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THE STANDARD MODEL
• Explains fundamental particle 

interactions
• Fermions constitute matter

• Quarks form hadron bound 
states

• Gauge bosons mediate forces
• Gluon: Strong force
• W±, Z: Weak force
• Photon: Electromagnetic force

• Scalar Higgs boson imparts 
mass to other particles

• Not included: gravity, dark 
matter, dark energy
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PARTICLE INTERACTIONS
• Strong force

• Holds quarks in meson and 
baryon bound states

• Confinement: interaction strength 
grows with distance, preventing 
free color charge

• Weak force
• Causes some nuclear decays

• Electromagnetic force
• Holds electrons in atomic orbitals
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ELECTROWEAK 
SYMMETRY BREAKING
• Electroweak 𝑺𝑺𝑺𝑺(𝟐𝟐)𝑳𝑳 × 𝑼𝑼(𝟏𝟏)𝒀𝒀

gauge symmetry 
spontaneously broken in 
vacuum state by nonzero 
expectation value of 
complex scalar Higgs field

• W± and Z bosons arise as 
massive pseudo-Nambu-
Goldstone bosons

• 𝑼𝑼(𝟏𝟏)𝑬𝑬𝑬𝑬 symmetry remains, 
leaving massless photon
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ZZ→4ℓ STUDY 
MOTIVATION
• 𝒆𝒆± and 𝝁𝝁± can be accurately 

reconstructed and 𝟒𝟒𝟒 (ℓ = 𝒆𝒆,𝝁𝝁)
backgrounds are very low

• 𝑯𝑯 → 𝒁𝒁𝒁𝒁∗ → 𝟒𝟒𝟒 is a primary 
Higgs discovery mode and 
allows precision measurement 
of Higgs properties despite 
low branching ratio

• Electroweak 𝒁𝒁𝒁𝒁 → 𝟒𝟒ℓ is the 
primary 𝑯𝑯 → 𝒁𝒁𝒁𝒁∗ → 𝟒𝟒𝟒
background, and allows 
measurement of electroweak 
gauge couplings 
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Decay Mode ZZ Branching Ratio
ℓ+ℓ−ℓ′+ℓ′− 1%
ℓ+ℓ−𝜈𝜈𝜈̅𝜈 4%

ℓ+ℓ− + hadrons 15%
𝜈𝜈𝜈̅𝜈 + hadrons 28%

𝜈𝜈𝜈̅𝜈𝜈𝜈′𝜈̅𝜈′ 4%
All hadrons 49%



ZZ PRODUCTION IN PP 
COLLISIONS
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Higgs Production

13TeV Cross 
Section × BR 
(NNLO) [pb]

SM ZZ 15.4

gg→H→ZZ 1.2

VBF 
H→ZZjj

0.1

VH→VZZ 0.06

𝑡𝑡 ̅𝑡𝑡H→ZZ𝑡𝑡 ̅𝑡𝑡 0.01

+ more at NLO in 𝛼𝛼𝐸𝐸𝐸𝐸𝐸𝐸



8 TeV RESULTS: ON-
SHELL ZZ
• CMS (top 3 plots)

• 60 GeV < 𝑚𝑚𝑍𝑍1,2 < 120 GeV
• 𝑍𝑍𝑍𝑍 → ℓℓℓ′ℓ′; ℓ = 𝑒𝑒, 𝜇𝜇 , ℓ′ = (𝑒𝑒, 𝜇𝜇, 𝜏𝜏)
• 𝜎𝜎𝑝𝑝𝑝𝑝→𝑍𝑍𝑍𝑍 = 7.7 ± 0.5(stat. )−0.4

+0.5(syst. ) ± 0.4(theo. ) ±
0.3 lum. pb at 𝑠𝑠 = 8 TeV

• ATLAS (bottom plot)

• 66 GeV < 𝑚𝑚𝑍𝑍1,2 < 116 GeV
• 𝑍𝑍𝑍𝑍 → ℓℓℓ′ℓ′; ℓ, ℓ′ = (𝑒𝑒, 𝜇𝜇)
• 𝜎𝜎𝑝𝑝𝑝𝑝→𝑍𝑍𝑍𝑍 = 7.1−0.4

+0.5 stat. ± 0.3 syst. ±
0.2 lumi. pb

22 January, 2015 Nate Woods      ⇌ UW Prelim 8



8 TeV RESULTS: 
H→ZZ*→4ℓ
• CMS and ATLAS both discovered particle 

consistent with Standard Model Higgs 
near 125 GeV

• Most recent measurements in this 
channel:
• CMS (top plot)

