

ZZ Production in Proton-Proton Collisions at $\sqrt{s} = 13$ **TeV in Four-Lepton Events** Using the CMS Detector at the LHC

Nate Woods

University of Wisconsin—Madison

Doctoral Thesis Defense

INTRODUCTION

The Standard Model and ZZ Physics

The Standard Model

- Description of fundamental particles and their interactions
- Matter: fermions in 3 generations
 - Quarks form hadron bound states
 - Leptons in (charged, neutral) pairs
- Forces: exchange of gauge bosons
 - Gluon (strong force)
 - Photon (electromagnetism)
 - W[±], Z (weak force)
 - Massive due to scalar Higgs boson
- Not covered: gravity, dark matter, dark energy, neutrino mass

Image: Wikimedia Commons

Particle Interactions

Strong force (g)

- 3-component color charge carried by quarks and gluons
- Gluon self-interaction causes antiscreening: interaction strength grows with distance
 - Confinement: no free color charge
- Electromagnetic force (γ)
 - Charge carried by quarks, charged leptons, W[±] bosons
- Weak force (W^{\pm} , Z)
 - Interact with all except gluon and (Z only) $\boldsymbol{\gamma}$
 - Massive mediators → short range

Electroweak Symmetry Breaking

- Glashow-Weinberg-Salam (GWS) model yields a unified electroweak force but with massless mediators
- Higgs mechanism: introduce doublet of complex scalar fields with nonzero vacuum expectation value

- Gauge symmetry is spontaneously broken, leaving massive W[±] and Z bosons (massless γ remains)
- Higgs field's 4 degrees of freedom become longitudinal W^{\pm} and Z polarizations and a new scalar, the Higgs boson (H)
- Mixing causes new interactions between bosons
- Fermions acquire mass through H-induced Yukawa couplings

Proton Structure and Collisions

- A proton is a bound state of 3 valence quarks (uud) exchanging virtual gluons
 - Also contains "sea" quarks, including heavy quarks
 - Valence quarks, sea quarks, or gluons can collide
- Parton distribution functions (PDF) give probability of each parton type as functions of momentum transfer μ and the fraction x of proton momentum they carry
- Hadron collisions allow discoveries at many masses with many initial states

Diboson and 4l Production

- Details of gauge boson interactions are important predictions of the SM
 - No fully neutral gauge couplings
- Anomalous triple or quartic couplings (aTGC, aQGC) would change diboson production rates
- ZZ cross section is small but 4l final state is clean and can be reconstructed well
- ZZ* is a primary Higgs boson discovery and measurement channel
- Branching fraction to 4^l only ~1%
 - High efficiency and low background compensate

25 October 2017

000000

q

9999

Nonresonant ZZ

- Large corrections at next-to-leading order (NLO) and next-to-next-toleading order (NNLO) in QCD perturbative calculation from introduction of qg and gg initial states
 - "NLO+gg" often used, with gg fusion box diagrams in addition to NLO
- Our definition for doubly resonant production: both Zs have mass in 60 – 120 GeV
- Sharp turn-on around $m_{4\ell}=2m_{
 m Z}pprox$ 182 GeV, followed by exponential decay
- Looser Z mass requirements allow Z/ γ^* admixture at lower $m_{4\ell}$
 - 4 ℓ continuum ~flat for $m_{\rm Z} < m_{4\ell} < 2m_{\rm Z}$

لأووو

Nonresonant ZZ: Previous

Results

- CMS and ATLAS measured ZZ at 7 and 8 (shown) TeV
- CMS (top plot)
 - $60 < m_{Z_{1,2}} < 120 \text{ GeV}$
 - $ZZ \rightarrow \ell \ell \ell' \ell'; \ \ell = (e, \mu), \ell' = (e, \mu, \tau)$
 - $\sigma_{pp \to ZZ} = 7.7 \pm 0.5 (\text{stat.})^{+0.5}_{-0.4} (\text{syst.}) \pm 0.4 (\text{theo.}) \pm 0.3 (\text{lum.}) \text{ pb}$
- ATLAS (bottom plot)
 - 66 < $m_{Z_{1,2}}$ < 116 GeV
 - $ZZ \rightarrow \ell \ell \ell' \ell'; \ \ell, \ \ell' = (e, \mu)$
 - $\sigma_{pp \to ZZ} = 7.1^{+0.5}_{-0.4}(\text{stat.}) \pm 0.3(\text{syst.}) \pm 0.2(\text{lumi.}) \text{ pb}$

Ph.D. Thesis Defense

Z WWWW

Resonant Production: Single-Z and Higgs Boson

- Expanding "Z" mass window admits $Z \rightarrow \ell \ell \gamma^* \rightarrow 4\ell$ and $H \rightarrow ZZ^* \rightarrow 4\ell$ resonances
- ZZ^{*} a primary channel for Higgs discovery and measurement of its properties
 - Angular distributions sensitive to spin/parity

Higgs Boson: Previous Results

- CMS and ATLAS both discovered particle consistent with Standard Model Higgs near 125 GeV in 2012
 - $H \rightarrow ZZ^* \rightarrow 4\ell$ was a primary channel
- 8 TeV measurements in this channel:
 - CMS (top plot)
 - $\sigma / \sigma_{SM} = 0.93^{+0.26}_{-0.23}$ (stat.) $^{+0.13}_{-0.09}$ (syst.)
 - ATLAS
 - $\sigma / \sigma_{SM} = 1.50^{+0.35}_{-0.31}$ (stat.) $^{+0.19}_{-0.13}$ (syst.)
- Combined mass measurement (both experiments, ZZ and γγ channels):
 - $m_{\rm H} = 125.09 \pm 0.21(\text{stat.}) \pm 0.11(\text{syst.})$

. ≩mm

 q_1

≩៱៱៷ű៷៷៷

 q'_1

Vector Boson Scattering

- VV→VV scattering (VBS) violates unitarity ^{W[±]} in SM without Higgs diagrams
- Pure electroweak ZZ + 2jets production sensitive to gauge boson interactions and Higgs sector
- Experimental signature: 2 jets with high energy, high rapidity separation

q'1

Anomalous Triple Gauge Couplings

- ZZZ and ZZγ couplings forbidden in SM
- New physics, e.g. a new gauge boson at very high mass, could appear as an effective modification to the couplings
- Can be described by an effective Lagrangian parameterized by coefficients f_4^Z , f_4^γ (CP-odd) and f_5^Z , f_5^γ (CP-even)
- Nonzero aTGCs would increase the ZZ cross section at high $m_{4\ell}$
- Previous best limits (from CMS):
 - $-\ 0.0022 < f_4^{\rm Z} < 0.0026, \ \ -0.0023 < f_5^{\rm Z} < 0.0023$

