

STUDY OF $ZZ \rightarrow 4$ LEPTONS AT $\sqrt{s} = 13$ TeV WITH THE CMS DETECTOR

NATE WOODS

UNIVERSITY OF WISCONSIN—MADISON

PRELIMINARY EXAMINATION

OUTLINE

Physics background

- The Standard Model
- Electroweak symmetry breaking
- The Large Hadron Collider
- The Compact Muon Solenoid
- Physics object reconstruction
- Analysis strategy
- Results
- Conclusions and future work

THE STANDARD MODEL

- Explains fundamental particle interactions
 - Fermions constitute matter
 - Quarks form hadron bound states
 - Gauge bosons mediate forces
 - Gluon: Strong force
 - W±, Z: Weak force
 - Photon: Electromagnetic force
 - Scalar Higgs boson imparts mass to other particles
- Not included: gravity, dark matter, dark energy

PARTICLE INTERACTIONS

Strong force

- Holds quarks in meson and baryon bound states
- Confinement: interaction strength grows with distance, preventing free color charge

Weak force

- Causes some nuclear decays
- Electromagnetic force
 - Holds electrons in atomic orbitals

ELECTROWEAK SYMMETRY BREAKING

- Electroweak $SU(2)_L \times U(1)_Y$ gauge symmetry spontaneously broken in vacuum state by nonzero expectation value of complex scalar Higgs field
- W[±] and Z bosons arise as massive pseudo-Nambu-Goldstone bosons
- $U(1)_{EM}$ symmetry remains, leaving massless photon

Image: Wikimedia Commons

$ZZ \rightarrow 4\ell STUDY$ MOTIVATION

- e^{\pm} and μ^{\pm} can be accurately reconstructed and 4ℓ ($\ell = e, \mu$) backgrounds are very low
- *H* → *ZZ*^{*} → 4ℓ is a primary Higgs discovery mode and allows precision measurement of Higgs properties despite low branching ratio
- Electroweak ZZ → 4ℓ is the primary H → ZZ* → 4ℓ background, and allows measurement of electroweak gauge couplings

Decay Mode	ZZ Branching Ratio
$\ell^+\ell^-\ell'^+\ell'^-$	1%
$\ell^+\ell^- \nu \bar{ u}$	4%
$\ell^+\ell^-$ + hadrons	15%
$\nu\bar{\nu}$ + hadrons	28%
$ u ar{ u} v' ar{ u}'$	4%
All hadrons	49%

ZZ PRODUCTION IN PP COLLISIONS

8 TeV RESULTS: ON-CMS SHELL ZZ Events / 25 (GeV) 0 21 25

CMS (top 3 plots)

- 60 GeV < $m_{Z_{1,2}}$ < 120 GeV
- $ZZ \rightarrow \ell \ell \ell' \ell'; \ \ell = (e, \mu), \ell' = (e, \mu, \tau)$
- $\sigma_{pp \to ZZ} = 7.7 \pm 0.5 (\text{stat.})^{+0.5}_{-0.4} (\text{syst.}) \pm 0.4 (\text{theo.}) \pm 10.4 (\text{theo.})$ 0.3(lum.) pb at $\sqrt{s} = 8 \text{ TeV}$

5

ATLAS (bottom plot)

- 66 GeV < $m_{Z_{1,2}}$ < 116 GeV
- $ZZ \rightarrow \ell \ell \ell' \ell'; \ell, \ell' = (e, \mu)$
- $\sigma_{pp \to ZZ} = 7.1^{+0.5}_{-0.4}$ (stat.) ± 0.3 (syst.) \pm 0.2(lumi.) pb

8 TeV RESULTS: $H \rightarrow ZZ^* \rightarrow 4\ell$

- CMS and ATLAS both discovered particle consistent with Standard Model Higgs near 125 GeV
- Most recent measurements in this channel:
 - CMS (top plot)
 - $m_H = 125.6 \pm 0.4$ (stat.) ± 0.2 (syst.) GeV
 - $\sigma / \sigma_{SM} = 0.93^{+0.26}_{-0.23}$ (stat.) $^{+0.13}_{-0.09}$ (syst.)
 - ATLAS
 - $m_H = 124.51 \pm 0.52$ (stat.) $\pm \pm 0.06$ (syst.) GeV
 - $\sigma / \sigma_{SM} = 1.50^{+0.35}_{-0.31} (\text{stat.})^{+0.19}_{-0.13} (\text{syst.})$

