A Measurement of the $Z \gamma$ Cross Section and

Limits on Anomalous Triple Gauge Couplings

at $\sqrt{ } \mathrm{s}=7 \mathrm{TeV}$ Using CMS

Lindsey Gray
27 August, 2012
Ph.D.Thesis Defense

Theoretical Background

The Standard Model

(O) Thee Generations of Matter

- 6 quarks
- 3 'up’ type, 3 'down' type
- 6 leptons
- 3 charged (e, μ, T)
- 3 neutral ($\mathrm{V}_{\mathrm{e}}, \mathrm{V}_{\mu}, \mathrm{V}_{\mathrm{T}}$), 'neutrinos'
\Rightarrow Massless in SM, but recent experiments demonstrate small $\Delta \mathrm{m}^{2}$ between generations!
(e) Force Carriers
- Massless Photon (γ): EM Force
- Massive $W^{ \pm}, Z:$ Weak Force
unified under $S U(2)\llcorner x U(I)$
- 8 massless gluons: Strong Force
(O) Higgs Boson
- In SM Provides mass to W, Z through spontaneous symmetry breaking
- 125 GeV Higgs-like excess in 2011+2012 LHC data

Lindsey Gray, UW Madison

Interactions in the Standard Model

Leptons

The Structure of the Proton

(The proton has substructure

- In collisions this substructure is probed
- One 'parton' from each colliding proton
(-) Proton is a bound state of quarks
- Valence quarks (uud) are exchanging virtual gluons - may split into u,d,s,c,b quarks creating 'sea' of partons
$\Rightarrow \quad$ Effect present at all times, 'intrinsic sea'
- \quad splitting to gluons allowed as well
- Valence quarks carry roughly half of proton total momentum
(0) Parton Distribution Functions describe structure
- Describe probability $f_{i}\left(x, Q^{2}\right)$ to find parton type ' i ', with momentum fraction ' x ' at momentum transfer Q^{2}
- Measured from experiment and evolved to various Q^{2}
- This means hadron colliders sample a wide range of energies
- $\hat{s}=x y S$ for momentum fractions x, y in two partons and beam energy S

Production of Dibosons

(O) Produced by boson radiation or annihilation off quarks, triple gauge couplings where allowed

- Triple gauge couplings (TGC) are between three vector bosons
- $W_{\gamma}, W Z$, and WW final states have Triple Gauge Couplings
- $\quad Z \gamma$ and $Z Z$ TGCs forbidden in SM
(O) This thesis aims to study the Z_{γ} final state
- Measure cross section and test for anomalous gauge couplings (aTGC)
- Energetic QCD ever present at LHC
- NLO calculations necessary to model data

Lindsey Gray, UW Madison

Neutral Anomalous Triple Gauge Couplings

() An on-shell neutral vector cannot decay into two on-shell neutral vectors

- Yang's Theorem

Furthermore, Z is not charged

- \quad SM γ does not couple
(O) EWK symmetries not fundamental and Lorentz invariance allows more couplings

$$
\Gamma_{\mathrm{Z} \gamma \mathrm{Z}}^{\alpha \beta \mu}\left(q_{1}, q_{2}, P\right)=\frac{P^{2}-q_{1}^{2}}{m_{\mathrm{Z}}^{2}}\left[h_{1}^{\mathrm{Z}}\left(q_{2}^{\mu} g^{\alpha \beta}-q_{2}^{\alpha} g^{\mu \beta}\right)\right.
$$

- Neutral aTGCs allowed in this case and their structure is well defined
- All dimension 6 or 8 operators

8 couplings allowed at tree level in Lorentz structure

$$
\begin{aligned}
& +\frac{h_{2}^{\mathrm{Z}}}{m_{\mathrm{Z}}^{2}} P^{\alpha}\left[\left(P \cdot q_{2}\right) g^{\mu \beta}-q_{2}^{\mu} P^{\beta}\right] \\
& +h_{3}^{\mathrm{Z}} \epsilon^{\mu \alpha \beta \rho} q_{2 \rho}
\end{aligned}
$$

- Produce different final state boson transverse moment (PT) distributions
- Search for deviation from SM distributions to test for aTGC

$$
\left.+\frac{h_{4}^{\mathrm{Z}}}{m_{\mathrm{Z}}^{2}} P^{\alpha} \epsilon^{\mu \beta \rho \sigma} P_{\rho} q_{2 \sigma}\right]
$$

- $\quad Z \gamma$ advantage: direct access to boson (γ)
- Form factor sometimes used to enforce unitarity
- Unitarity only need be enforced where there are data

$$
\frac{P^{2}-q_{1}^{2}}{m_{\mathrm{Z}}^{2}} \rightarrow \frac{P^{2}}{m_{\mathrm{Z}}^{2}} \quad \text { and } \quad h_{1-4}^{\mathrm{Z}} \rightarrow h_{1-4}^{\gamma}
$$

- No form factor used in this thesis

Experimental Setup

The Large Hadron Collider

(O) 3.5 (201I), 4 (2012), 7(design) TeV per beam

- $7,8,14 \mathrm{TeV}$ center of mass
- proton-proton or heavy ion
(O) 27 km circumference, 100 m underground
- Beams provided by cern accelerator complex

(LHC provides collisions to four main experiments

- ALICE: Dedical LHC Large Hadron Collider SPS Super Proton Synchrotron PS Proton Synchrotron
- ALICE: Dedicated heavy ion physics experiment
- LHCb: Dedicated b-physics experiment

LHC Operation in 2011

(O) Number of events for a given process is: $\quad N=\sigma \int \mathcal{L}_{i n s t} \mathrm{~d} t$

- σ is the cross section of the process
- Linst is the instantaneous luminosity ('integrated luminosity' = amount of data taken)
- Flux per unit time
(O) 2011 run aimed to maximize luminosity given 50 ns bunch spacing
- Improved beam sizes, higher bunch population