 $-\ 0.0029 < f_4^\gamma < 0.0026, \quad -0.0026 < f_5^\gamma < 0.0027$

Anomalous Quartic Gauge Couplings

- Fully neutral VVVV vertices also forbidden in SM
- Nonzero aQGCs increase ZZ VBS cross section at high m_{ZZ}
- Parameterize with dimension-8 effective field theory operators

$$\mathcal{L}_{\mathrm{T0}} = \frac{f_{\mathrm{T0}}}{\Lambda^4} \mathrm{Tr} \left[\hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \right] \times \mathrm{Tr} \left[\hat{W}_{\alpha\beta} \hat{W}^{\alpha\beta} \right]$$
$$\mathcal{L}_{\mathrm{T1}} = \frac{f_{\mathrm{T1}}}{\Lambda^4} \mathrm{Tr} \left[\hat{W}_{\alpha\nu} \hat{W}^{\mu\beta} \right] \times \mathrm{Tr} \left[\hat{W}_{\mu\beta} \hat{W}^{\alpha\nu} \right]$$
$$\mathcal{L}_{\mathrm{T2}} = \frac{f_{\mathrm{T2}}}{\Lambda^4} \mathrm{Tr} \left[\hat{W}_{\alpha\mu} \hat{W}^{\mu\beta} \right] \times \mathrm{Tr} \left[\hat{W}_{\beta\nu} \hat{W}^{\nu\alpha} \right]$$
$$\mathcal{L}_{\mathrm{T8}} = \frac{f_{\mathrm{T8}}}{\Lambda^4} B_{\mu\nu} B^{\mu\nu} B_{\alpha\beta} B^{\alpha\beta}$$
$$\mathcal{L}_{\mathrm{T9}} = \frac{f_{\mathrm{T9}}}{\Lambda^4} B_{\alpha\mu} B^{\mu\beta} B_{\beta\nu} B^{\nu\alpha},$$

- T8 and T9 affect only the fully neutral couplings
- No previous limits from ZZ searches

Background Processes

- Small contribution from processes with 4 prompt leptons
 - WWZ $\rightarrow 4\ell 2\nu$, t $\overline{t}Z \rightarrow 4\ell 2\nu 2b$
 - Processes are "real physics" that can be modeled
- More often, 2 or 3 prompt leptons plus 2 or 1 jet fragments
 - WZ + X \rightarrow 3 $\ell \nu$ + X'
 - $t\bar{t} \rightarrow 2\ell 2\nu 2b$
 - $Z/\gamma^* + 2X \rightarrow 2\ell + 2X'$
 - Fake objects are complicated and hard to model, must be estimated from data
- Continuum ZZ with QCD jets is background for VBS search

EXPERIMENT

The LHC and CMS

The Large Hadron Collider

- 27 km circumference collider at CERN near Geneva, CH, capable of colliding protons and heavy ions
- Serves four primary experiments
 - CMS and ATLAS: general purpose
 - LHCb: forward hadronic physics
 - ALICE: heavy ion physics
- Designed for 14 TeV center of mass energy
 - Achieved 8 TeV in 2012
 - 13 TeV since 2015

25 October 2017

D.... II

D.m. I

LHC Operating Conditions

- Superb machine performance
- Instantaneous luminosity:

 $\mathscr{L}=f_{\mathrm{rev}}\frac{n_bN_b^2\gamma}{4\pi\beta^*\epsilon_N}R$

- Event yield (cross section σ): $N = \sigma \int \mathscr{L} dt$
- Maximize luminosity with high bunch occupancy, compact bunches
 - High pileup (collisions per bunch crossing) a major experimental challenge
- Very high *L* in 2016, 2017 even higher
- Results shown today: 35.9 fb⁻¹ (2016)

Design	Rull 1			Run II	
	2010	2011	2012	2015	2016
7	3.5	3.5	4	6.5	6.5
25	150	50	50	25	25
2808	348	1331	1368	2232	2208
1.15	1.2	1.5	1.7	1.15	1.25
0.55	3.5	1.0	0.6	0.8	0.4
3.75	2.2	2.3	2.5	3.5	3.0
	4	17	37	22	49
1	0.02	0.35	0.77	0.52	1.53
	0.04	6.1	23.3	4.2	41.1
	7 25 2808 1.15 0.55 3.75 1	Design 2010 7 3.5 25 150 2808 348 1.15 1.2 0.55 3.5 3.75 2.2 4 1 1 0.02 0.04	Design Run 1 2010 2011 7 3.5 3.5 25 150 50 2808 348 1331 1.15 1.2 1.5 0.55 3.5 1.0 3.75 2.2 2.3 4 17 1 0.02 0.35 0.04 6.1	DesignRun I20102011201273.53.542515050502808348133113681.151.21.51.70.553.51.00.63.752.22.32.54173710.020.350.770.046.123.3	Design Run 1 Run 1 2010 2011 2012 2015 7 3.5 3.5 4 6.5 25 150 50 50 25 2808 348 1331 1368 2232 1.15 1.2 1.5 1.7 1.15 0.55 3.5 1.0 0.6 0.8 3.75 2.2 2.3 2.5 3.5 4 17 37 22 1 0.02 0.35 0.77 0.52 0.04 6.1 23.3 4.2

Dagion

CMS Integrated Luminosity, pp

18

25 October 2017

UW Madison *⇒* Ph.D. Thesis Defense

Magnet

- Charged particle momentum measured by finding curvature of trajectory in magnetic field
- Superconducting solenoid provides 3.8 T field in central barrel of detector
- Iron return yokes provide ~2T field in outer muon system

Silicon Tracker

- 66M channel Si pixel system close to interaction point finds primary vertices and seeds tracks
- 9.6M channel Si strip detector iteratively fits tracks from these seeds in $|\eta| < 2.5$
- Resolution (barrel):