• 𝑚𝑚𝐻𝐻 = 125.6 ± 0.4 stat. ± 0.2 syst. GeV
• ⁄𝜎𝜎 𝜎𝜎𝑆𝑆𝑆𝑆 = 0.93−0.23

+0.26(stat. )−0.09
+0.13(syst. )

• ATLAS
• 𝑚𝑚𝐻𝐻 = 124.51 ± 0.52 stat. ±

± 0.06 syst. GeV
• ⁄𝜎𝜎 𝜎𝜎𝑆𝑆𝑆𝑆 = 1.50−0.31

+0.35(stat. )−0.13
+0.19(syst. )
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THE LARGE HADRON 
COLLIDER
• 27 km circumference collider at 

CERN near Geneva, CH, capable of 
colliding protons and heavy ions

• Serves four primary experiments
• CMS and ATLAS: general purpose
• LHCb: forward hadronic physics
• ALICE: heavy ion collisions

• Designed for 14TeV center of mass 
energy
• Achieved 8TeV in 2012
• 13TeV expected in 2015
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LHC dipole



PROTON-PROTON 
COLLISIONS AT LHC
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Design 2011 2012 2015-2016
(expected)

Beam Energy [TeV] 7 3.5 4 6.5

Bunches/beam 2808 1380 1380 2748/2508

Protons/bunch 
[1011p]

1.15 1.45 1.7 1.2

Peak instantaneous
luminosity [1033 Hz

cm2]
10 3.7 7.7 8.5/12.9

Integrated
Luminosity [fb−1]

6.1 23.3 ~70

Avg. collisions per 
bunch crossing

23 8 21 22/36



THE COMPACT MUON 
SOLENOID
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Muon Spectrometer
and return yoke

Tracker

Electromagnetic 
Calorimeter

Hadronic
Calorimeter

Superconducting 
Magnet

CMS Properties
Mass 12500 T
Length 21.4 m
Diameter 14.6 m
Magnetic Field 3.8 T

𝜂𝜂 = −log tan
𝜃𝜃
2



PARTICLE DETECTION IN 
CMS
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MAGNET
• Charged particle momentum and vertex found by finding curvature 

of trajectory in magnetic field
• Superconducting solenoid provides 3.8 T field in central barrel of 

detector
• Iron return yokes provide ~2T field in outer muon system
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CMS Magnetic Field Magnet Installation



SILICON TRACKER
• 66M channel Si pixel system close to 

interaction point finds primary 
vertices and seeds tracks

• 9.6M channel Si strip detector 
iteratively fits tracks from these seeds 
in 𝜼𝜼 < 𝟐𝟐.𝟓𝟓

• Resolution: 
𝜹𝜹𝒑𝒑𝑻𝑻
𝒑𝒑𝑻𝑻

=
𝒑𝒑𝑻𝑻

𝟏𝟏 𝐓𝐓𝐓𝐓𝐓𝐓
𝟏𝟏𝟏𝟏𝟏 ⊕𝟎𝟎.𝟓𝟓𝟓
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Si Strip 
Tracker 
Barrel

Tracker resolution demonstrated in Υ → 𝜇𝜇𝜇𝜇
events (ΓΥ(𝑗𝑗)→𝜇𝜇𝜇𝜇 = 1.4, 0.6, 0.4 keV)



ELECTROMAGNETIC 
CALORIMETER
• Electron and photon energy and 

position measured by high granularity 
electromagnetic calorimeter (ECAL)

• 61200 PbWO4 crystal scintillators in 
barrel region (EB, 𝜼𝜼 < 𝟏𝟏.𝟒𝟒𝟒𝟒) and 
14648 in Endcap (EE, 𝜼𝜼 < 𝟑𝟑.𝟎𝟎) read 
out by amplifying photodetectors

• In addition to energy measurement, 
provides triggering for electrons and 
photons

• Resolution (stochastic+noise+const.):
𝝈𝝈
𝑬𝑬

= 𝟐𝟐.𝟖𝟖𝟖
⁄𝑬𝑬 𝐆𝐆𝐆𝐆𝐆𝐆

⊕ .𝟏𝟏𝟏𝟏𝟏𝟏
⁄𝑬𝑬 𝐆𝐆𝐆𝐆𝐆𝐆

⊕ 𝟎𝟎.𝟑𝟑𝟑
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ECAL crystal with photodetector 
and cartoon of an electron shower