The Problem of Pileup

() Luminosity improvement $=$ pileup

- Smaller bunch size
- Higher bunch population

O Hard scatters overlaid with random events

- Random events mainly soft QCD
- Increase in calorimeter activity

- Particle ID must account for pileup effects to maintain performance
© Even other hard scatter events
- bottom display is 2 Zs

The Compact Muon Solenoid

Right handed coordinate system:
(Anti-Clockwise beam direction) z

RETURN YOKE

Particle Detection in CMS

Transverse slice through CMS

Lindsey Gray, UW Madison

Diameter $2,4 \mathrm{~m}$
Length $5,4 \mathrm{~m}$
Volume $24,4 \mathrm{~m}^{3}$
Running temperature $-10^{\circ} \mathrm{C}$
Dry atmosphere for 10 years

CMS: Silicon Tracker

CMS: Electromagnetic Calorimeter

(O) 76832 lead tungstate crystals used as radiator and light collector

- $\quad X_{0}=8.9 \mathrm{~mm}$, Moliere Radius $\left(R_{M}\right)=22 \mathrm{~mm}$
() EB - projective crystals in 'super modules'
- \quad | crystal $=22 \mathrm{~mm} \times 22 \mathrm{~mm} \times 230 \mathrm{~mm}$
(O) EE - projective 'super-crystals'
- trapezoidal crystals, $30 \mathrm{~mm} \times 30 \mathrm{~mm}$ at rear

(-) ES - lead radiator with silicon strips used to identify $\pi^{0} S$
() Good energy resolution, 5% at 45 GeV

Lindsey Gray, UW Madison

$$
\left(\frac{\sigma}{E}\right)^{2}=\left(\frac{2.8 \%}{\sqrt{E}}\right)^{2}+\left(\frac{0.12}{E}\right)+(0.30 \%)^{2}
$$

CMS: Hadronic Calorimeter

HB, HE: $|\eta|<3.0$ HF: $3.0<|n|<5.0$
(1) HB / HE - Brass radiator with interleaved scintillating plates
© HF - steel with embedded quartz wavelength shifting fibers

- Gives hermetic coverage to calorimetry $\left(\frac{\sigma}{E}\right)^{2}=\left(\frac{90 \%}{\sqrt{E}}\right)^{2}+(4.5 \%)^{2} \quad \mathrm{HB}$ and HE
(O) Designed to measure energetic jets

$$
\left(\frac{\sigma}{E}\right)^{2}=\left(\frac{172 \%}{\sqrt{E}}\right)^{2}+(9.0 \%)^{2} \quad \mathrm{HF}
$$

© Used to isolate leptons and photons in this analysis

CMS: Muon Systems

(DT - measure drift time of ions from gas ionization by muons

- $\quad 3.8$ ns for three consecutive, staggered drift cells
(0) CSC - measure in 2D using induced charge and drift time
- 7 ns for an entire chamber
() RPC - Measure position from charge avalanche on strips
- I ns timing resolution, fast triggering
() Yields improved tracking resolution at high muon momentum

Lindsey Gray, UW Madison

CMS: LI Trigger

40 MHz pipelined physics processor- latched to LHC clock
- no tracking information
- output rate of $50-90 \mathrm{kHz}$ in 20 II
- $\quad 100 \mathrm{kHz} @$ design
((Chooses best of:
- 4 muon candidates
- 4 isolated EM candidate
- 4 non-isolated EM candidates
- 4 jets
- 4 tau candidates

- Scalar and vector energy sums

CMS: High Level Trigger
© Events selected at LI are processed further using hierarchy of optimized or simplified versions of offline reconstruction algorithms

©Highly configurable, some analyses have tailored triggers$\mathrm{Z} \gamma$ uses inclusive di-muon and di-electron triggers

Saves raw detector data for offline reconstruction

Simulation \& Reconstruction

Monte Carlo Generators: Matrix Element

(O)

Matrix Element (ME) calculations and event generators

- Use monte carlo methods to integrate phase space
- Describe hard scatter, where perturbative methods accurate
(O) Event generators unweight events from calculation
- Generates final state distributed as shape of ME
- First stage of simulation input
(O) Implementations Used

- MCFM (MonteCarlo for Femtobarn Measurement)
- Cross section calculator, accurate at NLO α_{s} for $Z \gamma$
- MadGraph 5
- Multipurpose event generator, accurate at fixed orders in α_{s}
- Used to generate signal and primary background samples

- Sherpa
- Multipurpose fixed order generator, accurate at fixed orders in α_{s}
- Includes aTGC signal and is used to generate aTGC samples for limit setting

Monte Carlo Generators: Parton Shower

(O) Parton Showers

- Describe splitting of partons into jets
- Evolve partons down to $\Lambda_{\mathrm{QCD}}=217 \pm 24 \mathrm{MeV}$
- Creates 'showers' of partons
- Limit phase space of produced jets
- Poor description of multijet systems
- Solve with inclusive matching
(O) Hadronization
- Phenomenologically driven models
- Create color singlet hadrons from shower
- Reproduction of EM-rich showers known issue
© Use Pythia for parton shower and hadronization

Event Simulation

© GEANT4 package for interaction of particles with material
©Custom simulation of detector electronics

- Including trigger
© Simulated output data format as in real detector

Muon Reconstruction

© 2 Reconstruction Algorithms

- 'Global' Muons
- Reconstruct track in muon system
- Search for matching Si track within errors
- 'Tracker’ Muons
- Propagate track from silicon
- Search for hits within propagated error

- muon kept if at least one segment matched

Electron Reconstruction

© 'Supercluster’ (SC) of energy reconstructed from ECAL deposits

- Extended deposit in phi to capture bremsstralung
- Nearby track or searched for
© Track re-reconstructed with Gaussian Sum Filter algorithm
- Algorithm able to account for stochastic losses, i.e. bremsstralung
© Track-Cluster matching