Tracker Material Budget

Electromagnetic Calorimeter

- Electron and photon energy and position measured by high granularity electromagnetic calorimeter (ECAL)
- 61200 PbWO₄ crystal scintillators in barrel region (EB, $|\eta| < 1.48$) and 14648 in endcap (EE, $|\eta| < 3.0$) read out by amplifying photodetectors
- In addition to energy measurement, provides triggering for electrons and photons
- Resolution (stochastic+noise+const.):

$$\frac{\sigma}{E} = \frac{2.8\%}{\sqrt{E/\text{GeV}}} \bigoplus \frac{.128}{E/\text{GeV}} \bigoplus 0.3\%$$

ECAL crystal with photodetector and cartoon of an electron shower

25 October 2017

Hadronic Calorimeter

- Long-lived neutral hadrons measured and triggered by compact (inside solenoid), hermetic ($|\eta| < 5$) sampling hadronic calorimeter (HCAL)
- Barrel and endcap (HB and HE, $|\eta| < 3.0$)
 - Plastic scintillator tiles embedded with wavelength shifting fibers interleaved with brass absorber

•
$$\frac{\sigma}{E} \approx \frac{85\%}{\sqrt{E/\text{GeV}}} \oplus 7\%$$
 (HB), $\frac{\sigma}{E} \approx \frac{113\%}{\sqrt{E/\text{GeV}}} \oplus 3\%$ (HE)

• Forward (HF, $3 < |\eta| < 5$)

25 October 2017

- Steel with embedded quartz fibers
- Also measures EM rich jets outside ECAL acceptance

UW Madison

•
$$\frac{\sigma}{E} \approx \frac{280\%}{\sqrt{E/\text{GeV}}} \bigoplus 11\%, \frac{\sigma}{E} \approx \frac{198\%}{\sqrt{E/\text{GeV}}} \bigoplus 9\%$$
 (EM)
2017 Nate Woods \Rightarrow UW Madison \Rightarrow Ph.D. Thesis Defense

Muon System

- Several gas ionization systems interleaved with iron return yoke outside solenoid
- Muon triggering and identification
- Improved high- p_T muon measurements
- Drift Tubes (DT) in barrel ($|\eta| < 1.2$)
 - Resolution: 80-120 μ m, ~3 ns
- Cathode Strip Chambers (CSC) in endcap ($0.9 < |\eta| < 2.4$)
 - Resolution: 40-150 µm, ~3 ns
- Resistive Plate Chambers (RPC, $|\eta| < 1.6$)
 - 1 ns timing, redundant triggering

Ph.D. Thesis Defense

Trigger

- LHC 40 MHz bunch crossing rate with ~40 interactions per crossing gives potential ~40 TB/s data rate
- CMS produces far too much raw data to store and analyze, but most is uninteresting soft QCD
- 2-tier trigger system reduces 40 MHz bunch crossing rate to ~100 kHz in dedicated hardware (Level-1 Trigger), then to ~1 kHz appropriate for storage and analysis with software (High Level Trigger)

Level-1 Trigger

- Low granularity detector information is processed in dedicated hardware
- L1 Calorimeter Trigger finds (possibly isolated) electrons, photons, taus, jets, total E_T, MET, hadronic E_T (HT) and MHT
- L1 Muon Trigger builds tracks and reconstructs muon candidates
- Global Trigger combines calo and muon objects and makes final decision based on configurable menu
 - Topological selections possible
- <~4 μs latency, ~100 kHz max readout

High Level Trigger

- Modified version of offline reconstruction software run on commercial processor farm
- Uses full detector information, including tracker
- Can perform complex analysis-specific algorithms such as vertex tagging, tau reconstruction, etc.
- Optimized for speed
 - Check detector only in region of L1 objects
 - Reconstruct fast objects first to allow early rejection

EXPERIMENTAL METHODS

Simulation and Reconstruction

Simulation

- Simulation of physics observables is vital to experiment design and validation, and data-theory comparison
- Use Monte Carlo methods to generate individual events
- Matrix element generation: calculate scattering amplitudes at a chosen perturbative order, and generate a hard process-level spectrum
- Parton showering and hadronization performed by shower MC
- Pileup simulated with overlaid minimum bias events
- Particle-matter interactions and detector response simulated with GEANT4
- Reconstruction and analysis with same software as data

25 October 2017

Nate Woods \Rightarrow UW Madison \Rightarrow Ph.D. Thesis Defense

Generators

- Matrix element generators
 - POWHEG (NLO, scaled to NNLO yields)
 - $gg \rightarrow H \rightarrow ZZ^*$, $q\overline{q}/qg \rightarrow ZZ$, $q\overline{q} \rightarrow Z \rightarrow 4\ell$
 - MadGraph5_aMC@NLO
 - $q\overline{q}/qg \rightarrow ZZ$ (NLO)
 - ZZ + 2jets (QCD and EWK), aQGC signal (LO)
 - MCFM
 - gg \rightarrow ZZ (LO, scaled to NLO yield)
 - SHERPA
 - aTGC signal (LO)
- Parton shower and hadronization with Pythia 8 (except SHERPA samples)

Particle Flow Reconstruction

- CMS design is optimized to allow signals to be combined across detector subsystems
- Correlations improve identification and resolution

- Tracks and calorimeter clusters are matched and combined to reconstruct particle flow (PF) candidates
 - Tracker tracks matched to muon system hits are muons
 - Remaining tracks are associated to ECAL clusters to make electrons or HCAL clusters to make charged hadrons
 - Remaining ECAL clusters are photons, remaining HCAL clusters are neutral hadrons
- PF candidates can be clustered into higher-level objects (jets, taus, missing energy) or further selected for analysis use

25 October 2017

Muon Reconstruction and Selection

Three types of muon reconstruction

- Tracker muon, found by silicon tracker
- Standalone muon, found by muon system
- Global muon, matched tracks in both
- This study requires
 - Global or tracker
 - Close to primary interaction vertex
 - Several more cuts (e.g. small χ^2 of track fit) to eliminate hadrons that "punch through" to the muon system

Tracker

Strips'

