

Search for Invisible Higgs Decays to muons+MET with CMS at the LHC

Nick Smith Preliminary Exam December 14, 2015

Outline

- Theoretical Motivation
- Large Hadron Collider
- Compact Muon Solenoid
- Event Reconstruction
- Previous Results
- Analysis Cut Flow
- Discussion of Systematics
- Final Result
- Future Plans

The Standard Model

Standard Model Interactions

N. Smith

- Fermions interact through gauge bosons
- Higgs field provides mass for:

 - Massive fermions

SM Higgs Production

- Higgs interactions have implications for production mechanisms
- Most significant mechanisms at proton colliders shown here

Note: eventual dataset for this analysis: 100fb⁻¹

SM Higgs Decays

With 19.7fb⁻¹ at 8TeV and 5.1fb⁻¹ at 7TeV, CMS found the Standard Model Higgs

- Discovery channels (>5σ)
 - ZZ
 - γγ
- Evidence channels (>3σ)
 - WW
 - TT
- Difficult channels
 - bb (~2σ)
 - µµ

Higgs decays at m_H=125GeV

Invisible Higgs Decays

- All measured decay channels line up with SM expectation
- Of particular interest: Invisible Higgs decays
 - To particles impossible to directly detect at CMS
- In SM, only $H \rightarrow ZZ^* \rightarrow 4v$ (0.1%)
- Higgs is a newly observed particle...
- DM candidate couples to Higgs?

How do we detect invisible particles?

- In this analysis: ZH production channel
- Signature: two leptons, missing energy

7

The Large Hadron Collider

- 27km-circumference ring buried ~100m underground
- Collides both protons and heavy ions
- Two beams counter-rotate, interact at 4 points
- 4 Main Detectors
 - CMS, ATLAS: general purpose detectors
 - LHCb: Forward & b physics
 - ALICE: Heavy Ion physics

Preliminary Exam - 14 Dec 2015

 $1 \text{ barn} = 10^{-24} \text{ cm}^2$

Proton Beam & Luminosity

CMS Integrated Luminosity, pp, 2015, $\sqrt{s}=$ 13 TeV

Number of expected events depends on:

- Cross Section
 - Process-dependent
- Integrated luminosity
 - LHC tunes beam to optimize
 - CMS records data 24x7

$\frac{1}{2} \frac{1}{2} \frac{1}$	Design	2010-11	2012	2015	2016-18*
Beam Energy (TeV)	7	3.5	4	6.5	6.5
Inst. Luminosity (x10 ³³ /cm ² /s)	10	~3	~7	~4	14
Bunches	2808	1380	1380	~2200	<2808
Protons / Bunch	130B	145B	148B	150B	150B
Bunch Spacing (ns)	25	75/50	50	50/25	25
Avg. Collisions / Bunch Crossing	20	~20	35	40/20	20
Integrated Lumi to CMS (fb-1)		~5	~20	4	100

* Anticipated

The Compact Muon Solenoid

The CMS magnet is a central feature of the detector

- 12.5m Length, 6.3m inner diameter
- Superconducting coils produce 3.8T field

 $P_T \approx \frac{0.3L^2B}{8s}$

- Cooled by liquid Helium
- Iron return yoke concentrates flux \rightarrow 2T field in iron outside solenoid

12

- Largest superconducting solenoid in the world
- 2.6GJ stored energy

track

The magnet bends charged particles, allowing the tracker to measure transverse momentum (p_T)

R

Magnet

(TOB)

(TIB)

13

(TPE)

CMS Tracker

- Over 200m² Silicon
- Cooled to -10°C
- 66M channel pixel detector
 - 100x150µm pitch
- 9.6M channel strip detector
 - 80-180µm pitch, ~10cm long

Primary vertex resolution: O(10) µm $\eta \equiv -\ln\left|\tan\left(\frac{\theta}{2}\right)\right|$

Preliminary Exam - 14 Dec 2015

Electromagnetic Calorimeter

- Over 75k Lead Tungstate crystals, 61200 in Barrel
- Average crystal size: 2.2 x 2.2 x 22cm; weight:1.5kg
- Barrel crystal face $\Delta \eta \times \Delta \phi = 0.0175 \times 0.0175$
- Provides high resolution energy measurement for electrons and photons

