation < 0.15
- Selected muons must have an invariant mass between 85 and 95GeV
- Each event must have atleast two jets with $p_T > 25$ GeV and $|\eta| < 2.4$
- Events must have a total $E_{\rm T}^{\rm miss} < 40$
- Both jets are required to have a CSV b-tag at the medium working point.

Single Top Estimation

1 b-tagged jet |eta|<2.4,1 non-tagged jet |eta|>2.8, 1 Isolated Muon

mhmax Scenario

If the new boson discovered is interpreted as the lightest in the MSSM model then regions of $tan(\beta)$ excluded

$$M_{SUSY} = 1 \text{TeV}, \mu = -200 \text{GeV},$$

$$m_{\tilde{g}} = 0.8 M_{SUSY}, M_A \leq 1000 \text{GeV},$$

$$X_t = 2 M_{SUSY}, A_b = A_t$$

$$m_h^2 = \frac{1}{2} \left(m_A^2 + M_Z^2 - \left[(m_A^2 + M_Z^2)^2 - 4M_Z^2 m_A^2 \cos^2 (2\beta) \right]^{\frac{1}{2}} \right)$$

$$m_{H^{\pm}}^2 = m_A^2 + M_W^2$$

$$m_H^2 = \frac{1}{2} \left(m_A^2 + M_Z^2 + \left[(m_A^2 + M_Z^2)^2 - 4M_Z^2 m_A^2 \cos^2 (2\beta) \right]^{\frac{1}{2}} \right)$$

ττ Systematic Uncertainties

Uncertainty	Affected processes	Change in acceptance	
Tau energy scale	signal & sim. backgrounds	1-29%	
Tau ID (& trigger)	signal & sim. backgrounds	6–19%	
e misidentified as τ_h	Z ightarrow ee	20–74%	
μ misidentified as τ_h	$Z ightarrow \mu \mu$	30%	
Jet misidentified as τ_h	Z + jets	20-80%	
Electron ID & trigger	signal & sim. backgrounds	2-6%	
Muon ID & trigger	signal & sim. backgrounds	2–4%	
Electron energy scale	signal & sim. backgrounds	up to 13%	
Jet energy scale	signal & sim. backgrounds	up to 20%	
$E_{\rm T}^{\rm miss}$ scale	signal & sim. backgrounds	1-12%	
ε_{b-tag} b jets	signal & sim. backgrounds	up to 8%	
ε_{b-tag} light-flavoured jets	signal & sim. backgrounds	1–3%	
Norm. Z production	Z	3%	
$Z \rightarrow \tau \tau$ category	Z ightarrow au au	2-14%	
Norm. W + jets	W + jets	10-100%	
Norm. tī	tī	8-35%	
Norm. diboson	diboson	6-45%	
Norm. QCD multijet	QCD multijet	6-70%	
Shape QCD multijet	QCD multijet	shape only	
Norm. reducible background	Reducible bkg.	15-30%	
Shape reducible background	Reducible bkg.	shape only	
Luminosity 7 TeV (8 TeV)	signal & sim. backgrounds	2.2% (2.6%)	
PDF (qq)	signal & sim. backgrounds	4–5%	
PDF (gg)	signal & sim. backgrounds	10%	
Norm. ZZ/WZ	ZZ/WZ	4-8%	
Norm. $t\bar{t} + Z$	$t\bar{t} + Z$	50%	
Scale variation	signal	3–41%	
Underlying event & parton shower	signal	2-10%	
Limited number of events	all	shape only	

mhmax Scenario

Due to the large number of free parameters a complete scan of MSSM parameter space is too involved \rightarrow Fix parameters and scan in M_A, tan(β)

$$M_{SUSY} = 1 \text{TeV}, \mu = -200 \text{GeV},$$

$$m_{\tilde{g}} = 0.8 M_{SUSY}, M_A \le 1000 \text{GeV}, \quad M_1 = \frac{5 \sin^2 \theta_w}{3 \cos^2 \theta_w} M_2$$

$$X_t = 2 M_{SUSY}, A_b = A_t$$

Higgs masses:

$$m_{H^{\pm}}^{2} = m_{A}^{2} + M_{W}^{2} \qquad m_{H}^{2} = \frac{1}{2} \left(m_{A}^{2} + M_{Z}^{2} + \left[(m_{A}^{2} + M_{Z}^{2})^{2} - 4M_{Z}^{2}m_{A}^{2}\cos^{2}(2\beta) \right]^{\frac{1}{2}} \right) m_{h}^{2} = \frac{1}{2} \left(m_{A}^{2} + M_{Z}^{2} - \left[(m_{A}^{2} + M_{Z}^{2})^{2} - 4M_{Z}^{2}m_{A}^{2}\cos^{2}(2\beta) \right]^{\frac{1}{2}} \right)$$