- Discriminate against jets using ratio of track momentum to ECAL energy

Photon Reconstruction

©Same super clusters as electron

- Conversions extended in phi
- Start with 5×5 square of crystals about high energy 'seed'

OLarge EM rich jet background

- π^{0} production in jets

Event Selection

Muon Identification

(O) Require muons in detector and consistent with EWK boson

O High track quality by number of hits

- Pixels, strip and muons
© Good track fit
(O) Consistent with most energetic vertex in event
(O) Relative combined isolation $\Delta R=0.3$ rejects jets

- Rel. Comb. Iso. $=\left(\right.$ Iso. ${ }^{\text {ECAL }}+$ Iso. ${ }^{\text {HCAL }}+$ Iso. $\left..{ }^{\text {Trk }}-\pi \Delta R^{2} \rho\right) / p_{\mathrm{T}}$
- Subtract pileup using average energy density ρ
- Veto cone about muon, $\Delta R=0.1$

Description	criterion
Kinematics	$p_{\mathrm{T}}>20 \mathrm{GeV}$ and $\|\eta\|<2.4$
Number of pixel hits	>0
Number of tracker hits	>10
$\chi^{2} /$ n.d.f of the global muon fit	>10
Number of muon hits	>0
Number of chambers with matched segments	>1
Vertex d_{0}	$<0.1 \mathrm{~cm}$
Vertex d_{z}	$<0.02 \mathrm{~cm}$
Relative Combined Isolation	<0.1

Electron Identification

(O) Require рт $>20 \mathrm{GeV}$ and $|\eta|<1.4442$ or $1.560<|\eta|<2.5$
((Require ECAL deposit and track consistent

- Rejects combinatorial background

O Reject conversions using distance and angle to conversion track candidate

- $\cot \Delta \theta$, |dist|
© Use shower η width, $\sigma_{\text {inin }}$ and isolation to reject jets
- $\sigma_{\mathrm{ini} \eta}^{2}=\frac{\sum\left(\eta_{\mathrm{i}}-\bar{\eta}\right)^{2} w_{\mathrm{i}}}{\sum w_{\mathrm{i}}}, \bar{\eta}=\frac{\sum \eta_{\mathrm{i}} w_{\mathrm{i}}}{\sum w_{\mathrm{i}}}, w_{\mathrm{i}}=\max \left(0,4.7+\log \left(E_{\mathrm{i}} / E_{5 \times 5}\right)\right)$
© Selection criteria organized as 85% and 80% efficiency 'working points'

	WP85		WP80	
	Barrel	Endcap	Barrel	Endcap
$\Delta \varphi_{\mathrm{vtx}}$	0.039	0.028	0.027	0.021
$\Delta \eta_{\mathrm{vtx}}$	0.005	0.007	0.005	0.006
$\|\cot \Delta \vartheta\|$	0.02	0.02	0.02	0.02
$\|\operatorname{dist}\|$	0.02	0.02	0.02	0.02
$\sigma_{\text {ini }}$	0.01	0.031	0.01	0.031
Combined relative isolation	0.053	0.042	0.04	0.033

85\% Working Point (WP85) main analysis selection

80\% Working Point (WP80) used to compare EM shower behavior

Event Selection: Photon Identification

© Photon pt $>15 \mathrm{GeV},|\mathrm{n}|<1.4442$ and $\mathrm{I} .560<|\eta|<2.5$
© Require little HCAL activity behind SuperCluster (H/E)
(O) Use $\sigma_{i n i n}$ to reject/estimate jet-fakes
(O) Electron rejection (pixel seed veto)
© Isolation pileup corrected with effective areas

- Complex veto regions around photon SC,
- Remove conversion tracks, remove extended conversion deposit
- Different for each subdetector

Description	criterion
Kinematics	$E_{\mathrm{T}}>15 \mathrm{GeV}$
	$1.4442<\|\eta\|<1.566$ and $\|\eta\|<2.5$
Ratio of HCAL to ECAL energy (H / E)	<0.05
Shower width, $\sigma_{\text {iniq }}$	<0.011 in EB and <0.030 in EE
Photon has pixel seed	False for both EB and EE photons
Tracker Isolation	$I_{\text {trk }}-0.001 \cdot E_{\mathrm{T}}-\rho \cdot A_{\text {eff }}^{\text {trk }}<2.0$
ECAL Isolation	$I_{\mathrm{ECAL}}-0.006 \cdot E_{\mathrm{T}}-\rho \cdot A_{\text {eff }}^{\text {ECAL }}<4.2$
HCAL Isolation	$I_{\mathrm{HCAL}}-0.0025 \cdot E_{\mathrm{T}}-\rho \cdot A_{\text {eff }}^{\text {HCAL }}<2.2$

Effective Areas:

Isolation	barrel	endcap
Tracker	0.0167	0.032
ECAL	0.183	0.090
HCAL	0.062	0.180

Event Selection:Trigger \& Clean Crossing

ODouble Object Triggers: (use DoubleMu/E)

- Isolated electrons 17 GeV leading, 8 GeV trailing thresholds
- Non-isolated muons 13 GeV leading, 8 GeV trailing
- $5.0 \mathrm{fb}^{-1}$ recorded
© Require a well measured vertex to be present
- $\left|\mathrm{d}_{\mathrm{o}}\right|<2 \mathrm{~cm},|\mathrm{dz}|<24 \mathrm{~cm}$, ndof >4

ORemove events with beam scraping

- 25% of all tracks present point towards interaction region

Zү Event Selection Summary

Before Cuts: 58582068 evts.
© Z(ee) γ (two good electrons)

- Apply run-dependent energy scale correction
- Pt $^{>}>20 \mathrm{GeV}$
- In ECAL fiducial region
- Use WP85 selection criteria
- Require HLT match to both legs of trigger After Z Selection: 84045 evts.