Lead Tungstate

(PbWO₄)

Hadronic Calorimeter

The CMS HCAL consists of 3 main regions:

Barrel (HB) and Endcap (HE) sampling calorimeters

Over 1000 tons of brass plates interleaved with scintillator tiles

HB

- WLS Fibers transfer scintillation light to readout electronics
- Covers $|\eta| < 3$, depth varies from 6-10 interaction lengths Forward (HF) Cherenkov detector
- Steel plates embedded with quartz fibers
- Covers $3 < |\eta| < 5$

Resolution (HB/HE): $\frac{\sigma}{E} = \frac{115\%}{\sqrt{E}} \oplus 5.5\%$

Resolution (HF):

 $\frac{\sigma}{E} = \frac{280\%}{\sqrt{E}} \oplus 11\%$

HF

ΗE

Muon Systems

3 muon detection systems embedded in the iron return yoke:

- Drift Tubes (DT) in barrel $|\eta| < 1.2$
- Cathode Strip Chambers (CSC) in endcaps $0.9 < |\eta| < 2.4$
- Resistive Plate Chambers (RPC) in $|\eta| < 1.6$

Three main tasks: triggering, identification, and assisting inner tracker in

measuring high-p_T muons

Muon p_T Resolution

Trigger System

LHC collides bunches of protons at 40MHz ~25 collisions per bunch \rightarrow GHz rate At a Mb per event, CMS can record ~1kHz Trigger System decides what to keep

Rate reduction in two steps:

- Level-1 Trigger
 - Custom hardware
 - Subset of detector information
 - Reduces rate to ~100kHz
- High-Level Trigger
 - Software, CPU-limited
 - Full detector information
 - Reduces rate to ~1kHz

Level 1 Trigger

N. Smith

L1 Trigger receives simplified detector information from calorimeters and muon systems, and forms

- EG Candidates (electrons/photons)
- Jet Candidates
- Missing Energy estimate
- Muon Candidates
- L1 accept if objects pass
- Energy thresholds
- Coincidence
- Object topology
- Defined in 'trigger menu'
- Once every 25ns
- Pipeline ~4µs long

High Level Trigger

- Dedicated compute farm
- Commodity hardware
- Receives full detector readout
- Subset of reconstruction algorithms
- Over 450 trigger paths in HLT menu

- For HLT accepts, raw data is processed, compressed and calibrations are applied
- Some raw data can be 'parked'

Event Simulation - Hard Scatter

Two common programs for hard scatter simulation:

- MadGraph / aMC@NLO
 - Automated calculation of Feynman diagrams
- POWHEG
 - Library of tools plus calculations customized to process

Both now* provide predictions at Next-to Leading Order (NLO)

e.g.

* 8TeV simulations are not all NLO

N. Smith

Event Simulation - Decay & Detection

After the hard scatter simulation:

- Pythia simulates
 - Parton Shower
 - Hadronization
 - Decay to stable particles
- GEANT4

Decay

Hadronization

Parton shower

.....

- Passage of stable particles through detector

Event Reconstruction

Particle Flow (PF) Reconstruction combines information from all detector components, building candidates in order of purity

- Muon system tracks are combined with inner tracker to make muon candidates
- ECAL & HCAL deposits are matched to tracker tracks to make electron & charged hadron candidates
- Remaining calorimeter energy is clustered to form photon candidates (ECAL) & neutral hadron candidates (HCAL)

Muon Reconstruction

Categories of reconstructed muons:

- Standalone tracks from segments in muon systems
 - 1% exclusive rate, very high cosmic muon acceptance
- Tracker match inner detector tracks with one segment in muon system
 - High efficiency for low p_T muons
- Global match standalone muons with tracks
 - More information available
 - High purity

Requirements in this analysis:

- Global reconstruction
- Require segments in at least 2 muon stations
- >5 tracker layers for p_T measurement
- Distance of closest approach to primary vertex
 - Transverse < 0.2cm
 - Longitudinal < 0.5cm

Electron Reconstruction

- Electrons identified by combination of detectors
- Basic object called 'GSF electron'
 - ECAL supercluster
 - Gaussian-Sum Filter track reconstruction
- Requirements in this analysis:
- Pixel hits
 - <2 missing hits, for photon conversion veto
- Tracker
 - Photon conversion vertex veto
 - Distance of closest approach to primary vertex ~ 1mm
- ECAL
 - Distance between cluster and track
 - Shower shape requirement
- HCAL
 - H/E cut for rejection of hadrons
- Distance to nearest PF muon > 0.1

