

Diboson production at CMS

Isobel Ojalvo November 22nd 2011

Contents

Dibosons

CMS

Motivations for Study

Signal Production at the LHC

CMS Detector

CMS Trigger

Analysis

Data Reconstruction

Simulation of Data

Initial comparison of Data and MC

Event Selection

Conclusions/Going Forward

The Standard Model

- **Fundamental Particles:**
- Quarks, Leptons
- ♦ 3 Generations

CMS

- Quarks form Hadrons
- Gauge Bosons
- ♦ Mediate Forces
- Scalar Higgs Boson
- ♦ Theoretical Particle
- Higgs mechanism gives mass
 to the W and Z Bosons and the fermions

3

sobel Ojalvo

11/22/11

Particle Interactions

During **High Energy** collisions Z Bosons are produced via the Weak Force

Low Energy

The Strong Interaction binds quarks in hadrons Baryons

> 3-quark states Protons, neutrons

Mesons

quark-antiquark states pions, kaons

Electromagnetic interaction binds atoms together Weak force responsible for radioactive decay

Relative force strength

High Energy Interactions

♦ Examples of Processes observed at High Energies:

CMS

Motivations for Studying CMS Dibosons

Precision test of the Standard Model

- Electroweak Symmetry Breaking ¹⁰⁰⁰
 via the Higgs Mechanism
- Anomalous Triple Gauge
 Couplings
- ♦ ZZ decays of New Particles

Opportunity:

- ♦ Increasing rate of proton-proton Collisions at the LHC
- → More Data

Searching for the Higgs Boson

CMS

11/22/11

ZZ Final States

LHC collisions are at $\sqrt{S} = 7$ TeV

CMS

 $ZZ \rightarrow \parallel +_{VV}$

 $ZZ \rightarrow \parallel \parallel$

	Process	Cross Section at LHC
$qq \rightarrow ZZ \rightarrow \mu\mu qq$		0.252 pb
ZZ qu	Z → Studying o Jark anti-quark	decay to (+ muon anti-muo
	Decay Mode	Branching Ratio
	ZZ → II+qq	14%
	ZZ → qqqq	49%
	ZZ → qq+νν	28%
		40/

4%

1%

Higgs Production

CMS

Particle Detection

Muons Charged Massive Particle

CMS

Quarks No Free Quarks Hadronization quarks form Jets along the direction of initial particle tracks

Neutrinos Weakly Interact Reconstruct p_T in the Detector \rightarrow Calculate Missing E_T

Event Display Run: 166950 Lumi: 615 Event:725632261

Event Display Run: 166864 Lumi: 284 Event: 297409470

11/22/11

13

Large Hadron Collider

- Proton-proton Collider 7 TeV Center of Mass Energy (Design is 14TeV)
- 27km in circumference, 100 m underground

CMS

Four Primary Detectors:

CMS, ATLAS - general physics searches

ALICE – Heavy Ion Experiment

LHCb – Forward detector for b-physics

Proton-Proton Collisions at the LHC

CMS

	Design	2010	2011			
Beam Energy	7 TeV	3.5 TeV	3.5 TeV			
Bunches/ Beam	2835	368	1380			
Protons/ bunch	1.15x10 ¹¹	1.3x10 ¹¹	1.5x10 ¹¹			
Peak Luminosity	10 ³⁴ cm ⁻² s ⁻¹	2x10 ³² cm ⁻² s ⁻¹	3x10 ³³ cm ⁻² s ⁻¹			
Integrated Luminosity		36 pb⁻¹	5 fb ⁻¹			
ZZ's Produced	ZZ's ~190 ~20,000					
Luminosity						
$\mathcal{L} = \frac{\text{Particle Flux}}{\text{Time}}$						
Interaction rate						
$\frac{dN}{dt} = \mathcal{L}\sigma (\sigma = \text{effective area of interacting particles})$						

*Expecting 20 fb⁻¹ for 2011-2012→ My thesis!