THE LARGE HADRON COLLIDER

- 27 km circumference collider at CERN near Geneva, CH, capable of colliding protons and heavy ions
- Serves four primary experiments
 - CMS and ATLAS: general purpose
 - LHCb: forward hadronic physics
 - ALICE: heavy ion collisions
- Designed for 14TeV center of mass energy
 - Achieved 8TeV in 2012
 - 13TeV expected in 2015

LHC dipole

PROTON-PROTON COLLISIONS AT LHC

		Design	2011	2012	2015-2016 (expected)
	Beam Energy [TeV]	7	3.5	4	6.5
Bunch	Bunches/beam	2808	1380	1380	2748/2508
Proton	Protons/bunch [10 ¹¹ p]	1.15	1.45	1.7	1.2
Parton	Peak instantaneous luminosity $[10^{33} \frac{Hz}{cm^2}]$	10	3.7	7.7	8.5/12.9
(quark, gluon)	Integrated Luminosity [fb ⁻¹]		6.1	23.3	~70
Particle	Avg. collisions per bunch crossing	23	8	21	22/36
jet					

THE COMPACT MUON SOLENOID

Tracker – Electromagnet Calorimeter	ic	Superconducting Magnet Mareturn yoke
CMS Prop	perties	
Mass	12500 T	Hadronic
_ength	21.4 m	Calorimeter 1
Diameter	14.6 m	$\left[\left(\theta \right) \right]$
Magnetic Field	3.8 T	$\eta = -\log\left[\tan\left(\frac{1}{2}\right)\right]$

22 January, 2015

Nate Woods ⇒ UW Prelim

PARTICLE DETECTION IN CMS

MAGNET

- Charged particle momentum and vertex found by finding curvature of trajectory in magnetic field
- Superconducting solenoid provides 3.8 T field in central barrel of detector
- Iron return yokes provide ~2T field in outer muon system

Magnet Installation

SILICON TRACKER

- 66M channel Si pixel system close to interaction point finds primary vertices and seeds tracks
- 9.6M channel Si strip detector iteratively fits tracks from these seeds in $|\eta| < 2.5$
- Resolution:

$$\frac{\delta p_T}{p_T} = \left(\frac{p_T}{1 \text{ TeV}} 15\%\right) \oplus 0.5\%$$

Si Strip Tracker Barrel

ELECTROMAGNETIC CALORIMETER

- Electron and photon energy and position measured by high granularity electromagnetic calorimeter (ECAL)
- 61200 PbWO₄ crystal scintillators in barrel region (EB, $|\eta| < 1.48$) and 14648 in Endcap (EE, $|\eta| < 3.0$) read out by amplifying photodetectors
- In addition to energy measurement, provides triggering for electrons and photons
- Resolution (stochastic+noise+const.):

$$\frac{\sigma}{E} = \frac{2.8\%}{\sqrt{E/\text{GeV}}} \bigoplus \frac{.128}{E/\text{GeV}} \bigoplus \textbf{0.3\%}$$

ECAL resolution demonstrated in $Z \rightarrow ee$ events ($\Gamma_{Z \rightarrow ee} = 84$ MeV)

ECAL crystal with photodetector and cartoon of an electron shower

HADRONIC CALORIMETER

- Long-lived hadrons interact very little with tracker and ECAL, so jets and missing E_T (ME_T) measured and triggered by compact (inside solenoid), hermetic ($|\eta| < 5$) sampling hadronic calorimeter (HCAL)
- In barrel (HB, $|\eta| < 1.2$) and endcap (HE, 1.3 < $|\eta| < 3.0$), plastic scintillator tiles embedded with wavelength shifting fibers are interleaved with brass absorber

•
$$\frac{\sigma}{E} \approx \frac{85\%}{\sqrt{E/\text{GeV}}} \oplus 7\%$$
 (HB), $\frac{\sigma}{E} \approx \frac{113\%}{\sqrt{E/\text{GeV}}} \oplus 3\%$ (HE)

• Forward calorimeter (HF, $3 < |\eta| < 5$) made of steel with embedded quartz fibers for radiation hardness. Also measures EM rich jets outside of ECAL acceptance.