ECAL resolution demonstrated in 
𝑍𝑍 → 𝑒𝑒𝑒𝑒 events (Γ𝑍𝑍→𝑒𝑒𝑒𝑒 = 84 MeV)



HADRONIC
CALORIMETER
• Long-lived hadrons interact very little with 

tracker and ECAL, so jets and missing 𝑬𝑬𝑻𝑻
(MET) measured and triggered by compact 
(inside solenoid), hermetic ( 𝜼𝜼 < 𝟓𝟓) 
sampling hadronic calorimeter (HCAL)

• In barrel (HB, 𝜼𝜼 < 𝟏𝟏.𝟐𝟐) and endcap (HE, 
𝟏𝟏.𝟑𝟑 < 𝜼𝜼 < 𝟑𝟑.𝟎𝟎), plastic scintillator tiles 
embedded with wavelength shifting fibers 
are interleaved with brass absorber

• 𝜎𝜎
𝐸𝐸
≈ 85%

⁄𝐸𝐸 GeV
⨁7% (HB), 𝜎𝜎

𝐸𝐸
≈ 113%

⁄𝐸𝐸 GeV
⨁3% (HE)

• Forward calorimeter (HF, 𝟑𝟑 < 𝜼𝜼 < 𝟓𝟓) made 
of steel with embedded quartz fibers for 
radiation hardness. Also measures EM rich 
jets outside of ECAL acceptance.

• 𝜎𝜎
𝐸𝐸
≈ 280%

⁄𝐸𝐸 GeV
⨁11%, 𝜎𝜎

𝐸𝐸
≈ 198%

⁄𝐸𝐸 GeV
⨁9% (EM)
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HE mounted 
on endcap 
disc 

HCAL 𝐸𝐸𝑇𝑇 Resolution 
(Simulated Hadrons)



MUON SYSTEM
• Several systems interleaved with iron 

return yoke outside solenoid allow 
muon triggering and provide long 
“lever arm” for improved high-𝒑𝒑𝑻𝑻 muon 
measurements

• Drift Tubes (DT) in barrel ( 𝜼𝜼 < 𝟏𝟏.𝟐𝟐)
• Resolution: 80-120 µm, ~3 ns

• Cathode Strip Chambers (CSC) in 
endcap (𝟎𝟎.𝟗𝟗 < 𝜼𝜼 < 𝟐𝟐.𝟒𝟒)
• Resolution: 40-150 µm, ~3 ns

• Resistive Plate Chambers (RPC) give    
1 ns timing and redundant triggering 
( 𝜼𝜼 < 𝟏𝟏.𝟔𝟔)
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Design Muon 𝑝𝑝𝑇𝑇 Resolution



TRIGGER
• LHC 40 MHz bunch crossing rate 

with ~40 interactions per crossing 
gives potential event rate > 1 GHz

• CMS produces far too much raw 
data to store and analyze, but 
most is uninteresting soft QCD

• 2-tier trigger system reduces 40 
MHz collision rate to <~100kHz in 
dedicated hardware (Level-1 
Trigger), then to <~1kHz 
appropriate for storage and 
analysis with software (High 
Level Trigger)
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L1

HLT



• Low granularity raw detector 
information is processed in 
dedicated hardware

• L1 Calorimeter Trigger finds 
(possibly isolated) electrons and 
photons, jets, total 𝑬𝑬𝑻𝑻, MET, 
hadronic 𝑬𝑬𝑻𝑻 (HT) and MHT

• 2015 phase 1 upgrade: pileup 
subtraction, dedicated tau objects, 
improved isolation

• L1 Muon Trigger builds tracks and 
reconstructs muon candidates

• <~4 μs latency, 100 kHz max readout
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ECAL HCAL HF CSC DT RPC

Regional Calo
Trigger

Global Trigger

Calo Layer 2

HLT

CSC Track 
Finder

DT Track 
Finder

Global Muon 
Trigger

LEVEL-1 TRIGGER
L1 Trigger 2015



HIGH LEVEL TRIGGER
• Modified (𝓞𝓞(100) times faster) version of 

offline reconstruction software run on 
commercial processor farm

• Uses full detector information, including 
tracker

• Can perform complex analysis-specific 
algorithms such as vertex tagging, tau 
reconstruction, etc.