CMS Tracker

Identifies Tracks, Measures Charge and Transverse Momentum Silicon Technology (5.4m x 2.4m) $\eta = -\ln \left[\tan \left(\frac{\theta}{2} \right) \right]$

Strong B-fields make the Tracker efficient for a wide range of p_T

Inner Pixel Detector

Close to interaction point

High Granularity

Less occupancy per cell

Outer Strip Detectors

Further from interaction point Smaller particle flux

Electromagnetic Calorimeter

The ECAL measures the Energy of Electrons/Photons out to $|\eta| < 3$

Lead Tungstate Crystals (~75,848)

CMS

High Density (8.2 g/cm³) Short Radiation Length (8.9 mm) Total Crystal Length 230 mm \rightarrow 25.8 X₀ Small Moliere Radius (22 mm) 2 x 2 cm² crystal area 80% of light is emitted from PbWO₄ in 25 ns Resolution: $\left(\frac{\sigma}{E}\right)^2 = \left(\frac{2.83\%}{\sqrt{E}}\right)^2 + \left(\frac{0.124}{E}\right)^2 + (0.3\%)^2$

Here, E is in GeV

11/22/11

Hadronic Calorimeter

Sampling calorimeter

Layers of Scintillators and Absorbers

Hadron Calorimeter Subsystems located inside the Magnet and in the Forward Region

Covers |η|<5

CMS

Barrel and Endcap Region

Brass and Scintillator Barrel: $|\eta| < 1.4$ Endcap: $1.4 < |\eta| < 3$ Resolution: $\left(\frac{\sigma}{E}\right)^2 = \left(\frac{115\%}{\sqrt{E}}\right)^2 + (5.5\%)^2$

Forward Hadron Calorimeter

Steel and quartz fiber 3<|n|<5

Resolution:
$$\left(\frac{\sigma}{E}\right)^2 = \left(\frac{280\%}{\sqrt{E}}\right)^2 + (11\%)^2$$

11/22/11

sobel Ojalvo

CMS Trigger

- Each Bunch at the LHC contains >10¹¹ protons
- Beams are designed to cross every 25 ns (50 ns)
- 20 pp interactions per crossing \rightarrow Pile Up
 - .5 Billion particles per second grouped in 40 Million beam crossings per second with up to 1 MB data stored/event
- \rightarrow CMS trigger must reduce this to a recordable rate

2-Stage Trigger System:

CMS

1 GHz

Level 1 Trigger High-speed Custom Hardware Specialized Algorithms

100 kHz

High Level Trigger Software running on Commercial Processor Farm Algorithms similar to offline Reco

300 Hz

Level 1 Trigger

Calorimeter Trigger

CMS

Regional Calorimeter Trigger (RCT)

Finds e/y energy deposits

Finds regional energy deposits

Applies τ isolation

Forwards RCT objects to GCT

Global Calorimeter Trigger (GCT)

Sorts RCT Objects Calculates Missing E_T Performs Jet Clustering

Muon Trigger

Regional Triggers CSC DT find tracks

Global Muon Trigger Sorts Muons

Global Trigger

Makes Acceptance Decision Passes to HLT

High Level Trigger

Goal: Reduce Event Rate from 100kHz to 300Hz

→Hierarchical Selection of Data

Separate Events into Primary Datasets after Selection

Algorithms Similar to Offline Reconstruction

Tag Events for Analysis

CMS

100 KHz

1st: Muon Chambers + Calorimeters used for Reconstruction Reject events based on hits in Chambers/Calorimeters

Continuous Event Rejection

2nd: Add in Tracker Requirements on hits in Tracker

300 Hz

Analysis Overview

Used CMS 2011 Data (5 fb⁻¹ Total Integrated Luminosity) Data Reconstruction:

Reconstruct and ID Muons

Reconstruct and Select Jet

Simulate data

CMS

MC Samples used to Simulate Data with GEANT4

Initial comparison of Data and MC

Event Selection

B-Tagging Jets

Final Plots

Event Table

Event Display

Conclusions/Going Forward

Data Sets Used

CMS Integrated Luminosity: (analyzed 4.58 fb⁻¹)

Monte Carlo Generators

MadGraph

Used to simulate Standard Model, and Higgs Amplitudes and Events

Multi-parton processes in hadronic collisions

ZZ, ttbar, Z+Jets, W, WZ Monte Carlo Samples

Ργτηια

Higher-order order effects estimated by allowing branching of quarks/gluons Parton shower Hadronization Initial/final state radiation Underlying event Proton remnants contribute to the total event picture