•
$$\frac{\sigma}{E} \approx \frac{280\%}{\sqrt{E/\text{GeV}}} \oplus 11\%, \frac{\sigma}{E} \approx \frac{198\%}{\sqrt{E/\text{GeV}}} \oplus 9\% \text{ (EM)}$$

(Simulated Hadrons)

HE mounted on endcap disc

MUON SYSTEM

- Several systems interleaved with iron return yoke outside solenoid allow muon triggering and provide long "lever arm" for improved high-p_T muon measurements
- Drift Tubes (DT) in barrel ($|\eta| < 1.2$)
 - Resolution: 80-120 µm, ~3 ns
- Cathode Strip Chambers (CSC) in endcap (0.9 < $|\eta|$ < 2.4)
 - Resolution: 40-150 µm, ~3 ns
- Resistive Plate Chambers (RPC) give 1 ns timing and redundant triggering $(|\eta| < 1.6)$

Design Muon p_T Resolution

∆(p_)/p_

TRIGGER

- LHC 40 MHz bunch crossing rate with ~40 interactions per crossing gives potential event rate > 1 GHz
- CMS produces far too much raw data to store and analyze, but most is uninteresting soft QCD
- 2-tier trigger system reduces 40 MHz collision rate to <~100kHz in dedicated hardware (Level-1 Trigger), then to <~1kHz appropriate for storage and analysis with software (High Level Trigger)

LEVEL-1 TRIGGER

- Low granularity raw detector information is processed in dedicated hardware
- L1 Calorimeter Trigger finds (possibly isolated) electrons and photons, jets, total E_T , MET, hadronic E_T (HT) and MHT
 - 2015 phase 1 upgrade: pileup subtraction, dedicated tau objects, improved isolation
- L1 Muon Trigger builds tracks and reconstructs muon candidates
- <~4 µs latency, 100 kHz max readout

L1 Trigger 2015

HIGH LEVEL TRIGGER

- Modified (O(100) times faster) version of offline reconstruction software run on commercial processor farm
- Uses full detector information, including tracker
- Can perform complex analysis-specific algorithms such as vertex tagging, tau reconstruction, etc.
- Optimized for speed
 - Check detector only in region of L1 objects
 - Reconstruct fast objects first to allow early rejection

ZZ TRIGGERS

- Dilepton and trilepton triggers used to efficiently identify 4-lepton events
- Dilepton (using loose track isolation)
 - Dimuon: $p_{T_{\mu 1,2}} > 17,8 \text{ GeV}, |\eta| < 2.4$
 - Dielectron: $E_{T_{e1,2}} > 23,12 \text{ GeV}, |\eta| < 2.5$
 - Cross triggers: $p_{T_{\mu}} > 23 \text{ GeV}$, $E_{T_{e}} > 12 \text{ GeV}$ $E_{T_{e}} > 23 \text{ GeV}$, $p_{T_{\mu}} > 8 \text{ GeV}$
- Trilepton (no isolation cut)
 - Trimuon: $p_{T_{\mu 1,2,3}} > 12,10,5 \text{ GeV}$
 - Trielectron: $E_{T_{e1,2,3}} > 16,12,8 \text{ GeV}$
 - Cross triggers: $E_{T_{e1,2}} > 12 \text{ GeV}, p_{T_{\mu}} > 8 \text{ GeV}$ $p_{T_{\mu1,2}} > 9 \text{ GeV}, E_{T_e} > 9 \text{ GeV}$

Expected total rate: 87 Hz

Efficiency of $gg \rightarrow H \rightarrow ZZ \rightarrow 4I$ events that pass analysis cuts at generator level, for the trimuon path, the dimuon path, and a logical OR of the two, as a function of the number of primary vertices in the event.

PARTICLE FLOW RECONSTRUCTION

- Multiple detector systems working in concert yield more information than the sum of their parts
- Tracks and calorimeter clusters are matched and combined to reconstruct Particle Flow (PF) Candidates
 - Electrons, muons, photons, charged and neutral hadrons
- PF Candidates can be clustered into higher level objects
 - Jets, taus, ME_T
- PF objects are used to reconstruct particles such as Z and W bosons that decay too quickly for direct observation

ELECTRON RECONSTRUCTION

- Clusters of deposits in ECAL are matched to nearby tracks to identify charged, electromagnetically interacting electron
- ECAL supercluster includes extended area in φ direction to contain bremsstrahlung photons radiated from electron
- Track must be close to primary interaction vertex
- For this study, electrons were identified based on the output of a Boosted Decision Tree algorithm trained on simulated data