Jet Reconstruction

Quarks and gluons hadronize

- Showers of many particles formed
- Jet reconstruction algorithms:
 - Iteratively cluster nearby particles
 - Form macroscopic objects
 - Preserve ability to compare to theory
- In this analysis, Anti-k_T distance metric:

$$d_{ij} = \min\left(\frac{1}{k_{ti}^2}, \frac{1}{k_{tj}^2}\right) \frac{\Delta_{ij}^2}{R^2}, \quad R = 0.5$$

- In this analysis, veto b quarks
- Jets from b quarks are distinctive
- Long-lived b hadrons form displaced vertex
- B-tagging identifies jets with displaced tracks

N. Smith

- Leptons from hard process typically isolated
- Jets can produce real leptons
 - Jet fragments can fake leptons
- Isolation cuts help distinguish leptons of interest

 p_T

Electron isolation: $I_{rel}^e = \frac{\sum p_T^{charged} + max[\sum E_T^{neutral} + \sum E_T^{photon} - \Delta \rho \cdot E.A., 0.0]$ Cut: 0.15

Muon isolation: $I_{rel}^{\mu} = \frac{\sum p_T^{charged} + max[\sum E_T^{neutral} + \sum E_T^{photon} - 0.5 \cdot \sum p_T^{charged, PU}, 0.0]$ p_T Cut: 0.2 **Isolation** cone

- Isolation cone defines components in sum
 - 0.3 for electrons
 - 0.4 for muons
- Electron veto cone in endcaps only

Missing Transverse Energy

Missing Transverse Energy (MET): Negative vector sum of transverse momentum from all reconstructed particles.

In this analysis,

- All particle-flow candidates summed
- Jet energy corrections to particles associated with a jet are applied
- Correction for systematic φ modulation observed in both data & MC, due to
 - Beam spot x-y shift
 - Noise, gain variation in ECAL/HCAL readout

Existing Limits

Approaches to searching for BSM Invisible Higgs decays:

Look for deficit in sum of visible decays

- Must extrapolate from accessible decay channels
- Requires accurate knowledge of production rate
- Look for missing energy in the detector
- MET measurement becomes easier when there is a recoil topology
 - Vector Boson Fusion
 - Associated Production

Selection of 95% CL observed (expected) upper limits on BR(H→inv.) for ~25fb⁻¹ collected at 7,8TeV with CMS and ATLAS

Channel	CMS Limit	ATLAS Limit
Deficit in sum visible	0.32 (0.43)	0.49 (0.48)
ZH production (Z→II)	0.83 (0.86)	0.75 (0.62)
VBF production	0.65 (0.49)	0.28 (0.31)

VBF

H

ΖH

 Z^*

N. Smith

Dark Matter Interpretation

- Limits on invisible Higgs decays \rightarrow limits on DM-Nucleon σ
- Assume stable DM coupling directly to Higgs
- DM mass < Higgs mass / 2
- Comparison to direct-detection
- Complementary phase space

Signature & Dominant Backgrounds

Physics signature: ZH Associated Production

- Z boson decaying to two electrons or muons
- Higgs decay products escape detection
 - Significant Missing Transverse Energy (MET)

Irreducible background: ZZ

- One Z decays as in signal
- Other Z to neutrinos
- Slightly different kinematics: visible Z less boosted (lower transverse momentum)

N. Smith

Other backgrounds due to:

- Fakes
- Detector Acceptances
- Rejection Efficiencies

All significant backgrounds on next slide

8 TeV Datasets

All significant background MC processes are plotted along with the data, here is a summary:

	$ZZ \rightarrow 2I2v$	Primary Irreducible Background
	WW \rightarrow 2l2v	Can contribute two same-flavor leptons, but non-resonant
	WZ→3lv	Can contribute if one lepton is lost (esp. the W lepton)
	tt	Top decays predominantly to Wb, two Ws give two leptons
	Single top	One lepton from top, another fake
	W→lv	One lepton from W, another fake
	Z→llγ	No photon veto + fake MET
	Z→II	Fake MET
ł	Data	
	Z(II)H(inv)	Signal simulation, with Higgs decay set 100% invisible

Cut Flow Overview

10⁸

10⁷

 10^{6}

10⁵

10⁴

 10^{3}

10²

10

 10^{-1}

01.5 ≥

Data / ∑ 5.0

32

Preselection

Over 1 quadrillion collisions for this plot, preselection reduces to ~10 million.