QCD Monte Carlo Sample and Jet Hadronization

Showering, hadronization etc. (Рүтніа)

Signal and Background

GEANT4: Detector Simulation

Toolkit for simulation of the passage of particles through matter

CMSSW: CMS Software Framework

Detector and Electronics Response

Event Reconstruction (identical for Data and MC)

Signal

CMS

- pp→ZZ→µµjj Monte Carlo Sample
 - $\sigma = 5.9 \text{ pb}$, MadGraph

Most Important Backgrounds

Z+jets

• σ = 3048 pb, MadGraph

ttbar

• $\sigma = 157 \text{ pb}, \text{MadGraph}$

Muon Reconstruction

Standalone Reconstruction

Reconstruct Muons in Muon Chambers only

Tracker Reconstruction

CMS

Reconstruct Tracks in the Tracker and match with the Muon Chambers

Global Reconstruction

Match tracks in the tracker to Muon Chamber tracks by minimizing χ^2 value

sobel Ojalvo

11/22/11

Muon Isolation

Muon Isolation

CMS

Muons originating from a Z Boson are expected to be well isolated

Powerful QCD background discriminator

Isolation Variables:

Tracker Isolation

Sum of \boldsymbol{p}_{T} of the tracks around Muon

ECAL Isolation

Sum of ECAL energy deposit around Muon

HCAL Isolation

Sum of HCAL energy deposit around Muon

Relative Isolation < 0.1

 $Rel_{Iso} = \frac{I_{ECAL} + I_{HCAL} + I_{trk}}{P_T}$

here, p_T = Transverse Momentum of the Muon

Jet, ME_T Reconstruction

Particle Flow Algorithm:

CMS

Combines data from CMS Tracker and Calorimeters

Provides Event description using Particle Candidates:

Electrons, muons, charged & neutral hadrons

Particle candidates are combined to make composite objects: Taus, Missing E_{T} and Jets!

Jet Algorithms and Jet Selection

Jet Clustering

CMS

Anti-kT Algorithm:

Energy-Weighted Distance Parameter created iteratively around all particles

Particles in a Jet are combined based on Energy and Position

Other Particles within the Energy-Weighted Cone are called Proto-Jets These are included in the Jet

Anti-kT Algorithm is both Collinear Safe and Infrared Safe

Jet Selection

Particle Flow Jets anti-kT, R=0.5, clustering algorithm Jet P_T > 30 GeV Jet $|\eta| < 2.4$ $\Delta R \equiv \sqrt{\Delta \eta^2 + \Delta \phi^2}$

11/22/11

Muon and Jet Spectra at Initial Selection

CMS

Invariant Masses at Initial Selection

Invariant Mass

CMS

Muon/Jet ID and Reconstruction approximately match MC models

	Number of Events
Signal	186
Bkrd MC	38824
Total MC	39000
Data	38270

Invariant Masses at Initial Selection

CMS

11/22/11

sobel Ojalvo

At Least One Muon with p_T > 35GeV

Kinematic cuts to preferentially select signal

CMS

Muon Isolation

11/22/11

sobel Ojalvo

36

Muons should be well isolated (Not Originating from a Jet!)

CMS

Select Z->µµ 80GeV <M(µµ)<100 GeV

CMS

Missing EŦ

Invariant Masses $M(\mu_1\mu_2) = M(\mu_1\mu_2j_1j_2)$

 $Z \rightarrow \mu\mu$ can be used as a candle for understanding MC

CMS

There is still a Large Z+jets background

	Number of Events
Signal	114
Background	20331
Total MC	20445
Data	19349

$M(\mu_1 \mu_2 j_1 j_2)$

CMS

40

11/22/11

b-Jet Tagging

b-hadrons have a high mass and long lifetime →Look for a displaced Jet Vertex during reconstruction

Track Counting High Efficiency B-Tagging Calculate the signed impact parameter of all good tracks Sort the parameter Create b-Tag Discriminator

CMS

sobel Ojalvo

B-Tagging using Track Counting High Efficiency

Reduce non-Bottom Quark Jets Track Counting High Efficiency (CMS Standard):