MUON RECONSTRUCTION

Three types of muon reconstruction

- Tracker muon, found by silicon tracker
- Standalone muon, found by muon spectrometer
- Global muon, matched tracks in both

This study requires

- Global or tracker
- Close to primary interaction vertex
- Several more cuts (e.g. small χ^2 of track) to eliminate hadrons that "punch through" to the muon system

LEPTON ISOLATION

- QCD backgrounds produce leptons inside jets and may be strongly rejected by limiting the energy in a cone around each leptons
- Particle Flow Relative Isolation:

•
$$R_{\rm Iso}^{\ell} \equiv \frac{\sum p_T^{\rm charged} + \max\left[0, \sum p_T^{\rm neutral} + \sum p_T^{\gamma} - p_T^{\rm PU}(\ell)\right]}{p_T^{\ell}}$$

- Charged and neutral refer to hadrons
- $p_T^{\rm PU}(e) \equiv \rho \times A_{\rm eff}$
 - ρ : median jet neutral particle energy
 - $A_{\rm eff}$: cone area scaled for $N_{\rm vtx}$
- $p_T^{PU}(\mu) \equiv 0.5 \times \sum_i p_T^{PU,i}$, *i* runs over charged hadrons from other vertices

FINAL STATE RADIATION

- Leptons can radiate a photon while in flight, leading to a mismeasured Z
- A photon is counted as FSR if:
 - $\Delta R_{\ell\gamma} < 0.07$ and $p_{T_{\gamma}} > 2$ GeV, or $\Delta R_{\ell\gamma} < 0.5, p_{T_{\gamma}} > 4$ GeV, and the photon is loosely isolated
 - The photon is not part of another electron supercluster
 - $m_{\ell\ell\gamma} < 100 \text{ GeV}$
 - $\left|m_{\ell\ell\gamma} m_Z\right| < \left|m_{\ell\ell} m_Z\right|$
 - Only one photon per Z candidate
 - Prefer highest $p_{T_{\gamma}} > 4$ GeV, then smallest ΔR if all $p_{T_{\gamma}} < 4$ GeV

 $H \rightarrow ZZ \rightarrow 4I$ events with found FSR, before and after

$$\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$$

22 January, 2015

Nate Woods =

UW Prelim

PREVIOUS DETECTOR PERFORMANCE

- Goal of ID algorithms is to correctly identify nearly all leptons (high efficiency) without incorrectly tagging other objects (fakes) as leptons
- ID definitions may be tuned to yield signal-to-background ratio appropriate to a specific analysis
- In previous runs, lepton efficiencies were close to 1 while maintaining low fake rates for most analyses

22 January, 2015

≓ UW Prelim

BACKGROUNDS

 Few physics processes have a signature of 4 isolated leptons, so backgrounds are quite small, but some objects can fake leptons, and real leptons can come from other vertices in the same event

•
$$W^{\pm} + Z + X \rightarrow 3\ell + \nu + X'$$

 Small cross section but only requires 1 fake/unrelated lepton

• *tt*

- Large cross section and can yield 4 leptons from 2 W decays and 2 b decays, but well rejected by isolation requirement
- $Z/\gamma + X \rightarrow 2\ell + X'$ (Drell-Yan)
 - Large cross section and requires only 2 fake/unrelated leptons

MONTE CARLO SIMULATION

MadGraph, POWHEG

- Calculate matrix elements and generate hard scattering spectrum
- Pythia, TAUOLA
 - Parton showering and hadronization
 - Underlying event, initial/final state radiation

• GEANT

- Particle interactions with matter
- Simulated detector response
- Simulated detector output reconstructed and analyzed with same software as data

Sample	Generator
gg→H→ZZ→4ℓ	POWHEG
ZZ→4ℓ	POWHEG
Drell-Yan→4ł	MadGraph
WZ+jets \rightarrow 3 ℓ + ν	MadGraph
$t\bar{t}$ +jets	MadGraph

ANALYSIS STRATEGY

- Use events that pass multilepton triggers and have at least 2 opposite-sign, same-flavor pairs of electrons and muons
- Require all leptons to be well-identified and isolated, and to come from the same vertex
- Require both pairs to have a *Z*-like invariant mass
 - For Higgs analysis, m_{Z_2} requirement relaxed to allow Z^*
- Require leptons to be in a p_T range where trigger efficiencies are well understood
- Eliminate leptons from QCD and coincidence by placing an invariant mass requirement on all opposite-sign lepton pairs
- Cuts shown here are extremely loose, to show the "full" ZZ* spectrum, and are expected to be tuned for specific analyses