ET

Electron Reconstruction and Selection

- Electrons lose substantial energy to material interactions
 - Tracks re-reconstructed with Gaussian sum filter algorithm due to stochastic energy loss
 - ECAL clusters extended in ϕ to collect bremsstrahlung photons
- Track must originate from primary vertex
- Identification uses boosted decision tree (BDT) multivariate discriminator with inputs including
 - Track quality and energy loss observables (reject hadrons)
 - Calorimeter cluster shape and properties, e.g. HCAL activity (reject EM-rich jets)
 - Track-cluster compatibility by position and energy (reject photons)

 \mathbf{O}

рт

Pixels \overline{a} \overline{b} \overline{a}

Lepton Isolation

- QCD backgrounds produce lepton candidates inside jets that may be strongly rejected by limiting the energy in cones around them
- Particle Flow Relative Isolation:

•
$$R_{\rm Iso}^{\ell} \equiv \frac{\sum p_{\rm T}^{\rm charged} + \max\left[0, \sum p_{\rm T}^{\rm neutral} + \sum p_{\rm T}^{\gamma} - p_{\rm T}^{\rm PU}(\ell)\right]}{p_{\rm T}^{\ell}}$$

Charged and neutral refer to PF hadrons

•
$$p_{\rm T}^{\rm PU}({\rm e}) \equiv \rho \times A_{\rm eff}$$

- ρ : median jet neutral particle energy
- A_{eff} : cone area scaled for N_{vtx}
- $p_{\rm T}^{\rm PU}(\mu) \equiv 0.5 \times \sum_i p_{\rm T}^{{\rm PU},i}$, *i* runs over charged hadrons from other vertices

Jet Reconstruction

- Jets are made from clusters of charged hadrons (~65%), neutral hadrons (~25%) and photons (10%)
- Clustering algorithm must be infrared and collinear safe, i.e. insensitive to processes that surround a hadron with soft radiation or split one hadron into two nearly collinear ones
- Here: anti- k_{T} algorithm with R = 0.4
 - Iteratively merge particle pairs with smallest d_{ij}

•
$$d_{ij} = \min(p_{T_i}^{-2}, p_{T_j}^{-2}) \frac{\Delta_{ij}}{R'}$$
 $\Delta_{ij}^2 \equiv (y_i - y_j)^2 + (\phi_i - \phi_j)^2$

- MC jet energies corrected to remove pileup and smeared to match data
- Reject jets within $\Delta R < 0.4$ of leptons and FSR photons

ANALYSIS STRATEGY

Event Selection

Triggers

- Trigger on pairs of isolated leptons
- Additional triggers with a single very high $p_{\rm T}$ or isolated lepton, or three leptons, to bring efficiency close to 1
- $p_{\rm T}$ thresholds increased with instantaneous luminosity, full list in backup slides
- Most important: 23 GeV electron/17 GeV muon + 12 GeV electron/8 GeV muon (both particles isolated)
- 2- and 3-lepton triggers may be same flavor or cross trigger (e.g. ee, eµ, µe, µµ all used)
- Use simple OR of all paths

Lepton Selection Details

 Leptons must pass minimal "loose" ID cuts to be used in control regions, plus an additional "tight" requirement for signal leptons

•
$$p_{\mathrm{T}}^{\mathbf{e}(\mu)}$$
 > 7 (5) GeV, $\left|\eta^{\mathbf{e}(\mu)}\right|$ < 2.5 (2.4)

• SIP
$$\equiv \frac{|IP_{3D}|}{\sigma_{IP_{3D}}} < 10$$
 for all leptons

- Electrons: $\Delta R(e, any \mu) > 0.05$
 - Tight requirement: Pass BDT discriminator
- Muons: $|\eta| < 2.4$, global or tracker muon
 - Tight requirement: PF muon

•
$$R_{\rm Iso}^{\ell} < 0.35$$

25 October 2017

Event Selection

- Consider all possible lepton pairings that give 2 opposite sign, same flavor Z/ γ^* candidates ($\ell^+\ell^-\ell'^+\ell'^-$, $\ell \in e, \mu$)
 - One with $40 < m_{\ell\ell} < 120~{\rm GeV}$, other with $m_{\ell\ell} < 120~{\rm GeV}$
 - All opposite-sign pairs must have $m_{\ell\ell'} > 4 \text{ GeV}$
- Z₁: lepton pair with $m_{\ell\ell}$ closest to nominal $m_{
 m Z}$
- $p_{\mathrm{T}}^{\ell_1}$ > 20 GeV, $p_{\mathrm{T}}^{e(\mu)_2}$ > 12(10) GeV
- In case of more than one possible ZZ system, the one with smallest $|m_{\rm Z_1} m_{\rm Z}|$ is chosen, then $\sum_i p_{\rm T}^{\ell_i}$ is maximized
- Further requirements for specific measurements:
 - On-shell: $60 < m_{Z_{1,2}} < 120 \text{ GeV}$
 - ZZjj (VBS): Two jets with $m_{jj} > 100 \text{ GeV}$
 - Z \rightarrow 4 ℓ : 80 < $m_{4\ell}$ < 100 GeV, H \rightarrow 4 ℓ : 118 < $m_{4\ell}$ < 130 GeV

25 October 2017

Nate Woods \rightleftharpoons UW Madison \rightleftharpoons Ph.D. Thesis Defense

Cut Flow

- Number of 2*l*2*l*' events passing each cut
- ZZ → 4ℓ, Z → 4ℓ, and H → 4ℓ selections applied on top of full spectrum selection
- Best candidate in each event chosen in full spectrum selection
 - Measurement-specific samples are strict subsets
 - At earlier steps, events may appear in multiple channels

1.	Selection	4e	$2\mathrm{e}2\mu$	4μ	Total 1598705	
	Trigger	580633	645640	399212		
	Lepton ID	2195	6760	11614	20563	
	Lepton Isolation	597	1189	1548	3334	
	Full Spectrum	440	1111	838	2389	
	$Z \to 4\ell$	78	206	225	509	
	$H \to 4\ell$	19	41	34	94	
	$ZZ \rightarrow 4\ell$	220	543	335	1098	

Signal Efficiency (%)					
	4e 2e2μ 4μ				
$Z \rightarrow 4\ell$	24	36	73		
$ZZ \rightarrow 4\ell$	54	65	78		