Before Cuts: 56945443 evts.
($\mathrm{Z}(\mu \mu) \gamma$ (two good muons)

- \quad рт $>20 \mathrm{GeV},|\eta|<2.4$
- Well-reconstructed track
- PU corrected rel. comb. iso < .I
- Require HLT match to both legs of trigger
() Dilepton Mass $>50 \mathrm{GeV}$

O Select the highest PT photon passing selection

- Apply run dependent energy scale correction
- \quad PT $>15 \mathrm{GeV}$, ECAL fiducial cuts
- Passes photon isolation and ID criteria
- $\Delta R(1, \gamma)>0.7$

After Full $Z \gamma$ Selection: 4108 evts.
After Z Selection: I3096| evts.

Event Selection: Muon Efficiency

O Tag and Probe to measure efficiencies

- Exploit $Z(\mu \mu)$ resonance
- Tag fully identified muon
- Probe passes or fails selection criteria
- Fit Z peak to extract efficiency
(O) In this analysis use efficiency ratios to scale MC to data efficiencies
- Maps of 'scale factors' adjust efficiencies differentially
- Realistic modification of MC muon distributions

Event Selection: Electron Efficiency

© Two Tag \& Probe Steps

- Measure ID eff. using Triggered Electron + HLT SuperCluster
- Measure trigger eff. using Triggered Electron + nonisolated trigger electron

OApply to MC statistically

- Scale factors evolve with time
- changing beam conditions
- Ensure MC approximates composition of data

Event Selection: Photon Efficiency

Photons not triggered- but hard to find pure source of photons
- Use Z electrons to measure efficiency except pixel seed veto
© Measure pixel seed veto efficiency with high-purity FSR $Z(\mu \mu \gamma)$ events
- Tag and probe using offshell Z as tag and photon as probe

Pixel Seed Veto Efficiencies:

	Data (\%)	MC (\%)	Data/MC (\%)
	Run 2011 A		
EB	97.2 ± 0.3	97.8 ± 0.2	99.4 ± 0.3
EE	90.0 ± 0.9	91.0 ± 0.5	98.9 ± 0.9
	Run 2011 B		
EB	96.1 ± 0.4	97.1 ± 0.2	99.0 ± 0.4
EE	87.3 ± 1.3	89.3 ± 0.5	97.8 ± 1.6

Z γ Cross Section Measurement

Zү Cross Section: Backgrounds

© There are three main sources of background for $\mathbf{Z} \gamma$

- Photons from jet-fakes
- Determine amount using Template Method (next slide)
- TTbar: Real leptons + fake photon (Taken from MC)
- $Z(T T) \gamma: T$ decays to $e / \mu+v$ (Taken from MC)

Fake γ Bkg:Template Method

Use two component fit:

$$
f\left(\sigma_{i \eta i \eta}\right)=\mathrm{N}_{\mathrm{S}} \cdot S\left(\sigma_{i \eta i \eta}\right)+\mathrm{N}_{\mathrm{B}} \cdot B\left(\sigma_{i \eta i \eta}\right)
$$

(-) Signal templates are obtained from Madgraph $W / Z \gamma$ samples

- Use Zee candidates to determine Data/MC shift
- Templates from FSR $Z \gamma$ used as a cross check to validate MC signal template
(-) Background templates are data-driven
- Taken from inverted track isolation sideband in Jet dataset

$$
\begin{array}{ll}
-\quad & 2 \mathrm{GeV}<I s o_{T R K}-0.001 E_{T}^{\gamma}-0.0167 \rho<5 \mathrm{GeV} \text { for } \mathrm{EB} \\
2 \mathrm{GeV}<\text { Iso }_{T R K}-0.001 E_{T}^{\gamma}-0.0320 \rho<3 \mathrm{GeV} \text { for } \mathrm{EE}
\end{array}
$$

- Shape difference between MC and data-driven templates used as systematic

The fit is performed using an unbinned extended maximum log likelihood fit

Lindsey Gray, UW Madison

Zү Template MethodYields

OUnderestimation +Jets background a known effect

- Data-driven method described jet-fakes better by construction

- Reweigh MC Z+Jets
- $w_{i}=\frac{\text { Template Yield }_{i}}{\text { MC Yield }_{i}}$
- Reweighed in photon PT
- Projected into other quantities

Zү Distributions: Photon E_{T}

©Photon E_{T} distribution agrees with MadGraph5

- Normalized to MCFM
- Agreement over nearly two orders of magnitude
© Z+Jets Background distribution normalized to template method yield and shape

Zү Distributions: Mz_{z}

OEM I/FSR turned off in MG5 samples

- Causes poor modeling of Z peak FSR tail
- Initially to avoid double counting
- Effect < I\% on acceptance

$Z \gamma$ Distributions: $M_{Z \gamma}$

© Good agreement to high invariant mass

Zү Distributions: $Z_{\gamma \text { Рт }}$ Distributions

© Distributions in both channels agree

- Inclusively matched $\mathrm{Z} \gamma$ sample describes data

Zү Cross Section: Systematics

(O) Luminosity uncertainty

- Luminosity measured by pixel cluster counting
- Driven by uncertainty in luminous region, activation
(O) Photon/Electron energy scale uncertainty
- Absolute photon energy scale measured from data
- Uncertainties on scale drive bin migrations
- Photon \& Electron scales correlated and varied simultaneously in ee γ channel
(O) Photon/Electron energy resolution
- Resolution of electrons and photons in MC not same as data
- Smear MC to match data resolution
- Change in selected events used to estimate error