IDENTIFICATION, SELECTION, ISOLATION

- Electrons identified by boosted decision tree algorithm
 - May not have more than 1 missed hit in the tracker
 - $p_T > 7 \text{ GeV}, |\eta| < 2.5$
- Muons must be from tracker or tracker + muon system

• $p_T > 5$ GeV, $|\eta| < 2.4$

• Vertex compatibility (Significance of Impact Parameter)

•
$$SIP_{3D} \equiv \frac{IP_{3D}}{\sigma_{IP_{3D}}} < 4$$

- IP_{3D}: 3-D impact parameter of track with vertex
- $\sigma_{IP_{3D}}$: Uncertainty of IP_{3D}
- Isolation
 - $R_{\rm Iso}^{\ell} < 0.4$ in cone of $\Delta R < 0.4$

UNSELECTED SPECTRUM

• Fewest possible selections

- Events tagged with four possible lepton candidates, regardless of quality
- Many fakes included
- Minimal skimming done in creation of data files to reduce size
- Trigger will bias spectrum from data more than spectrum from Monte Carlo, match not yet expected

Sample	Expected in 19.6 fb ⁻¹
WZ+jets	1042 ± 12
$t\bar{t}$ +jets	275100 ± 300
DY+jets	201100 ± 2900
ZZ→4ℓ	1313.6 ± 4.0
gg→H→ZZ [*] →4ℓ	80.6 ± 0.3
Total Signal	1365.6 ± 4.0
Total Background	477300 ± 2900
Total	478600 ± 2900

22 January, 2015

⇒ **UW Prelim**

ZZ TRIGGERS

- Trigger strategy: multilepton HLT
 - Dilepton triggers with tracker isolation
 - Non-isolated Trilepton triggers

Sample	Before	After
WZ+jets	1042 ± 12	928 ± 11
$t\bar{t}$ +jets	275100 ± 300	56420 ± 140
DY+jets	201100 ± 2900	155100 ± 2500
ZZ→4ł	1313.6 ± 4.0	1194.4 ± 3.8
$gg \rightarrow H \rightarrow ZZ^* \rightarrow 4\ell$	80.6 ± 0.3	48.8 ± 0.2
Total Signal	1365.6 ± 4.0	1243.2 ± 3.8
Total Background	477300 ± 2900	212500 ± 2500
Total	478600 ± 2900	213700 ± 2500

Z₁ LEPTON ID AND SELECTION

 Z_1 : Opposite sign, same flavor lepton pair with invariant mass closest to nominal m_Z

Sample	Before	After
WZ+jets	928 ± 11	704.6 ± 9.7
$t\bar{t}$ +jets	56420 ± 140	17740 ± 76
DY+jets	155100 ± 2500	122400 ± 2300
ZZ→4ℓ	1194.4 ± 3.8	1055.2 ± 3.6
$gg \rightarrow H \rightarrow ZZ^* \rightarrow 4\ell$	48.8 ± 0.2	43.5 ± 0.2
Total Signal	1243.2 ± 3.8	1098.7 ± 3.6
Total Background	212500 ± 2500	140800 ± 2300
Total	213700 ± 2500	142900 ± 2300

22 January, 2015

Z₁ LEPTON ISOLATION

36

Z₁ MASS CMS Preliminary Simulation 19.6 fb⁻¹ (13 TeV) CMS Preliminary Simulation 19.6 fb⁻¹ (13 TeV) Events · · · · · · Events / 3.0 GeV TTJets TTJets ZZ->41 ZZ->4I WZJets 10⁴ WZJets DYJets DYJets 10³ ggH->ZZ->4I ggH->ZZ->4I Loose on-shell requirement: 40 GeV <10³ 10² $m_{Z_1} < 120~{\rm GeV}$ Cut chosen to eliminate movec events lepton pairs from 10² movec 10 photons or coincidence 200 300 400 500 600 0 100 700 ZZ→4I Inv. Mass N. Woods **U. Wisconsin Preliminary Exam** 10 140 m_{Z,} CMS Preliminary Simulation 19.6 fb⁻¹ (13 TeV) 20 40 60 80 100 120 Events / 10.0 GeV N. Woods U. Wisconsin Preliminary Exam 10 TTJets Sample **Before** After ZZ->4I WZJets 616.6 ± 9.1 WZ+jets 584.5 ± 8.9 DYJets 10³ tt+jets 9146 ± 55 6733 ± 47 ggH->ZZ->4I DY+jets 113400 ± 2200 112100 ± 2200 ZZ→4{ 997.0 ± 3.5 948.4 ± 3.4 10² $gg \rightarrow H \rightarrow ZZ^* \rightarrow 4\ell$ 41.0 ± 0.2 39.7 ± 0.2 **Total Signal** 1038.0 ± 3.5 988.2 ± 3.4 123100 ± 2200 **Total Background** 119400 ± 2200 10 124200 ± 2200 120400 ± 2200 100 200 300 400 500 600 Total 0 700 800 ZZ→4l Inv. Mass N. Woods U. Wisconsin Preliminary Exam