Background Estimation Overview

- Backgrounds are small (~6% of ZZ yield)
- WWZ and $t\bar{t}Z$ from MC; data driven Z + X and $t\bar{t}$
- Strategy: weight events in control regions with 1
 or 2 non-prompt lepton candidates by the rate at
 tt
 ¹⁰
 tt
 ¹⁰
 tt
 ¹⁰
- Lepton fake rate $f^\ell(p_{\mathrm{T}}^\ell, \eta^\ell)$ found with Z+ ℓ_{loose} sample
- 4ℓ control regions:
 - 3P1F (3 prompt, 1 fake): one lepton fails tight ID or isolation
 - 2P2F (2 prompt, 2 fake): both leptons in one Z fail
- 2P2F is already counted (twice) in 3P1F, so it is subtracted out

•
$$N_{SR} = \sum_{3P1F_i} \frac{f^{\ell_i}}{1 - f^{\ell_i}} - \sum_{2P2F_{i,j}} \frac{f^{\ell_i} f^{\ell_j}}{(1 - f^{\ell_i})(1 - f^{\ell_j})}$$

25 October 2017

Process	Approx. fraction of ZZ background
tīZ	10%
Z+X	70%
WZ	10%
tī	10%

Lepton Fake Rate Estimation

• Z+l_{loose}

- Z selected as in signal region but with $|m_{\ell\ell} m_Z| < 10 \text{ GeV}$
- 3rd lepton passes loose ID, no isolation cut
- MET < 20 GeV and $m_T \left(\vec{p}_T^{\ell_3}, \vec{p}_T^{\text{miss}} \right)$ < 30 GeV to remove WZ
- 4th lepton veto
- Dielectron and dimuon triggers only
- Any remaining WZ and ZZ contamination estimated from MC and removed
- Fake rate: $f = \frac{\# \text{ also passing tight ID+isolation}}{\text{total}}$

Systematic Uncertainties

- Lepton ID and isolation efficiency systematics found by varying scale factors by fit uncertainties
- Pileup uncertainty found by varying estimated minbias cross section by 4.6%
- 40% uncertainty on fake rate

Uncertainty	$Z\to 4\ell$	$ZZ \rightarrow 4\ell$	
Lepton efficiency	6 - 10%	2 - 6%	
Trigger efficiency	2 - 4%	2%	
MC statistics	1–2%	0.5%	
Background	0.6 – 1.3%	0.5 - 1%	
Pileup	1–2%	1%	
PDF	1%	1%	
QCD Scales	1%	1%	
Integrated luminosity	2.5%	2.5%	

MEASUREMENTS

Yields and Inclusive Cross Sections

35.9 fb⁻¹ (13 TeV)

CMS

Systematic unc. $q\bar{q} \rightarrow ZZ, Z\gamma^*$ $gg \rightarrow ZZ, Z\gamma^*$ $H \rightarrow ZZ$

tīZ, WWZ Z + X

280 GeV

) 2 / suosod 2 000

500

400

300

200

N

Full Spectrum

- Various production modes ($Z \rightarrow 4\ell, \gamma^* \gamma^*$, H $\rightarrow 4\ell$, $Z\gamma^*$, ZZ) clearly visible
- Not used for cross section measurements

25 October 2017

$Z \rightarrow 4\ell$ Yield

Final state	Expected $N_{4\ell}$	Background	Total expected	Observed
$ \begin{array}{r} 4\mu \\ 2e2\mu \\ 4e \end{array} $	$224 \pm 1 \pm 16 \\ 207 \pm 1 \pm 14 \\ 68 \pm 1 \pm 8$	$7 \pm 1 \pm 2$ $9 \pm 1 \pm 2$ $4 \pm 1 \pm 2$	$231 \pm 2 \pm 17 216 \pm 2 \pm 14 72 \pm 1 \pm 8$	225 206 78
Total	$499 \pm 2 \pm 32$	$19\pm2\pm5$	$518 \pm 3 \pm 33$	509

Nate Woods \rightleftharpoons UW Madison \rightleftharpoons Ph.D. Thesis Defense

$Z \rightarrow 4\ell$ Cross Section

 Total inclusive signal strength found with maximum likelihood fit of yields, treating each channel as an independent bin

 $\mu = 0.980^{+0.046}_{-0.044} \,(\text{stat})^{+0.065}_{-0.059} \,(\text{syst}) \pm 0.025 \,(\text{lumi})$

• $\sigma_{\rm fid} = \mu \times \sigma_{\rm fid}^{\rm theo}$

 $\sigma_{\rm fid} \,({\rm pp} \to {\rm Z} \to 4\ell) = 31.2^{+1.5}_{-1.4} \,({\rm stat})^{+2.1}_{-1.9} \,({\rm syst}) \pm 0.8 \,({\rm lumi}) \,{\rm fb}$

- $\sigma_{\rm fid}$ scaled to total $\sigma \times \mathcal{B}$ by $\mathcal{A} = 0.125 \pm 0.002$
 - Removes all but $80 < m_{4\ell} < 100$ GeV and $m_{\ell\ell} > 4$ GeV requirements
 - Includes correction for nonresonant contribution

 $\sigma(pp \to Z) \times \mathcal{B}(Z \to 4\ell) = 249 \pm 8 \,(\text{stat})^{+9}_{-8} \,(\text{syst}) \pm 4 \,(\text{theo}) \pm 6 \,(\text{lumi}) \,\text{fb}$

- But we already know the Z cross section with higher precision
 - More interesting to interpret as branching fraction

25 October 2017

$Z \to 4 \ell$ Branching Fraction

$$\mathcal{B}(Z \to \ell \ell \ell' \ell') = \frac{\sigma(pp \to Z) \times \mathcal{B}(Z \to \ell \ell \ell' \ell')}{\sigma(pp \to Z) \times \mathcal{B}(Z \to \ell \ell) / \mathcal{B}(Z \to \ell \ell) \cdot \mathcal{C}_{80-100}^{60-120}}$$

- Z cross section (FEWZ NNLO):
 - $\sigma(pp \rightarrow Z) \times \mathcal{B}(Z \rightarrow \ell \ell) = 1870^{+50}_{-40} \text{ pb}$
- Translation between Z mass windows:
 - $C_{80-100}^{60-120} = 0.926 \pm 0.001$
- Nominal dilepton branching fraction (PDG):
 - $\mathcal{B}(\mathbf{Z} \to \ell \ell) = 0.03366$