• Optimized for speed
• Check detector only in region of L1 objects
• Reconstruct fast objects first to allow early 

rejection
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33 GeV Electron HLT 
Efficiciency



ZZ TRIGGERS
• Dilepton and trilepton triggers used to 

efficiently identify 4-lepton events
• Dilepton (using loose track isolation)

• Dimuon: 𝑝𝑝𝑇𝑇𝜇𝜇1,2 > 17,8 GeV, 𝜂𝜂 < 2.4
• Dielectron: 𝐸𝐸𝑇𝑇𝑒𝑒1,2 > 23,12 GeV, 𝜂𝜂 < 2.5
• Cross triggers: 𝑝𝑝𝑇𝑇𝜇𝜇 > 23 GeV,𝐸𝐸𝑇𝑇𝑒𝑒 > 12 GeV

𝐸𝐸𝑇𝑇𝑒𝑒 > 23 GeV, 𝑝𝑝𝑇𝑇𝜇𝜇 > 8 GeV
• Trilepton (no isolation cut)

• Trimuon: 𝑝𝑝𝑇𝑇𝜇𝜇𝜇,2,3 > 12,10,5 GeV
• Trielectron: 𝐸𝐸𝑇𝑇𝑒𝑒1,2,3 > 16,12,8 GeV
• Cross triggers: 𝐸𝐸𝑇𝑇𝑒𝑒1,2 > 12 GeV, 𝑝𝑝𝑇𝑇𝜇𝜇 > 8 GeV

𝑝𝑝𝑇𝑇𝜇𝜇1,2 > 9 GeV,𝐸𝐸𝑇𝑇𝑒𝑒 > 9 GeV
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Triple Mu
Double Mu
OR

Expected total rate: 87 Hz

# Primary Vertices

Efficiency of gg→H→ZZ →4l events that 
pass analysis cuts at generator level, for 
the trimuon path, the dimuon path, and a 
logical OR of the two, as a function of the 
number of primary vertices in the event.



PARTICLE FLOW 
RECONSTRUCTION
• Multiple detector systems working in concert yield more 

information than the sum of their parts
• Tracks and calorimeter clusters are matched and combined to 

reconstruct Particle Flow (PF) Candidates 
• Electrons, muons, photons, charged and neutral hadrons

• PF Candidates can be clustered into higher level objects
• Jets, taus, MET

• PF objects are used to 
reconstruct particles 
such as Z and W bosons 
that decay too quickly 
for direct observation
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ELECTRON 
RECONSTRUCTION
• Clusters of deposits in ECAL are matched 

to nearby tracks to identify charged, 
electromagnetically interacting electron

• ECAL supercluster includes extended area 
in ϕ direction to contain bremsstrahlung 
photons radiated from electron

• Track must be close to primary interaction 
vertex

• For this study, electrons were identified 
based on the output of a Boosted Decision 
Tree algorithm trained on simulated data
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MUON 
RECONSTRUCTION
• Three types of muon reconstruction

• Tracker muon, found by silicon tracker
• Standalone muon, found by muon 

spectrometer
• Global muon, matched tracks in both

• This study requires
• Global or tracker
• Close to primary interaction vertex
• Several more cuts (e.g. small 𝜒𝜒2 of 

track) to eliminate hadrons that “punch 
through” to the muon system
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LEPTON ISOLATION
• QCD backgrounds produce leptons 

inside jets and may be strongly rejected 
by limiting the energy in a cone around 
each leptons

• Particle Flow Relative Isolation:

• 𝑅𝑅Isoℓ ≡
∑ 𝑝𝑝𝑇𝑇

charged+max 0,∑ 𝑝𝑝𝑇𝑇
neutral+∑ 𝑝𝑝𝑇𝑇

𝛾𝛾−𝑝𝑝𝑇𝑇
PU(ℓ)

𝑝𝑝𝑇𝑇
ℓ

• Charged and neutral refer to hadrons
• 𝑝𝑝𝑇𝑇PU(𝑒𝑒) ≡ 𝜌𝜌 × 𝐴𝐴eff

• 𝜌𝜌: median jet neutral particle energy
• 𝐴𝐴eff: cone area scaled for 𝑁𝑁vtx

• 𝑝𝑝𝑇𝑇PU(𝜇𝜇) ≡ 0.5 × ∑i 𝑝𝑝𝑇𝑇
PU,𝑖𝑖, 𝑖𝑖 runs over 

charged hadrons from other vertices
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FINAL STATE RADIATION
• Leptons can radiate a photon while in 

flight, leading to a mismeasured Z
• A photon is counted as FSR if:

• Δ𝑅𝑅ℓ𝛾𝛾 < 0.07 and 𝑝𝑝𝑇𝑇𝛾𝛾 > 2 GeV, or 
∆𝑅𝑅ℓ𝛾𝛾 < 0.5, 𝑝𝑝𝑇𝑇𝛾𝛾 > 4 GeV, and the 
photon is loosely isolated

• The photon is not part of another 
electron supercluster

• 𝑚𝑚ℓℓ𝛾𝛾 < 100 GeV
• 𝑚𝑚ℓℓ𝛾𝛾 − 𝑚𝑚𝑍𝑍 < 𝑚𝑚ℓℓ − 𝑚𝑚𝑍𝑍

• Only one photon per Z candidate
• Prefer highest 𝑝𝑝𝑇𝑇𝛾𝛾 > 4 GeV, then 

smallest Δ𝑅𝑅 if all 𝑝𝑝𝑇𝑇𝛾𝛾 < 4 GeV
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∆𝑅𝑅 = ∆𝜂𝜂 2 + ∆𝜙𝜙 2

H→ZZ→4l events with found FSR, before and after



PREVIOUS DETECTOR 
PERFORMANCE
• Goal of ID algorithms is to 

correctly identify nearly all 
leptons (high efficiency) 
without incorrectly tagging 
other objects (fakes) as leptons

• ID definitions may be tuned to 
yield signal-to-background 
ratio appropriate to a specific 
analysis

• In previous runs, lepton 
efficiencies were close to 1 
while maintaining low fake 
rates for most analyses
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Muon ID efficiency

Electron ID efficiency vs. fake rate



BACKGROUNDS
• Few physics processes have a signature of 4 

isolated leptons, so backgrounds are quite 
small, but some objects can fake leptons, and 
real leptons can come from other vertices in 
the same event

• 𝑾𝑾± + 𝒁𝒁 + 𝑿𝑿 → 𝟑𝟑𝟑 + 𝝂𝝂 + 𝑿𝑿𝑿
• Small cross section but only requires 1 

fake/unrelated lepton
• 𝒕𝒕𝒕̅𝒕

• Large cross section and can yield 4 leptons 
from 2 𝑊𝑊 decays and 2 𝑏𝑏 decays, but well 
rejected by isolation requirement

• 𝒁𝒁/𝜸𝜸 + 𝑿𝑿 → 𝟐𝟐𝟐 + 𝑿𝑿𝑿 (Drell-Yan)
• Large cross section and requires only 2 

fake/unrelated leptons
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+ 1 fake

+ 2 fakes



MONTE CARLO 
SIMULATION
• MadGraph, POWHEG

• Calculate matrix elements and generate 
hard scattering spectrum

• Pythia, TAUOLA
• Parton showering and hadronization
• Underlying event, initial/final state 

radiation
• GEANT

• Particle interactions with matter
• Simulated detector response

• Simulated detector output 
reconstructed and analyzed with same 
software as data
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Sample Generator
gg→H→ZZ→4ℓ POWHEG
ZZ→4ℓ POWHEG
Drell-Yan→4ℓ MadGraph
WZ+jets→3ℓ+ν MadGraph
𝑡𝑡 ̅𝑡𝑡+jets MadGraph



ANALYSIS STRATEGY
• Use events that pass multilepton triggers and have at least 

2 opposite-sign, same-flavor pairs of electrons and muons
• Require all leptons to be well-identified and isolated, and to 

come from the same vertex
• Require both pairs to have a 𝒁𝒁-like invariant mass

• For Higgs analysis, 𝑚𝑚𝑍𝑍2 requirement relaxed to allow 𝑍𝑍∗

• Require leptons to be in a 𝒑𝒑𝑻𝑻 range where trigger 
efficiencies are well understood

• Eliminate leptons from QCD and coincidence by placing an 
invariant mass requirement on all opposite-sign lepton 
pairs

• Cuts shown here are extremely loose, to show the “full” 𝒁𝒁𝒁𝒁∗
spectrum, and are expected to be tuned for specific 
analyses
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IDENTIFICATION, 
SELECTION, ISOLATION
• Electrons identified by boosted decision tree algorithm