22 January, 2015

Nate Woods

=

UW Prelim

Z₂ LEPTON ID AND SELECTION

Sample	Before	After
WZ+jets	584.5 ± 8.9	80.4 ± 3.3
$t\bar{t}$ +jets	6733 ± 47	300.5 ± 9.9
DY+jets	112100 ± 2200	4720 ± 440
ZZ→4ℓ	948.4 ± 3.4	747.3 ± 3.0
$gg \rightarrow H \rightarrow ZZ^* \rightarrow 4\ell$	39.7 ± 0.2	33.5 ± 0.2
Total Signal	988.2 ± 3.4	780.8 ± 3.0
Total Background	119400 ± 2200	5100 ± 440
Total	120400 ± 2200	5880 ± 440

22 January, 2015

Nate Woods

UW Prelim

Z₂ MASS

May be off-shell: $12 \text{ GeV} < m_{Z_2} < 120 \text{ GeV}$

Statistics issue: Drell-Yan contribution comes from only 3 simulated events. This background will eventually be estimated with data driven methods.

U. Wisconsin Preliminary Exam		
Sample	Before	After
WZ+jets	8.0 ± 1.0	5.7 ± 0.9
<i>tī</i> +jets	4.9 ± 1.3	2.9 ± 1.0
DY+jets	420 ± 130	125 ± 72
ZZ→4ł	668.6 ± 2.8	496.3 ± 2.4
$gg \rightarrow H \rightarrow ZZ^* \rightarrow 4\ell$	33.5 ± 0.2	26.6 ± 0.2
Total Signal	697.6 ± 2.8	522.9 ± 2.4
Total Background	430 ± 130	134 ± 72
Total	1130 ± 130	657 ± 72

N. Woods

Nate Woods

UW Prelim

=

U. Wisconsin Preliminary Exam

LEPTON P_T AND PAIR MASS

Sample	Before	After
WZ+jets	5.7 ± 0.9	5.7 ± 0.9
<i>tī</i> +jets	2.9 ± 1.0	2.9 ± 1.0
DY+jets	125 ± 72	125 ± 72
ZZ→4ℓ	496.3 ± 2.4	494.3 ± 2.4
$gg \rightarrow H \rightarrow ZZ^* \rightarrow 4\ell$	26.6 ± 0.2	26.5 ± 0.2
Total Signal	522.9 ± 2.4	520.8 ± 2.4
Total Background	134 ± 72	134 ± 72
Total	657 ± 72	655 ± 72

U. Wisconsin Preliminary Exam

CUT FLOW

Cut	Signal	Background
Initial	1365.6 ± 4.0	477300 ± 2900
Trigger	1243.2 ± 3.8	212500 ± 2500
Z ₁ Leptons	1098.7 ± 3.6	140800 ± 2300
Z ₁ Isolation	1038.0 ± 3.5	1231 ± 2200
Z ₁ Mass	988.2 ± 3.4	119400 ± 2200
Z ₂ Leptons	780.8 ± 3.0	5100 ± 440
Z ₂ Isolation	697.6 ± 2.8	430 ± 130
Z ₂ Mass	522.9 ± 2.4	130 ± 72
Final	520.8 ± 2.4	130 ± 72

22 January, 2015

42

SIMULATED 4L MASS SPECTRUM

~650 events expected at 19.6 fb^{-1} (~520 signal)

SIMULATED 4L KINEMATICS

Drell-Yan spectrum shape is extrapolated and normalized to the same number of total events, due to the statistics issue mentioned previously.