 $\mathcal{B}(Z \to 4\ell) = 4.8 \pm 0.2 \text{ (stat)} \pm 0.2 \text{ (syst)} \pm 0.1 \text{ (theo)} \pm 0.1 \text{ (lumi)} \times 10^{-6}$

• Compare to 4.6×10^{-6} (MCFM or MadGraph5_aMC@NLO)

$H \rightarrow 4\ell$ Yield

$ZZ \longrightarrow 4\ell \text{ Yield}$

25 October 2017

Nate Woods \rightleftharpoons UW Madison \rightleftharpoons Ph.D. Thesis Defense

$ZZ \rightarrow 4\ell$ Cross Section

• Signal strength $\mu = 1.040^{+0.033}_{-0.032} (\text{stat})^{+0.037}_{-0.035} (\text{syst}) \pm 0.026 (\text{lumi})$ $\sigma_{\text{fid}}(\text{pp} \rightarrow \text{ZZ} \rightarrow 4\ell) = 40.9 \pm 1.3 (\text{stat}) \pm 1.4 (\text{syst}) \pm 1.0 (\text{lumi}) \text{ fb}$ • Total cross section requires only 60 < $m_{\text{Z}_{1,2}}$ < 120 GeV, $m_{\ell\ell}$ > 4 GeV $\sigma(\text{pp} \rightarrow \text{ZZ}) = 17.5^{+0.6}_{-0.5} (\text{stat}) \pm 0.6 (\text{syst}) \pm 0.4 (\text{theo}) \pm 0.4 (\text{lumi}) \text{ pb}$ • Measured on 2015 data (2.6 fb⁻¹)

 $\sigma(pp \rightarrow ZZ) = 14.6^{+1.9}_{-1.8} \,(\text{stat})^{+0.3}_{-0.5} \,(\text{syst}) \pm 0.2 \,(\text{theo}) \pm 0.4 \,(\text{lumi}) \,\text{pb}$

Combining 2016 and 2017 data gives

 $\sigma(pp \to ZZ) = 17.2 \pm 0.5 \,(stat) \pm 0.7 \,(syst) \pm 0.4 \,(theo) \pm 0.4 \,(lumi) \,pb$

• Compare total cross section to 16. $5^{+0.5}_{-0.7}$ pb (MATRIX NNLO, NNPDF3) or 15. $4^{+0.5}_{-0.4}$ pb (MCFM NLO, MSTW2008)

Total Cross Section Vs. \sqrt{s}

- Cross section very sensitive to NLO and NNLO corrections (outside scale uncertainties of b^a lower orders)
- Comparisons here are to MCFM NLO+gg and MATRIX NNLO
 - Both: $\mu_{\mathrm{F}} = \mu_{\mathrm{R}} = m_{\mathrm{Z}}$
- CMS and ATLAS measurements all agree with NNLO theory over large energy range

MEASUREMENTS

Differential Cross Sections

Measured Differential Cross

Sections

Measured Differential Cross

Sections

 Expand to full spectrum selection to include Z → 4ℓ, Higgs resonance, full continuum

Measured Differential Cross Sections

• Include jets with $p_{
m T} > 30$ GeV, $|\eta| < 4.7$

SEARCHES

VBS and Anomalous Couplings

VBS Search

- VBS signal is too small compared to QCD ZZ + 2jets for a cut-and-count analysis to be sensitive
- Instead, extract signal with BDT
 - Observables considered include dijet and 4l kinematics, hadronic activity levels, and whole-event topology
 - Poorly modeled observables (e.g. $p_{\mathrm{T}}^{\mathrm{j}_3}$) not used
 - Seven observables with highest discrimination power retained
- Use whole ZZjj sample, extract signal and background yields with shape fits to BDT output

25 October 2017

Ph.D.

VBS Search Results

- Excess of events consistent with VBS observed at the level of 2.7 σ
 - 1.6σ expected
- Measured VBS fiducial cross section

 $\sigma_{\rm fid}(\rm pp \to ZZjj(EWK) \to 4\ell jj) = 0.40^{+0.21}_{-0.16} \,(\rm stat)^{+0.13}_{-0.09} \,(\rm syst) \, fb$

- Consistent with SM prediction of $0.29^{+0.02}_{-0.03}$ fb
- This is the first ZZ VBS search; there are no previous results to compare to

aTGC Search

- Nonzero ZZZ and ZZγ couplings would increase ZZ cross section at high mass
- Strategy to obtain continuous limits: generate samples at several aTGC working points, fit yields in each $m_{4\ell}$ bin to a polynomial of 2nd order in both $f_{4(5)}^{\gamma}$ and $f_{4(5)}^{Z}$
- Set limits at 95% CL

aTGC Limits

~2x better than previous best (also from CMS)

 $-0.0012 < f_4^{\rm Z} < 0.0010, -0.0010 < f_5^{\rm Z} < 0.0013$

 $-0.0012 < f_4^{\gamma} < 0.0013, -0.0012 < f_5^{\gamma} < 0.0013$

25 October 2017

Nate Woods \rightleftharpoons UW Madison \rightleftharpoons P

aQGC Search

- Sensitivity in ZZjj phase space
- Signal samples at several working points obtained with matrix element reweighting of MadGraph5_aMC@NLO signal samples
- Unitarization: set cutoff scale Λ as the energy at which the observed 95% CL limit violates unitarity (determined with VBFNLO generator)
 - Report limits on f/Λ^4

• 1D only

aQGC Limits

• Most sensitive limits on all parameters when published

- $-0.46 < f_{\rm T0}/\Lambda^4 < 0.44 ~{\rm TeV^{-4}}$ Previous: [-3.4, 2.9] (ATLAS Zy)
- $-0.61 < f_{\rm T1}/\Lambda^4 < 0.61 {
 m TeV^{-4}}$ Previous: [-2.1, 2.4] (CMS W[±]W[±])
- $-1.2 < f_{T2}/\Lambda^4 < 1.2$ TeV⁻⁴ Previous: [-5.9, 7.1] (CMS W[±]W[±])
- $-0.84 < f_{\rm T8}/\Lambda^4 < 0.84 ~{
 m TeV}^{-4}$ Previous: [-1.8, 1.8] (CMS/ATLAS Zy)
- $-1.8 < f_{T9}/\Lambda^4 < 1.8$ TeV⁻⁴ Previous: [-3.9, 3.9] (ATLAS Zy)
- First limits set with ZZ search
- Limits on f_{T0} , f_{T1} , and f_{T2} have been superseded by tighter limits set by CMS W[±]W[±] analysis