Preselection:

- Require 2 muons with ID, Isolation as defined earlier
- Require HLT paths with
 - One muon >17GeV
 - One muon >8GeV

Baseline:

Cuts motivated in following slides

Baseline

ZZ→**≵**l2v

Z(II)H(in

tŦ

Z→llγ

N. Smith

WZ→3lv

W→h

Data

Expected Counts, 8TeV, 19.8fb⁻¹

Single top

Z→II

Cut Flow - $M(\mu\mu)$

- Signal events contain a Z boson ;
- Cut on dimuon invariant mass
- 10GeV window around Z mass

Expected Counts

	Before Cut	After Cut
Signal	126	113
Background	8008716	6972250
Ratio	~10 ⁻⁵	~10 ⁻⁵

Cut Flow - Boosted Z

- Z recoils against Higgs
- Significant transverse
 momentum
- Decay products will appear Lorentz boosted
- Cut on dimuon p_T > 50GeV

Expected Counts

	Before Cut	After Cut
Signal	113	77
Background	6972250	522363
Ratio	~10 ⁻⁵	~10-4

Cut Flow - Jet Veto

- MET sensitive to jet energy uncertainty
- Vetoing large jet multiplicity reduces this effect
- Bin final yields in 0,1 jets
- Jet counted if p_T>30GeV

Ba

			10
E×	pected Cour	nts	01. พ
	Before Cut	After Cut)ata /
Signal	77	71	0.
ckground	522363	362910	
Ratio	1 4x10-4	2x10-4	.3

Cut Flow - Extra Lepton Veto

• Expect exactly 2 muons

• Remove events with extra e/μ

NB: No $ZZ^* \rightarrow 4I$ simulation

 Would contribute ~200 events in 2 extra lepton bin

Expected Counts

	Before Cut	After Cut
Signal	71	71
Background	362910	359426
Ratio	2x10-4	2x10-4

Cut Flow - B-Jet Veto

- ~100% top to W+b
- Veto of b-tagged jets lowers top background
- B-tagging has non-negligible • fake rate

Expected Counts

	Before Cut	After Cut
Signal	71	65
Background	359426	282192
Ratio	2x10-4	2.3x10 ⁻⁴

Cut Flow - High MET

- Expect significant MET
- MET very sensitive to jet energy measurement
- Z+Jets has large σ and no real MET
- High threshold necessary due to poor data/MC agreement
- Cut MET > 110GeV

Expected Counts Before Cut Afte

	Delore Cul	Aller Gul
Signal	65	25
Background	282192	164
Ratio	2.3x10 ⁻⁴	0.15

M(µµ) at Baseline

39

Baseline selection: All previous cuts applied

Dominant backgrounds now: $ZZ^* \rightarrow 2I2v$ and $WZ \rightarrow 3Iv$

- ZZ* background irreducible (same final state)
- WZ background due to lost W lepton (detector acceptance)

Expected Counts		
	Baseline Selection	
Signal	25	
Background	164	
Ratio	0.15	

Preliminary Exam - 14 Dec 2015

Z-MET Δφ at Baseline

40

- Kinematics of the Z and MET considered together
- Most events 'back-to-back'
- Cut on angle between Z decay products and MET in transverse plane > 2.6

Preliminary Exam - 14 Dec 2015

Expected Counts

	Before Cut	After Cut
Signal	25	24
Background	164	121
Ratio	0.15	0.19

MET Balance at Baseline

- Transverse Z p_T should balance MET
- Restrict ratio of MET and dimuon p_T between 0.8 and 1.2

Expected Counts

	•	
	Before Cut	After Cut
Signal	24	17
Background	121	62
Ratio	0.19	0.28

Transverse Mass at Baseline

42

0.28

Ratio

0.28

Muon Efficiency

To measure efficiency of muon identification, use Tag and Probe Method

- Find one well-reconstructed muon (tag)
- Look for other tracks (probes), form pairs
- Probes forming pairs with mass close to known resonance (e.g. Z) are likely true muons