• May not have more than 1 missed hit in the tracker
• 𝑝𝑝𝑇𝑇 > 7 GeV, 𝜂𝜂 < 2.5

• Muons must be from tracker or tracker + muon system
• 𝑝𝑝𝑇𝑇 > 5 GeV, 𝜂𝜂 < 2.4

• Vertex compatibility (Significance of Impact Parameter)

• SIP3𝐷𝐷 ≡
IP3𝐷𝐷
𝜎𝜎IP3𝐷𝐷

< 4

• IP3𝐷𝐷: 3-D impact parameter of track with vertex
• 𝜎𝜎IP3𝐷𝐷: Uncertainty of IP3𝐷𝐷

• Isolation

• 𝑅𝑅Isoℓ < 0.4 in cone of ∆𝑅𝑅 < 0.4
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• Fewest possible selections
• Events tagged with four possible 

lepton candidates, regardless of 
quality

• Many fakes included
• Minimal skimming done in creation 

of data files to reduce size

• Trigger will bias spectrum 
from data more than 
spectrum from Monte Carlo, 
match not yet expected 
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UNSELECTED 
SPECTRUM

Sample Expected in 19.6 fb-1

WZ+jets 1042 ± 12

𝑡𝑡 ̅𝑡𝑡+jets 275100 ± 300

DY+jets 201100 ± 2900

ZZ→4ℓ 1313.6 ± 4.0

gg→H→ZZ*→4ℓ 80.6 ± 0.3

Total Signal 1365.6 ± 4.0

Total Background 477300 ± 2900

Total 478600 ± 2900 Stat. uncertainty only



• Trigger strategy: multilepton
HLT

• Dilepton triggers with tracker 
isolation

• Non-isolated Trilepton triggers
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ZZ TRIGGERS

Sample Before After

WZ+jets 1042 ± 12 928 ± 11

𝑡𝑡 ̅𝑡𝑡+jets 275100 ± 300 56420 ± 140

DY+jets 201100 ± 2900 155100 ± 2500

ZZ→4ℓ 1313.6 ± 4.0 1194.4 ± 3.8

gg→H→ZZ*→4ℓ 80.6 ± 0.3 48.8 ± 0.2

Total Signal 1365.6 ± 4.0 1243.2 ± 3.8

Total Background 477300 ± 2900 212500 ± 2500

Total 478600 ± 2900 213700 ± 2500



Z1 LEPTON ID AND 
SELECTION
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𝑍𝑍1: Opposite sign, 
same flavor lepton 
pair with invariant 
mass closest to 
nominal 𝑚𝑚𝑍𝑍

Sample Before After

WZ+jets 928 ± 11 704.6 ± 9.7

𝑡𝑡 ̅𝑡𝑡+jets 56420 ± 140 17740 ± 76

DY+jets 155100 ± 2500 122400 ± 2300

ZZ→4ℓ 1194.4 ± 3.8 1055.2 ± 3.6

gg→H→ZZ*→4ℓ 48.8 ± 0.2 43.5 ± 0.2

Total Signal 1243.2 ± 3.8 1098.7 ± 3.6

Total Background 212500 ± 2500 140800 ± 2300

Total 213700 ± 2500 142900 ± 2300



Sample Before After

WZ+jets 704.6 ± 9.7 616.6 ± 9.1

𝑡𝑡 ̅𝑡𝑡+jets 17740 ± 76 9146 ± 55

DY+jets 122400 ± 2300 113400 ± 2200

ZZ→4ℓ 1055.2 ± 3.6 997.0 ± 3.5

gg→H→ZZ*→4ℓ 43.5 ± 0.2 41.0 ± 0.2

Total Signal 1098.7 ± 3.6 1038.0 ± 3.5

Total Background 140800 ± 2300 123100 ± 2200

Total 142900 ± 2300 124200 ± 2200

Z1 LEPTON ISOLATION
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Cut chosen to 
eliminate leptons 
in or faked by 
jets, reducing 𝑡𝑡 ̅𝑡𝑡
background

Removed



Sample Before After

WZ+jets 616.6 ± 9.1 584.5 ± 8.9

𝑡𝑡 ̅𝑡𝑡+jets 9146 ± 55 6733 ± 47

DY+jets 113400 ± 2200 112100 ± 2200

ZZ→4ℓ 997.0 ± 3.5 948.4 ± 3.4

gg→H→ZZ*→4ℓ 41.0 ± 0.2 39.7 ± 0.2

Total Signal 1038.0 ± 3.5 988.2 ± 3.4

Total Background 123100 ± 2200 119400 ± 2200

Total 124200 ± 2200 120400 ± 2200

Z1 MASS
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Loose on-shell 
requirement: 40 GeV <
𝑚𝑚𝑍𝑍1 < 120 GeV
Cut chosen to eliminate 
events lepton pairs from 
photons or coincidence