CONCLUSIONS

Summary and Outlook

Summary

- Several studies of four-lepton final states in proton-proton collisions at √s = 13 TeV have been performed on data collected by the CMS experiment at the LHC
 - Inclusive and differential ZZ cross section measurements
 - Measurement of the $Z \rightarrow 4\ell$ branching fraction
 - A search for ZZ vector boson scattering
 - Searches for anomalous triple and quartic gauge couplings
- All results are consistent with the standard model
 - Excess consistent with VBS at 2.7σ level
 - World best limits on many anomalous couplings parameters

Outlook

- LHC may run at 14 TeV soon, but no further energy increases are expected in the near future
 - Progress must come from more precise measurements of quantities we have access to now
- Rough estimate: as much data in 2017 as 2016, as much in 2018 as 2016+2017
- Inclusive cross section uncertainties will improve only marginally; they will be systematics dominated after 2017
- Most bins in differential cross sections are statistically dominated and should improve by ~2x after 2018
- VBS and aGC searches driven by low-occupancy tails, should improve by more than 2x

Backup

25 October 2017

Nate Woods \rightleftharpoons UW Madison \rightleftharpoons Ph.D. Thesis Defense

Anomalous Quartic Gauge Coupling Details

- Treat SM as a low-energy effective theory and add terms with new dimension-8 operators to represent new physics
 - Lowest dimension that gives aQGC without aTGC
- Parameterize search in coefficients of these new terms
- Non-unitary without model-dependent form factor or cutoff

		Couplings modified								
	Terms	wwww	WWZZ	ZZZZ	WWZγ	WWγγ	ZZZγ	ΖΖγγ	Ζγγγ	үүүү
Longitudinal +	$f_{M0}, f_{M1}, f_{M6}, f_{M7}$	\checkmark	v	✓	√	√	1	\checkmark		
transverse	$f_{M2}, f_{M3}, f_{M4}, f_{M5}$		v	✓	√	√	1	\checkmark		
	f_{T0}, f_{T1}, f_{T2}	\checkmark	√	√	√	√	~	✓	✓	~
Transverse	f_{T5}, f_{T6}, f_{T7}		√	✓	√	√	~	~	✓	√
	f _{T8} , f _{T9}			✓			~	✓	✓	✓
					T,	blo mo	dified	from	horo	

25 October 2017

All Trigger Paths

Muon triggers
HLT_IsoMu20_v*
HLT_IsoTkMu20_v*
HLT_IsoMu22_v*
HLT_IsoTkMu22_v*
HLT_IsoMu24_v* †‡
HLT_IsoTkMu24_v* †‡
HLT_Mu50_v*
HLT_Mu45_eta2p1_v*
HLT_Mu17_TrkIsoVVL_Mu8_TrkIsoVVL_v*
HLT_Mu17_TrkIsoVVL_TkMu8_TrkIsoVVL_v*
HLT_Mu17_TrkIsoVVL_Mu8_TrkIsoVVL_DZ_v*
HLT_Mu17_TrkIsoVVL_TkMu8_TrkIsoVVL_DZ_v*
HLT_TripleMu_12_10_5_v*
Electron triggers
HLT_Ele25_eta2p1_WPTight_Gsf_v*
HLT_Ele27_WPTight_Gsf_v*
HLT_Ele27_eta2p1_WPLoose_Gsf_v*
HLT_Ele32_eta2p1_WPTight_Gsf_v*
HLT_Ele17_Ele12_CaloIdL_TrackIdL_IsoVL_DZ_v*
HLT_Ele23_Ele12_CaloIdL_TrackIdL_IsoVL_DZ_v*
HLT_DoubleEle33_CaloIdL_GsfTrkIdVL_v* * *
HLT_DoubleEle33_CaloIdL_GsfTrkIdVL_MW_v* ‡
HLT_DoubleE1e33_CaloIdL_MW_v* ‡
HLT_Ele16_Ele12_Ele8_CaloIdL_TrackIdL_v*
Cross triggers
HLT_Mu8_TrkIsoVVL_Ele17_CaloIdL_TrackIdL_IsoVL_v* *†
HLT_Mu8_TrkIsoVVL_Ele23_CaloIdL_TrackIdL_IsoVL_v*
HLT_Mu8_TrkIsoVVL_Ele23_CaloIdL_TrackIdL_IsoVL_DZ_v*
HLT_Mu17_TrkIsoVVL_Ele12_CaloIdL_TrackIdL_IsoVL_v* *†
HLT_Mu23_TrkIsoVVL_E1e12_CaloIdL_TrackIdL_IsoVL_v* *†
HLT_Mu23_TrkIsoVVL_Ele12_CaloIdL_TrackIdL_IsoVL_DZ_v*
HLT_DiMu9_Ele9_CaloIdL_TrackIdL_v*
HLT_Mu8_DiEle12_CaloIdL_TrackIdL_v*
Integrated luminosity
35.9 fb^{-1}
* 2016B–F
†2016G
$\ddagger 2016H$ Nate Woods \rightleftharpoons UW Madison \rightleftharpoons Ph.D. Thesis Defense

25 October 2017

69

Particle Detection in CMS

Final State Radiation Recovery

- Leptons may radiate photons, leading to mismeasurement of isolation and Z mass
 - FSR photons harder, closer than π^0 etc.
- We associate a photon with the nearest lepton if
 - E_{T}^{γ} > 2 GeV, $\left|\eta_{\gamma}\right|$ < 2.4
 - $R_{\rm Iso}^{\gamma} < 1.8$ (no PU correction)
 - $\Delta R(\ell, \gamma) < 0.5$
 - $\frac{\Delta R}{E_{\mathrm{T}}^{\gamma}} < 0.012$
- Include accepted photon in 4^l kinematics .
- Exclude them from lepton isolation calculations