CMS

11/22/11

Final Selection $M(\mu_1 \mu_2 j_1 j_2)$

CMS

11/22/11

44

11/22/11

Final Selection $M(\mu_1 \mu_2 j_1 j_2)$

Selection Summary

CUT	W	ww	WZ	QCD	ttbar	Z+Jets	ZZ	MC Total	DATA
Trigger Required	114	18	144	3839	2383	21220	114	42014	42014
μ_1 or μ_2 >35 GeV	108	19	265	1298	2637	32001	181	36551	35918
Rel Isolation<0.1	0	15	229	0	1443	26650	152	28524	27890
80 <m(µµ)<100< td=""><td>0</td><td>2.6</td><td>187</td><td>0</td><td>249</td><td>21719</td><td>123</td><td>22309</td><td>23526</td></m(µµ)<100<>	0	2.6	187	0	249	21719	123	22309	23526
MET< 30 [GeV]	0	0.6	158	0	38	19347	114	19675	19942
Btag j ₁ >2.6	0	0	11	0	26	1362	19	1420	1539
Btag j ₂ >1.9	0	0	0.86	0	18.2	275	9.2	304	344

CMS

Trigger Level: μ_1, μ_2 pt>20 [GeV] jet1, jet2 pt>30 [GeV] $\mu_1, \mu_2, j_1 j_2$ |eta|<2.4

Conclusions

- Strong Contribution to Higgs Search (Particularly in Low Mass regions)
- Muon/Jet ID and Reconstruction closely match MC models
 models
- ♦ Event Selection through P_T, ME_T, and Isolation requirements help isolate the Signal

CMS

B-Tagging greatly improves Signal/Background

Going Forward

- Efficiency corrections need to be evaluated and applied
- Evaluate more Methods of Jet Discrimination
- Improve Signal Significance
- Diboson Cross-Section Measurement
- Find the Higgs

CMS

Back Up Slides

CMS

😣 😣

Higgs Experimental Limits

Event Simulation less significant backgrounds

Important but less Significant Backgrounds W+jets

- σ = 31314 pb
- 80x10⁶ events generated with Pythia
- Event weight = 3.8x10⁻⁴

QCD

CMS

- σ = 84679 pb
- 25x10⁶ events generated with Pythia
- Event weight = 3.3x10⁻³

WZ

- σ = 18.2 pb
- 4.2x10⁶ events generated with Pythia
- Event weight = 1x10⁻⁶

WW

- σ = 43 pb
- 4.2x10⁶ events generated with Pythia
- Event weight = 4x10⁻⁶

Tevatron Diboson Measurements

Experiment	Results		
CDFII 1.96TeV 6.1fb ⁻¹	$\sigma(pp \rightarrow ZZ) = 2.18 \pm 0.63 \pm 0.13 \text{ pb}$		
ZZ→IIII	Expected signal 10.4, observed 14		
CDFII 1.96TeV 7.1fb ⁻¹	$\sigma(pp \rightarrow WZ) = 4.1 \pm 0.7 \text{ pb}$		
WZ→Ilnunu	~ 50 events		
D0 Run II, 1.7fb ⁻¹	σ(pp→ZZ) = 1.4 ±0.43(stat)±0.14 pb (sys)		
ZZ→IIII	~ 10 events		

CMS

11/22/11

Bdiscriminant (Significance of 2nd track)

$$d_0 Sig = \frac{d_0}{\sigma(d_0)}$$

Fermiophobic higgs cross-sections

Muon Requirements

Muon Requirements				
dxdy Vertex	<2mm			
Max χ^2 Value	10			
Tracker Hits	≥ 10			
Pixel Hits	≥ 1			
Muon Chamber Hits	≥ 1			
Muon Chamber Matches	≥ 2			

CMS

Correct the Vertex Distribution for Pile Up

Monte Carlo Samples are created without knowledge of the Event Pile Up in the Detector

Re-weight the Monte Carlo Vertex Distribution to match the Data Vertex Distribution

Vertices Pile Up Reweighted

CMS

Monte Carlo Pile Up Reweighting is used in the analysis