R
em

oved

R
em

oved



Z2 LEPTON ID AND 
SELECTION
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𝑍𝑍2: Remaining 
opposite sign, 
same flavor lepton 
pair with highest 
scalar 𝑝𝑝𝑇𝑇 sum

Sample Before After

WZ+jets 584.5 ± 8.9 80.4 ± 3.3

𝑡𝑡 ̅𝑡𝑡+jets 6733 ± 47 300.5 ± 9.9

DY+jets 112100 ± 2200 4720 ± 440

ZZ→4ℓ 948.4 ± 3.4 747.3 ± 3.0

gg→H→ZZ*→4ℓ 39.7 ± 0.2 33.5 ± 0.2

Total Signal 988.2 ± 3.4 780.8 ± 3.0

Total Background 119400 ± 2200 5100 ± 440

Total 120400 ± 2200 5880 ± 440



Sample Before After

WZ+jets 80.4 ± 3.3 8.0 ± 1.0

𝑡𝑡 ̅𝑡𝑡+jets 300.5 ± 9.9 4.9 ± 1.3

DY+jets 4720 ± 440 420 ± 130

ZZ→4ℓ 747.3 ± 3.0 668.6 ± 2.8

gg→H→ZZ*→4ℓ 33.5 ± 0.2 33.5 ± 0.2

Total Signal 780.8 ± 2.8 697.6 ± 2.8

Total Background 5100 ± 440 430 ± 130

Total 5880 ± 440 1130 ± 130

Z2 LEPTON ISOLATION
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Many events 
have a real Z; 
many fewer 
have two.

Removed



Sample Before After

WZ+jets 8.0 ± 1.0 5.7 ± 0.9

𝑡𝑡 ̅𝑡𝑡+jets 4.9 ± 1.3 2.9 ± 1.0

DY+jets 420 ± 130 125 ± 72

ZZ→4ℓ 668.6 ± 2.8 496.3 ± 2.4

gg→H→ZZ*→4ℓ 33.5 ± 0.2 26.6 ± 0.2

Total Signal 697.6 ± 2.8 522.9 ± 2.4

Total Background 430 ± 130 134 ± 72

Total 1130 ± 130 657 ± 72

Z2 MASS
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May be off-shell: 
12 GeV < 𝑚𝑚𝑍𝑍2 < 120 GeV R

em
oved

R
em

oved

Statistics issue: Drell-
Yan contribution comes 
from only 3 simulated 
events. This background 
will eventually be 
estimated with data 
driven methods.



LEPTON PT AND PAIR 
MASS
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𝑝𝑝𝑇𝑇
ℓ1 > 20 GeV,
𝑝𝑝𝑇𝑇
ℓ2 > 10 GeV
𝑚𝑚ℓ+ℓ′− > 4 GeV

Sample Before After

WZ+jets 5.7 ± 0.9 5.7 ± 0.9

𝑡𝑡 ̅𝑡𝑡+jets 2.9 ± 1.0 2.9 ± 1.0

DY+jets 125 ± 72 125 ± 72

ZZ→4ℓ 496.3 ± 2.4 494.3 ± 2.4

gg→H→ZZ*→4ℓ 26.6 ± 0.2 26.5 ± 0.2

Total Signal 522.9 ± 2.4 520.8 ± 2.4

Total Background 134 ± 72 134 ± 72

Total 657 ± 72 655 ± 72



CUT FLOW
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Cut Signal Background

Initial 1365.6 ± 4.0 477300 ± 2900

Trigger 1243.2 ± 3.8 212500 ± 2500

Z1 Leptons 1098.7 ± 3.6 140800 ± 2300

Z1 Isolation 1038.0 ± 3.5 1231 ± 2200

Z1 Mass 988.2 ± 3.4 119400 ± 2200

Z2 Leptons 780.8 ± 3.0 5100 ± 440

Z2 Isolation 697.6 ± 2.8 430 ± 130

Z2 Mass 522.9 ± 2.4 130 ± 72

Final 520.8 ± 2.4 130 ± 72



SIMULATED 4L MASS 
SPECTRUM
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~650 events expected at 19.6 fb−1 (~520 signal)

4l Transverse Mass [GeV]4l Invariant Mass [GeV]



SIMULATED 4L 
KINEMATICS
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4l 𝑝𝑝𝑇𝑇 [GeV] 4l η 4l 𝜙𝜙

Drell-Yan spectrum shape is extrapolated and normalized to the same 
number of total events, due to the statistics issue mentioned previously.