Zү Cross Section: Systematics

() Pileup estimation

- MC pileup distribution is reweighed to match data
- Measured proton-proton cross section used
- $\quad 68.3 \pm 3.4 \mathrm{mb}$
- Vary to determine effect on MC acceptance
((PDF uncertainties
- PDFs experimentally measured
- Vary associated error eigenvectors to created weights
- Measure reweighting effect on acceptance
() Data / MC scale factor uncertainties
- Data/MC scale factors have statistical uncertainties
- Also uncertainty on bkg model choice
- Vary individual scale factors, assess change in data-averaged scale factor

Template Method Systematics

() Shift of the MC signal template

- Known GEANT4 'feature': EM showers are not properly simulated, resulting in larger showers
- Extract background with and without shift, assign difference as systematic
() Sideband Bias \& Signal Contamination
- Tracking Isolation sideband is chosen to be minimally correlated with $\sigma_{\text {inin }}$
- Some bias remains
- Tracking isolation sideband is not completely free of real photons, makes template more 'signal-like'
- Estimate both using MC by vetoing or enhancing the real photon contribution
() Statistical Sampling of the Underlying Distribution
- Statistical sampling of background template is finite and for low statistics can under-sample tails, causing a bias.
- Estimate bias using a bootstrapping procedure, estimating variance with 'toy templates' that have the statistics of the data-driven templates

Zү Cross Section: Systematics Summary

		$e e \gamma$	$\mu \mu \gamma$
Source	Systematic uncertainty	Effect on $N_{\text {sig }}$	
Electron and photon energy scale	ele: 0.5% pho: 1% (EB) 3\% (EE)	3.0 \%	n / a
Photon energy scale	1% (EB) 3% (EE)	n / a	4.19\%
Muon p_{T} scale	0.2\%	n / a	0.60\%
Total uncertainty on $N_{\text {sig }}$		3.0 \%	4.23\%
Source	Systematic uncertainty	Effect on $\mathcal{F}=A \cdot \epsilon_{M C}$	
Electron and photon energy resolution	1\% (EB), 3\% (EE)	0.2 \%	n / a
Photon energy resolution	1% (EB), 3% (EE)	n/a	0.06\%
Muon p_{T} resolution	0.6\%	n / a	0.08\%
Pileup	Vary estimated PU using $68.3 \pm 3.4 \mathrm{mb}$	0.6 \%	0.44\%
PDF	CTEQ6L reweighting	1.1\%	1.10\%
Signal Modeling		0.6%	1.10\%
Total uncertainty on $\mathcal{F}=A \cdot \epsilon_{M C}$		1.4%	1.22\%
Source	Systematic uncertainty	Effect on $\rho_{\text {eff }}$	
Electron reconstruction	0.4\%	0.8 \%	n / a
Electron trigger	0.1\%	0.1 \%	n / a
Electron ID and isolation	2.5\%	5.0 \%	n/a
Muon trigger	1.5\%	n / a	1.0 \%
Muon reconstruction	0.9\%	n / a	1.0 \%
Muon ID and isolation	0.9\%	n / a	2.30\%
Photon ID and isolation	0.5\% (EB), 1.0% (EE)	0.5\%	1.00\%
Total uncertainty on $\rho_{\text {eff }}$		5.1 \%	2.51\%
Source	Systematic uncertainty	Effect on background yield	
Template method	$\begin{aligned} & 4.4 \%(\mathrm{~EB}), 5.6 \% \text { (EE) } \\ & 4.9 \%(\mathrm{~EB}), 5.8 \%(\mathrm{EE}) \end{aligned}$	$\begin{gathered} 5.1 \% \\ \mathrm{n} / \mathrm{a} \end{gathered}$	$\begin{gathered} \mathrm{n} / \mathrm{a} \\ 5.5 \% \end{gathered}$
Total uncertainty on background		5.1 \%	5.5\%
Source	Systematic uncertainty	Effect on luminosity	
Luminosity	2.2\%	2.2\%	2.2\%

Zү Cross Section: Measurement

© Theoretical Cross Section: $5.45+/-0.27$ pb (scale + PDF)
© Cross Section from data:

$$
\begin{gathered}
\sigma(\mathbf{p p} \rightarrow \mathbf{Z} \gamma \rightarrow \mathbf{e e} \gamma)=\mathbf{5 . 2 0} \pm \mathbf{0 . 1 3} \text { (stat.) } \pm \mathbf{0 . 3 0} \text { (syst.) } \pm \mathbf{0 . 1 1} \text { (lumi.) } \\
\sigma(\mathbf{p p} \rightarrow \mathbf{Z} \gamma \rightarrow \mu \mu \gamma)=\mathbf{5 . 4 3} \pm \mathbf{0 . 1 0} \text { (stat.) } \pm \mathbf{0 . 2 9} \text { (syst.) } \pm \mathbf{0 . 1 2} \text { (lumi.) } \\
\sigma(p p \rightarrow Z \gamma \rightarrow \ell \ell \gamma)=5.33 \pm 0.08 \text { (stat.) } \pm 0.25 \text { (syst.) } \pm 0.12 \text { (lumi.) pb. } \\
\text { Input parameters for: } \sigma=\frac{N_{\mathrm{obs}}-N_{\mathrm{bkg}}}{\mathcal{F} \cdot \rho_{e f f} \cdot \mathcal{L}}
\end{gathered}
$$

Parameters	$\mathrm{Z} \gamma \rightarrow e e \gamma$	$\mathrm{Z} \gamma \rightarrow \mu \mu \gamma$
$N_{\text {observed }}$	4108 ± 64.1 (stat.)	6463 ± 80.4 (stat.)
$N_{\text {bataghriven }}^{\text {aackround }}$	905.9 ± 49.8 (stat.) ± 31.5 (syst.)	1404.3 ± 56.4 (stat.) ± 77.0 (syst.)
$N_{\text {bacher }}^{\text {ochround }}$	21.2 ± 1.8 (stat.)	23.7 ± 2.2 (stat.)
$N_{\text {Sig }}$	3154.2 ± 81.0 (stat.) ± 95.1 (syst.)	5034.9 ± 98.2 (stat.) ± 213.2 (syst.)
$A \cdot \epsilon_{M C}$	0.132 ± 0.0018 (syst.)	0.196 ± 0.001 (stat.)
$\rho_{\text {eff }}$	0.929 ± 0.0466 (syst.)	0.945 ± 0.016 (syst.)
$\int L d t$	4961.1 ± 109.1 (syst.)	4998.9 ± 110.0 (syst.)