Tag and Probe Scale Factors

Data efficien

ata / MC

0.9

0.8

0.7 E

CMS

- To improve data-MC agreement, efficiency scale factors are found with a tag-and-probe method
 - Use Z mass constraints to identify leptons
 - Check what fraction pass each cut in data and MC
 - Shape fits to find nonprompt contamination
- Scale factors calculated and applied to Monte Carlo in bins of p_T^{ℓ} and η_{ℓ}

25 October 2017

Nate Woods \rightleftharpoons UW Madison \rightleftharpoons Ph.D. Thesis Defense

Unfolding

- We want to compare our results to theory at generator level, and obtain differential cross sections
- Our acceptance and efficiency aren't 100%, and experimental effects smear observables
- Solving the "unfolding"/deconvolution problem of working backwards to the true underlying distribution is difficult and often ill-posed even when the smearing function is known
- D'Agostini (et al) method: iteratively undo the expected (by Bayes' theorem) smearing into each bin, weighted by the observed data in the bin, starting from a flat prior or MC prediction
- Regularization: prevent overfitting by stopping after n iterations (we use 4)

Measured Differential Cross

Sections

25 October 2017

Measured Differential Cross

Sections

25 October 2017

Measured Differential Cross Sections

Measured Differential Cross Sections

Measured Differential Cross Sections

aTGC Limits as a Function of $m_{4\ell}$ Cutoff

25 October 2017

Nate Woods \rightleftharpoons UW Madison \rightleftharpoons Ph.D. Thesis Defense

All Neutral aTGC Limits

:	September 2017	CMS ATLAS				
		ATLAS+CMS	Channel	Limits	∫ <i>L</i> dt	√s
	εŶ		ZZ (4I,2I2v)	[-1.5e-02, 1.5e-02]	4.6 fb ⁻¹	7 TeV
	t ₄	H	ZZ (4I,2I2v)	[-3.8e-03, 3.8e-03]	20.3 fb ⁻¹	8 TeV
		⊢ −−	ZZ (4I)	[-1.8e-03, 1.8e-03]	36.1 fb ⁻¹	13 TeV
		⊢−−−−−	ZZ (4I)	[-5.0e-03, 5.0e-03]	19.6 fb ⁻¹	8 TeV
		⊢−−−− 4	ZZ (2l2v)	[-3.6e-03, 3.2e-03]	24.7 fb ⁻¹	7,8 TeV
		·	ZZ (41,212v)	[-3.0e-03, 2.6e-03]	24.7 fb ⁻¹	7,8 TeV
		H	ZZ (4I)	[-1.2e-03, 1.3e-03]	35.9 fb ⁻¹	13 TeV
			ZZ (41,212v)	[-1.0e-02, 1.0e-02]	9.6 fb ⁻¹	7 TeV
	.7		ZZ (41,212v)	[-1.3e-02, 1.3e-02]	4.6 fb ⁻¹	7 TeV
	f_A^2	· · · · · · · · · · · · · · · · · · ·	ZZ (41,212v)	[-3.3e-03, 3.2e-03]	20.3 fb ⁻¹	8 TeV
	4	· · · · ·	ZZ (4I)	[-1.5e-03, 1.5e-03]	36.1 fb ⁻¹	13 TeV
		F	ZZ (4I)	[-4.0e-03, 4.0e-03]	19.6 fb ⁻¹	8 TeV
		·	ZZ (212v)	[-2.7e-03, 3.2e-03]	24.7 fb ⁻¹	7,8 TeV
		i Hanna i	ZZ (41,212v)	[-2.1e-03, 2.6e-03]	24.7 fb ⁻¹	7,8 TeV
		́ні́	ZZ (4I)	[-1.2e-03, 1.0e-03]	35.9 fb ⁻¹	13 TeV
			ZZ (41,212v)	[-8.7e-03, 9.1e-03]	9.6 fb ⁻¹	7 TeV
	-V	· · ·	ZZ (41,212v)	[-1.6e-02, 1.5e-02]	4.6 fb ⁻¹	7 TeV
	f ₅	H	ZZ (41,212v)	[-3.8e-03, 3.8e-03]	20.3 fb ⁻¹	8 TeV
	5	· – – – – – – – – – – – – – – – – – – –	ZZ (4I)	[-1.8e-03, 1.8e-03]	36.1 fb ⁻¹	13 TeV
			ZZ (4I)	[-5.0e-03, 5.0e-03]	19.6 fb ⁻¹	8 TeV
		·	ZZ(2 2v)	[-3.3e-03, 3.6e-03]	24.7 fb ⁻¹	7,8 TeV
		· · · · · · · · · · · · · · · · · · ·	ZZ(41,212v)	[-2.6e-03, 2.7e-03]	24.7 fb ⁻¹	7,8 TeV
		· ⊢ ·	ZZ (4I)	[-1.2e-03, 1.3e-03]	35.9 fb ⁻¹	13 TeV
		· · ·	ZZ (41,212v)	[-1.1e-02, 1.1e-02]	9.6 fb ⁻¹	7 TeV
	-7		ZZ (41,212v)	[-1.3e-02, 1.3e-02]	4.6 fb ⁻¹	7 TeV
	f z	·	ZZ (41,212v)	[-3.3e-03, 3.3e-03]	20.3 fb ⁻¹	8 TeV
	5	· · · · ·	ZZ (41)	[-1.5e-03, 1.5e-03]	36.1 fb ⁻¹	13 TeV
			ZZ (41)	[-4.0e-03, 4.0e-03]	19.6 fb ⁻¹	8 TeV
		·	ZZ (2 2v)	[-2.9e-03, 3.0e-03]	24.7 fb ⁻¹	7,8 TeV
		· · · · · · · ·	ZZ (41,212v)	[-2.2e-03, 2.3e-03]	24 7 fb ⁻¹	7,8 TeV
		· 🛏 '	ZZ (4)	[-1.0e-03, 1.3e-03]	35.9 fb ⁻¹	13 TeV
			ZZ (41,212v)	[-9.1e-03, 8.9e-0β]	9.6 fb ⁻¹	7 TeV
		0	0.02	0.04		0 06
	-0.02	0	0.02	0.04		0.00

All Relevant aQGC Limits