SELECTION EFFICIENCY

- Efficiency: fraction of generated events inside the fiducial volume passing analysis cuts after reconstruction
- Required to find cross section from measurement
- "Clean" 4I signal allows good background rejection even with very loose cuts, allowing high signal efficiency

IMMEDIATE 13TeV OUTLOOK

- ZZ and Higgs cross sections both expected to be ~2x higher at 13 TeV than at 8 TeV, but conditions will require some analysis changes
 - High pileup requires isolation definition changes
 - Cuts shown here must be tuned in light of data
 - Higher p_T thresholds and isolation cuts at trigger level
- Z + X background can be estimated from data
- Expected inclusive cross sections are large enough to be measured with first ~1fb⁻¹

RUN II OUTLOOK

• CMS with 19.6 fb⁻¹ at $\sqrt{s} = 8$ TeV:

 $\sigma_{pp \to ZZ} = 7.7 \text{ pb} \pm 6\%(\text{stat.})_{-5\%}^{+6\%}(\text{syst.}) \pm 5\%(\text{theo.}) \pm 4\%(\text{lum.})$ $\sigma_{H \to ZZ^*} / \sigma_{SM} = 0.93_{-25\%}^{+28\%}(\text{stat.})_{-10\%}^{+14\%}(\text{syst.})$ $m_H = 125.6 \pm 0.4(\text{stat.}) \pm 0.2(\text{syst.}) \text{ GeV}$

- With more data, differential cross sections can be measured and electroweak couplings probed. With 70 fb⁻¹:
 - We expect statistical uncertainty on $\sigma_{pp \to ZZ}$ around 3%, on $\sigma_{H \to ZZ^*}/\sigma_{SM}$ around 11%, on m_H around 0.2 GeV
 - With better reduction of background systematics and smaller PDF and α_s uncertainties, total uncertainty might be reduced
 - With statistical uncertainty on inclusive measurements comparable to or smaller than systematic uncertainty, we can
 - Measure differential cross sections
 - Measure production modes separately
 - Set limits on deviations from Standard Model couplings

BACKUP

VV SCATTERING

• Higgs boson required by SM to maintain unitarity for vector boson scattering at $\sqrt{s} \gtrsim 1.2$ TeV

NLO/NNLO CONTRIBUTION TO $\sigma_{pp \rightarrow ZZ}$

$\sqrt{s} [\text{TeV}]$	$\sigma^{LO}(ZZ)$ [pb]	$\sigma^{NLO}(ZZ)$ [pb]	
7	4.17(0)	$6.46(0)^{+4.7\%}_{-3.3\%}$	gg diagrams
8	5.06(0)	$7.92(0)^{+4.7\%}_{-3.0\%}$	
9	5.98(0)	$9.46(0)^{+4.3\%}_{-3.0\%}$	
10	6.93(0)	$11.03(0)^{+4.1\%}_{-2.9\%}$	
11	7.90(0)	$12.65(1)^{+3.9\%}_{-2.8\%}$	
12	8.89(1)	$14.31(1)^{+3.6\%}_{-2.7\%}$	
13	9.89(1)	$15.99(1)^{+3.7\%}_{-2.6\%}$	
14	10.92(1)	$17.72(1)^{+3.5\%}_{-2.5\%}$	

Table 9: Total cross sections for ZZ production as a function of energy. The renormalisation scale and factorisation scales are $\mu_R = \mu_F = M_Z$. Vector bosons are produced exactly on-shell and no decays are included.

arXiv:1105.0020v1 [hep-ph]

EXAMPLE PDFS

INTERACTION LENGTHS TO REACH DETECTOR

Figure 1.4: Material thickness in interaction lengths after the ECAL, HCAL, and at the depth of each muon station as a function of pseudorapidity. The thickness of the forward calorimeter (HF) remains approximately constant over the range $3 < |\eta| < 5$ (not shown).

PbWO₄ PROPERTIES

CHARGED PARTICLES IN MATTER

Rules of thumb:

- 1.5 MeV/(g/cm²) for Z/A=1
- 1.2 GeV/m for muon in thick absorber like return yoke

SPECTRUM WITHOUT DRELL YAN

- Overall Drell Yan contribution expected to be small, results above likely a statistical fluke
- Spectrum without it is more similar to what we expect from data
- Plots with extrapolated shape created by cutting only on lepton pt and eta and Z candidate mass, and scaling the resulting spectrum to the same integrated number of events
- Note: all 3 passing events are in 4µ channel

SPECTRUM WITH UNMODIFIED DRELL YAN