Zү Cross Section:Theory Comparison

$\bigcirc Z_{\gamma}$ cross section consistent with MCFM at higher PT

- Error is half systematic at $>60,90 \mathrm{GeV}$

		>15 > 60	$\begin{aligned} & >90 \\ & \stackrel{>}{7} \mathrm{E}_{\mathrm{T}}^{\gamma}(\mathrm{GeV}) \end{aligned}$
$\mathrm{Z} \gamma$			
	eer	$\mu \mu \gamma$	
$E_{\mathrm{T}}^{\gamma}>60 \mathrm{GeV}$	0.142 ± 0.019 (stat.) ± 0.019 (syst.) ± 0.003 (lumi.)	0.139 ± 0.013 (stat.) ± 0.015 (syst.) ± 0.003 (lumi.)	
Combination	0.140 ± 0.011 (stat.) ± 0.013 (syst.) ± 0.003 (lumi.) pb		
NLO Prediction	$0.124 \pm 0.009 \mathrm{pb}$		
$E_{\mathrm{T}}^{\gamma}>90 \mathrm{GeV}$	0.047 ± 0.013 (stat.) ± 0.010 (syst.) ± 0.001 (lumi.)	0.046 ± 0.008 (stat.) ± 0.010 (syst.) ± 0.001 (lumi.)	
Combination	0.046 ± 0.007 (stat.) ± 0.009 (syst.) ± 0.001 (lumi.) pb		
NLO Prediction	$0.040 \pm 0.004 \mathrm{pb}$		

Limits on Anomalous Triple Gauge Couplings

aTGC LimitsNon-Abelian $S U(2)\llcorner x U(1)$ symmetry of SM exactly predicts couplings of gauge bosons

- Least well-measured portion of the SM
- Anomalous gauge couplings are a clear sign of BSM physicsZ_{γ} has no natural triple gauge couplings in the SM
- CMS sets limits on $h_{3}{ }^{Z, \gamma}$ and $h_{4}{ }^{Z, \gamma}$

ISR

FSR

TGC
(ZZY and $Z Y Y$ are not allowed in $S M!$)

Form factor not applied

- 'Raw’ coupling limits presented

Limits set using modified frequentist CLs methodology,

aTGC Limits: $Z \gamma$, ee $+\mu \mu$

© No observed excess

© Observed limit is 1σ under-fluctuated

- Comes from electron channel

© Most stringent limits on aTGCs thus far

	h_{3}^{γ}	h_{4}^{γ}	h_{3}^{Z}	h_{4}^{Z}
$Z \gamma \rightarrow e e \gamma$	$[-0.013,0.013]$	$[-1.1 \mathrm{e}-4,1.1 \mathrm{e}-4]$	$[-0.011,0.011]$	$[-9.9 \mathrm{e}-5,9.5 \mathrm{e}-5]$
$Z \gamma \rightarrow \mu \mu \gamma$	$[-0.013,0.013]$	$[-1.1 \mathrm{e}-4,1.2 \mathrm{e}-4]$	$[-0.011,0.011]$	$[-1.0 \mathrm{e}-4,1.1 \mathrm{e}-4]$
$\mathrm{Z} \gamma \rightarrow \ell \ell \gamma$	$[-0.010,0.010]$	$[-8.8 \mathrm{e}-5,8.8 \mathrm{e}-5]$	$[-8.6 \mathrm{e}-3,8.4 \mathrm{e}-3]$	$[-8.0 \mathrm{e}-5,7.9 \mathrm{e}-5]$

CMS aTGC Limits Comparison: LEP

© LEP limits set with no form factor using PT and decay angles

- Used neutrino and quark decays of Z
- Can differentiate $h^{1,2}$ from $h^{3,4}$
- Access to sign of $h^{3,4}$
© All limits from LEP beat by CMS
- More than 2 orders of magnitude
- Due to extended kinematic reach and statistics

OPAL 189 GeV

CMS aTGC Limits Comparison:Tevatron

© All Tevatron limits set using form factor and PT distribution

- $\wedge<$ energies at LHC
- LHC would resolve particles responsible for low energy aTGCs in this case

CDF:

- Not physically relevant scenario
- Arbitrarily limits LHC sensitivity

Parameter	$(\Lambda=1.2 \mathrm{TeV})$	$(\Lambda=1.5 \mathrm{TeV})$
h_{3}^{Z}	$[-0.024,0.027]$	$[-0.020,0.021]$
h_{4}^{Z}	$[-0.0013,0.0013]$	$[-0.0009,0.0009]$
h_{3}^{γ}	$[-0.026,0.026]$	$[-0.022,0.020]$
h_{4}^{γ}	$[-0.0012,0.0013]$	$[-0.0008,0.0008]$

- Cannot directly compare

$$
f(\hat{s})=\frac{1}{\left(1+\hat{s} / \Lambda^{2}\right)^{n}}
$$

CMS aTGC Limits Comparison:ATLAS

OATLAS limits set using fifth of 20 II dataset

OCompared to CDF, D0, and CMS

- Used unphysical form factor for comparison
- Some comparison of statistical power between LHC, Tevatron
- No-form factor limits too
- CMS combined limits better by statistical factor of $\mathrm{I} / \sqrt{ } 5$