43

• Fit mass distribution to find efficiency

Systematics

Significant Sources of Systematic Uncertainty

Uncertainty	Comments
2.6%*	CMS Luminosity Uncertainty @ 8TeV
3%*	Efficiencies calculated using Tag & Probe
0.2%*	B tag efficiency Data/MC difference
~8%*	Varies between samples Use largest value as conservative estimate
0.3%	Vary PU correction factor by 8%
0.5%	Muon momentum scale corrections
3%*	Shift jet energy up/down by corresponding uncertainties
1-5%	Varies between samples
	Uncertainty $2.6\%^*$ $3\%^*$ $0.2\%^*$ 0.3% 0.5% $3\%^*$ $1-5\%$

* c/o AN2012-123

Final Yields & Limits

Final Event Yields for 19.8/fb at 8TeV

	μμ+0 jets	µµ+1 jet
ZZ	34.1±0.5	6.3±0.2
WZ	13.7±0.4	5.2±0.3
WW/Top/W	1.3±0.3	0.3±0.1
DY+Jets	0+.5	0+.5
Sum Backgrounds	49.1±0.7 (±4.9)	11.8±0.4 (±1.2)
ZH Signal (100%)	14.7±0.5 (±1.5)	2.5±0.2 (±0.2)
Data	47	12

Format: Value±stat (±est. systematic)

- Event yields in two-bin counting experiment with 4 backgrounds
- Asymptotic CL_S upper limit on signal strength relative to predicted signal
- Observed (Expected) 95% CL Upper Limit on BR(ZH→µµ+MET):
 1.15 (1.25)

Conclusion & Future Plans

Completed 8TeV analysis

N. Smith

- Results compatible with existing existing CMS & ATLAS published results
- Many possible improvements, e.g.
 - Data-driven Drell-Yan background prediction
 - Electron channel
 - Most important: 13TeV data!

At 13TeV:

- Expecting 100 fb⁻¹ before Long Shutdown 2 in 2018
- ZH associated production σ increases by factor ~2
 - Expect ~300 dimuon events @ 100% BR
- VV background σ also factor ~2
 - Expect ~700 dimuon events for ZZ
- Assuming similar detector performance, expect factor ~3 improvement

Higgs significance by channel

Channel arouning	Significance (σ)	
Channel grouping	Observed	Expected
$H \rightarrow ZZ$ tagged	6.5	6.3
${ m H} ightarrow \gamma \gamma$ tagged	5.6	5.3
$H \rightarrow WW$ tagged	4.7	5.4
Grouped as in Ref. [17]	4.3	5.4
$H \rightarrow \tau \tau$ tagged	3.8	3.9
Grouped as in Ref. [19]	3.9	3.9
$H \rightarrow bb tagged$	2.0	2.3
Grouped as in Ref. [16]	2.1	2.3

CMS 7+8TeV Higgs combination PAS (19.7+5.1/fb)

CMS & ATLAS Higgs-portal DM limits

Preliminary Exam - 14 Dec 2015 Backup Slides

Preliminary Exam - 14 Dec 2015 Backup Slides

LHC Dipole

Main components – dipole magnets

Long-term LHC Luminosity Estimates

2010 - 2035

52

CMS Primary Vertex Resolution

CMS Tracker Material Tracker Material Budget

Preliminary Exam - 14 Dec 2015 Backup Slides

54

CMS Drift Tubes

CMS Drift Tubes

Drell-Yan Expected Events

B-Jet Veto : 279213.8
#Delta#phi Cut : 23994.6
MET Balance : 495.1
M_{T} : 0.0
MET Cut : 0.0

B-Jet Veto : 279213.8 MET Balance : 4941.2 M_{T} : 0.2 MET Cut : 0.0 #Delta#phi Cut : 0.0

B-Jet Veto : 279213.8 M_{T} : 218.3 MET Cut : 11.9 #Delta#phi Cut : 2.3 MET Balance : 0.0

Preliminary Exam - 14 Dec 2015 Backup Slides

B-Jet Veto : 279476.8
MET Cut : 25.9
#Delta#phi Cut : 2.3
MET Balance : 0.0
M_{T} : 0.0