SELECTION EFFICIENCY
• Efficiency: fraction of generated 

events inside the fiducial volume 
passing analysis cuts after 
reconstruction

• Required to find cross section 
from measurement

• “Clean” 4l signal allows good 
background rejection even with 
very loose cuts, allowing high 
signal efficiency
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IMMEDIATE 13TeV 
OUTLOOK
• ZZ and Higgs cross sections both expected to be ~2x 

higher at 13 TeV than at 8 TeV, but conditions will require 
some analysis changes
• High pileup requires isolation definition changes
• Cuts shown here must be tuned in light of data
• Higher 𝑝𝑝𝑇𝑇 thresholds and isolation cuts at trigger level

• Z + X background can be estimated from data
• Expected inclusive cross sections are large enough to be 

measured with first ~1fb-1
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RUN II OUTLOOK
• CMS with 19.6 fb-1 at 𝒔𝒔 = 𝟖𝟖 𝐓𝐓𝐓𝐓𝐓𝐓:

𝜎𝜎𝑝𝑝𝑝𝑝→𝑍𝑍𝑍𝑍 = 7.7 pb ± 6%(stat. )−5%
+6%(syst. ) ± 5%(theo. ) ± 4% lum.

�𝜎𝜎𝐻𝐻→𝑍𝑍𝑍𝑍∗ 𝜎𝜎𝑆𝑆𝑆𝑆 = 0.93−25%
+28%(stat. )−10%

+14%(syst. )
𝑚𝑚𝐻𝐻 = 125.6 ± 0.4 stat. ± 0.2 syst. GeV

• With more data, differential cross sections can be measured 
and electroweak couplings probed. With 70 fb-1:
• We expect statistical uncertainty on 𝜎𝜎𝑝𝑝𝑝𝑝→𝑍𝑍𝑍𝑍 around 3%, on 

�𝜎𝜎𝐻𝐻→𝑍𝑍𝑍𝑍∗ 𝜎𝜎𝑆𝑆𝑆𝑆 around 11%, on 𝑚𝑚𝐻𝐻 around 0.2 GeV
• With better reduction of background systematics and smaller 

PDF and 𝛼𝛼𝑠𝑠 uncertainties, total uncertainty might be reduced
• With statistical uncertainty on inclusive measurements 

comparable to or smaller than systematic uncertainty, we can
• Measure differential cross sections
• Measure production modes separately
• Set limits on deviations from Standard Model couplings
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BACKUP
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VV SCATTERING
• Higgs boson required by SM to maintain unitarity for vector 

boson scattering at 𝒔𝒔 ≳ 𝟏𝟏.𝟐𝟐 TeV
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NLO/NNLO 
CONTRIBUTION TO 𝜎𝜎𝑝𝑝𝑝𝑝→𝑍𝑍𝑍𝑍
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gg diagrams 
included (NNLO)

arXiv:1105.0020v1 [hep-ph] 



EXAMPLE PDFS
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INTERACTION LENGTHS 
TO REACH DETECTOR

22 January, 2015 Nate Woods      ⇌ UW Prelim 52



PbWO4 PROPERTIES

PbWO4

Density [g/cm3] 8.28
Molière Radius [cm] 2.19
Radiation Length [cm] 0.85
80% emission time [ns] 25
Emission spectrum peak [nm] ~430
Light yield [photons / MeV of 
particle]

100
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CHARGED PARTICLES IN 
MATTER
• Rules of thumb:

• 1.5 MeV/(g/cm2) for Z/A=1
• 1.2 GeV/m for muon in thick absorber like return yoke
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SPECTRUM WITHOUT 
DRELL YAN
• Overall Drell Yan contribution 

expected to be small, results 
above likely a statistical fluke

• Spectrum without it is more 
similar to what we expect from 
data

• Plots with extrapolated shape 
created by cutting only on lepton 
pt and eta and Z candidate mass, 
and scaling the resulting 
spectrum to the same integrated 
number of events 

• Note: all 3 passing events are in 
4μ channel
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SPECTRUM WITH 
UNMODIFIED DRELL YAN
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