	Measured	Measured	Expected
Λ	1.5 TeV	∞	∞
h_{3}^{γ}	$(-0.074,0.071)$	$(-0.028,0.027)$	$(-0.027,0.027)$
h_{3}^{Z}	$(-0.051,0.068)$	$(-0.022,0.026)$	$(-0.022,0.025)$
h_{4}^{γ}	$(-0.0028,0.0027)$	$(-0.00021,0.00021)$	$(-0.00021,0.00021)$
h_{4}^{Z}	$(-0.0024,0.0023)$	$(-0.00022,0.00021)$	$(-0.00022,0.00021)$

CMS:

	h_{3}^{γ}	h_{4}^{γ}	h_{3}^{Z}	h_{4}^{Z}
$Z \gamma \rightarrow e e \gamma$	$[-0.013,0.013]$	$[-1.1 \mathrm{e}-4,1.1 \mathrm{e}-4]$	$[-0.011,0.011]$	$[-9.9 \mathrm{e}-5,9.5 \mathrm{e}-5]$
$Z \gamma \rightarrow \mu \mu \gamma$	$[-0.013,0.013]$	$[-1.1 \mathrm{e}-4,1.2 \mathrm{e}-4]$	$[-0.011,0.011]$	$[-1.0 \mathrm{e}-4,1.1 \mathrm{e}-4]$
$Z \gamma \rightarrow \ell \ell \gamma$	$[-0.010,0.010]$	$[-8.8 \mathrm{e}-5,8.8 \mathrm{e}-5]$	$[-8.6 \mathrm{e}-3,8.4 \mathrm{e}-3]$	$[-8.0 \mathrm{e}-5,7.9 \mathrm{e}-5]$

Conclusions

(O) Presented a complete analysis of the $Z \gamma$ final state

- Cross Section measurements:
- photon pt $^{\prime}$ l $15,60,90 \mathrm{GeV}$
- Anomalous triple gauge coupling limits
- Better than most recent ATLAS by statistics in charged lepton channels
(e) Outlook
- 2012 LHC data at 8 TeV improves kinematic reach
- $\quad \mathrm{Z} \gamma$ cross section larger
- At least $4 x$ more integrated lumi. than 2012
- Improve limits by at least $2 x$ (not including kinematic factor!)
- New treatment of aTGCs from T. Stelzer et al. promising
- More theoretically consistent treatment of anomalous couplings

Backup

Limited Phase Space in Shower MC

© Each SMC hard parton considered alone

- Limits phase space
- Results in poor modeling at high PT of the matrix element part of the event

Photon Energy Corrections From PHOSPHOR

© Data-driven fit of PHOton Scale and Resolution
© Uses FSR $\mu \mu \gamma$ invariant mass

- Energy Scale from Z peak position
- Energy Resolution from Z width
(O) Pileup dependence of energy scale is averaged over by run period

O Scale in data is different from MC due to

- Material budget mis-modeling
- GEANT4 shower mis-modeling
- ECAL calibration

Zү Distributions:Vertex Multiplicity

©Pileup Reweighing checks out fine

ATLAS Results: Cross Section

http://arxiv.org/abs/I205.253|

(b)

FIG. 3. The measured cross section for (a) $W \gamma$ production, (b) $Z \gamma$ production as a function of the photon transverse energy, in the extended fiducial region as defined in Table III, together with the SM model prediction. The lower plots show the ratio between the data and the prediction of the MCFM generator.

CMS Cross Section Theory Comparison

$\mathrm{Z} \gamma$			
	$e e \gamma$		
$E_{\mathrm{T}}^{\gamma}>60 \mathrm{GeV}$	0.142 ± 0.019 (stat.) ± 0.019 (syst.) ± 0.003 (lumi.)	0.139 ± 0.013 (stat.) ± 0.015 (syst.) ± 0.003 (lumi.)	
Combination	0.140 ± 0.011 (stat.) ± 0.013 (syst.) ± 0.003 (lumi.) pb		
NLO Prediction	$0.124 \pm 0.009 \mathrm{pb}$		
$E_{\mathrm{T}}^{\gamma}>90 \mathrm{GeV}$	0.047 ± 0.013 (stat.) ± 0.010 (syst.) ± 0.001 (lumi.)	0.046 ± 0.008 (stat.) ± 0.010 (syst.) ± 0.001 (lumi.)	
Combination	0.046 ± 0.007 (stat.) ± 0.009 (syst.) ± 0.001 (lumi.) pb		
NLO Prediction	$0.040 \pm 0.004 \mathrm{pb}$		

CMS aTGCs: Z γ Detail

CMS aTGCs: Z γ Detail

h_{4}^{γ}

h_{3}^{γ}

$\mathrm{h}_{4}^{\mathrm{Z}}$

h_{3}^{Z}

$\mathrm{h}_{4}^{\mathrm{Z}}$

aTGC Limits: Z γ, ee $+\mu \mu+\mathrm{VV}$

OZ $(v v) \gamma$ has significantly more statistical power at large photon PT

- Combine with charged lepton limit to achieve 6x improvement
© Limits I-I. 5σ underfluctuated
- Driven by underfluctuations in ee and VV channels

$Z \gamma$ and Higgs Production

Datasets Used in the $\mathrm{V} \gamma$ Analyses

MC Signal:

Process (private MG5)	$\sigma_{\text {MadGraph }} \mathrm{pb}$	$\sigma_{\text {NLO }}, \mathrm{pb}$
$W \rightarrow e \nu+\gamma$	50.7	56.3
$W \rightarrow \mu \nu+\gamma$	50.7	56.3
$\mathrm{Z} \rightarrow e e+\gamma$	10.6	12.3
$\mathrm{Z} \rightarrow \mu \mu+\gamma$	10.6	12.3

*aTGC samples produced with SHERPA

MC Background:

Process (Fall11)	σ, pb	Dataset Name (AODSIM data tier)
$\mathrm{W}_{\gamma} \rightarrow \mathrm{ev}^{\prime}$	137.3 (NLO)	/WGToENuG_TuneZ2_7TeV-madgraph-tauola
$W \gamma \rightarrow \mu v \gamma$	137.3 (NLO)	/WGToMuNuG_TuneZ2_7TeV-madgraph-tauola
$W_{\gamma} \rightarrow \tau v \gamma$	137.3 (NLO)	/WGToTauNuG_TuneZ2_7TeV-madgraph-tauola
$\mathrm{Z} \gamma \rightarrow$ ee γ	45.2 (NLO)	/ZGToEEG_TuneZ2_7TeV-madgraph-tauola
$\mathrm{Z} \gamma \rightarrow \mu \mu \gamma$	45.2 (NLO)	/ZGToMuMuG_TuneZ2_7TeV-madgraph-tauola
$\mathrm{Z} \gamma \rightarrow \tau \tau \gamma$	45.2 (NLO)	/ZGToTauTauG_TuneZ2_7TeV-madgraph-tauola
$W \rightarrow l v+j e t s$	31314 (NNLO)	/WJetsToLNu_TuneZ2_7TeV-madgraph-tauola
$\mathrm{Z} \rightarrow \mathrm{ll}+$ jets	3048 (NNLO)	/DYJetsToLL_TuneZ2_M-50_7TeV-madgraph-tauola
$t \bar{t}+j e t s$	165 (NNLO)	/TTJets_TuneZ2_7TeV-madgraph-tauola
$t \bar{t}+\gamma$	0.444 (LO)	privately produced
WW	5.7 (NLO)	/WWJetsTo2L2Nu_Tunez2_7TeV-madgraph-tauola
WZ	18.2 (NLO)	/WZ_Tunez2_7TeV_pythia6_tauola
ZZ	5.9 (NLO)	/ZZ_TuneZz_7TeV_pythia6_tauola
DiPhoton + jets	190.56 (NLO)	/DiPhotonJets_7TeV-madgraph
$\gamma+j$ jets ($p_{T}-20$)DoubleEMEnriched	651.5 (NLO)	/GJet_Pt-20_doubleEMEnriched_Tunez2_7TeV-pythia6
QCD ($p_{T}-30$ to40)DoubleEMEnriched	9614 (LO)	1QCD_Pt-30to40_doubleEMEnriched_Tunez2_7TeV-pythia6
QCD ($p_{T}-40$)DoubleEMEnriched	40392 (LO)	/QCD_Pt-40_doubleEMEnriched_TuneZ2_7TeV-pythia6
Process (Summer11)	σ, pb	Dataset Name (AODSIM data tier)
$\gamma+j \operatorname{ets}\left(\hat{p_{T}}: 0-15\right)$	8.420×10^{7}	/G_Pt_0to15_Tunez2_7TeV_pythia6
$\gamma+j$ ets ($\hat{T_{T}}: 15-30$)	1.717×10^{5}	/G_Pt_15to30_TuneZ2_7TeV_pythia6
$\gamma+j \operatorname{ets}\left(\hat{p_{T}}: 30-50\right)$	1.669×10^{4}	/G_Pt_30to50_Tunez2_7TeV_pythia6
$\gamma+j e t s\left(\hat{p_{T}}: 50-80\right)$	2.722×10^{3}	/G_Pt_50to80_Tunez2_7TeV_pythia6
$\gamma+j e t s\left(\hat{p_{T}}: 80-120\right)$	4.472×10^{2}	/G_Pt_80to120_TuneZ2_7TeV_pythia6
$\gamma+j e t s\left(\hat{p_{T}}: 120-170\right)$	8.417×10^{1}	/G_Pt_120to170_TuneZ2_7TeV_pythia6
$\gamma+j e t s\left(\hat{p_{T}}: 170-300\right)$	2.264×10^{1}	/G_Pt_170to300_TuneZ2_7TeV_pythia6
$\gamma+j e t s\left(\hat{p_{T}}: 300-470\right)$	1.493	/G_Pt_300to470_TuneZ2_7TeV_pythia6
$\operatorname{QCD}\left(\hat{p_{T}}: 5-15\right)$	3.675×10^{10}	QQCD_Pt_5to15_TuneZ2_7TeV_pythia6
$\operatorname{QCD}\left(\hat{p_{T}}: 15-30\right)$	8.159×10^{8}	/QCD_Pt_15to30_Tunez2_7TeV_pythia6
QCD ($\left.\hat{p_{T}}: 30-50\right)$	5.312×10^{7}	/QCD_Pt_30to50_TuneZ2_7TeV_pythia6
QCD ($\hat{p_{T}}: 50-80$)	6.359×10^{6}	/QCD_Pt_50to80_TuneZ2_7TeV_pythia6
QCD ($\left.\hat{p}_{T}: 80-120\right)$	7.843×10^{5}	/QCD_Pt_80to120_Tunez2_7TeV_pythia6
$\operatorname{CCD}\left(\hat{p_{T}}: 120-170\right)$	1.151×10^{5}	/QCD_Pt_120to170_TuneZ2_7TeV_pythia6
$\operatorname{CCD}\left(\hat{p_{T}}: 170-300\right)$	2.426×10^{4}	/QCD_Pt_170to300_TuneZ2_7TeV_pythia6
$\operatorname{CCD}\left(\hat{p_{T}}: 300-470\right)$	1.168×10^{3}	/QCD_Pt_300to470_TuneZ2_7TeV_pythia6
$\operatorname{QCD}\left(\hat{p}_{T}: 470-600\right)$ $O C D\left(b_{T}>20\right)$	7.022×10^{1}	/QCD_Pt-470to600_TuneZ2_7TeV_pythia6

‘Zү’ Pileup Combinatorial Event

Kinematics are clearly not of a Z recoiling off photon.

This event removed from final selection.

