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Outline

● Theoretical Background
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– Higgs Boson

– Lepton Flavor Violation
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– Large Hadron Collider (LHC)
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– Monte Carlo Generation
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– Results
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Standard Model (Particles)

● Theoretical framework that 
describes particle interactions

● Quarks
– Six quarks in three generations
– Quarks form hadrons (ex: proton, 

neutron)

● Leptons
– Three generations

– Each charged lepton has a neutrino 
partner

● Gauge Bosons
– Force carriers

● Higgs Boson
– Responsible for masses of quarks, 

leptons, and massive gauge bosons
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Standard Model (Forces)

● Strong Nuclear Force
– Mediated by gluon

– Binds quarks within hadrons

● Weak Nuclear Force
– Mediated by W and Z bosons

– Responsible for beta decay of the 
neutron

● Electromagnetic Force
– Mediated by photon
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Massive Gauge Bosons

● Weak interaction has very short range
– 10-17 m

● Requires massive mediators
– W and Z bosons

● Weak interaction and electromagnetic interaction 
can be combined into Electroweak Lagrangian
– Contains triplet of weak isospin currents with SU(2) 

symmetry and single hypercharge current with U(1) 
symmetry

– W and Z mass terms of the form                        are not 
SU(2) X U(1) gauge invariant
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Standard Model Higgs Boson 
(Theory)

 
● Higgs Mechanism

– Higgs field produces spontaneous 
symmetry breaking of Lagrangian in 
weak isospin x hypercharge space

– Gauge transformation generates mass 
terms in Lagrangian for quarks, 
leptons, and massive bosons

– SM Higgs has no charge, no spin, and 
is its own antiparticle

● Discovery
– Discovery of Higgs Boson with a mass 

of 125-126 GeV announced on July 4th 
2012
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SM Higgs Boson 
(Major Production Mechanisms)

● Gluon Gluon fusion
– Dominant at LHC
– Higgs couples to virtual top 

quarks in loop
– More than 10 times more 

likely than any other 
production mechanism

● Vector boson fusion
– Second largest at LHC
– Quarks in proton exchange 

virtual W or Z Boson
– Higgs couples to virtual 

bosons

Gluon Gluon Fusion Vector Boson Fusion

σ = 19.27 pb σ = 1.578 pb

SM Cross Sections at MH = 125 GeV and       = 8 TeV  

Source: Handbook of LHC Higgs Cross Sections: 3. Higgs Properties
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Lepton Flavor Violation

● Lepton Number
– 3 generations of leptons 
– Lepton number defined for each generation

● #(leptons) - #(anti leptons)
– Conserved in SM

● Lepton flavor violating Higgs
– Some beyond the standard model (BSM) theories predict 

flavor violating Higgs boson
– Search for Higgs decaying directly to a tau and a muon

1

1

1,1,0

-1,-1,0Lepton Number
-1

Lepton # conservedLepton # Violated
 1+ -



Aaron Levine 9

Lepton Flavor Violating Higgs Decay
● SM process: H →τμτh

– τh denotes a tau decaying hadronically (hadrons and a tau neutrino)

– τμ denotes a tau decaying to a muon (with a tau neutrino and an 
antimuon neutrino) 

– MET denotes missing energy
● Neutrinos are not detected by CMS

– H →ττ Branching Ratio (BR) of 6.3 % at MH = 125 GeV

● Similar BSM LFV process:  H→μτh

– No previous direct experimental searches
– BR up to 13%

● Based on analysis of ATLAS H →ττ data by 
Harnik, Kopp, Zupan

– Larger visible mass than SM process
– Search Higgs Mass range of 125-126 GeV
– Assume SM production modes 

SM Process

BSM Process

MET MET

hadrons

MET

hadrons
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Important Backgrounds
● Z+jets

σ = 3500 pb

● ttbar 

σ = 130 pb

● W+jets

σ = 38000 pb

● WW

σ = 5.8 pb
W decays hadronically or leptonically
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Large Hadron Collider 

● 14 TeV Center of Mass proton/proton collider 

– Currently operating at 8 TeV
● 27 km circumference

● Four experiments
– CMS, ATLAS: General purpose high energy physics detector

– LHCb: High energy B physics

– ALICE: High energy heavy ion physics
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LHC Collisions
● Acceleration Process

– Electric field strips Hydrogen atoms of electrons

– Linear accelerator accelerates protons to 50 MeV

– Synchrotrons accelerate protons to 450 GeV

– Protons then go to main LHC beam, accelerated to 4 TeV

● Protons are guided by superconducting magnets cooled 
by liquid helium
– Dipoles accelerate protons

– Quadrupoles focus protons along horizontal and vertical planes

● RF system creates bunches of protons
– 25 ns design bunch spacing

●
Design 2010 2011 2012 Upgrade (2015-2018) 

Beam Energy (TeV) 7 3.5 3.5 4 6-7

Bunches/Beam 2835 368 1380 1380 2835

Protons/Bunch(1e11) 1.15 1.3 1.5 1.5 1.2

Peak Luminosity(1e32cm-2s-1) 100 2 30 60 100

Integrated Luminosity (fb-1) 100/year .036 6 19.71 50/year
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Compact Muon Solenoid (CMS)

● General background

– Located 100 meters 
underground in Cessy, France

– One of two general physics 
detectors at the LHC

– Size
● 21 meters long
● 15 meters wide
● 12500 tons

● Physics Goals
– Study Higgs Boson
– Search for BSM (Beyond the 

Standard Model) physics
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CMS Geometry

Pseudorapidity (η) is a Lorentz invariant 
quantity that describes the position of a 
particle relative to the beam axis. 

η = -ln[tan(θ/2)]

Transverse mass (MT) and 
momentum (PT) correspond to the 
mass and momentum of a particle 
perpendicular to the beam axisθ = angle relative to z axis

Very Forward
Calorimeter

Muon Chambers Tracker ECAL
HCAL

Return Yoke
Magnet

Beam Line
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CMS Tracker
● Measures PT and charge of muons, 

electrons, and hadrons, using 3.8 T 
magnetic field

–  PT determined by examining tracker hits to 
reconstruct the radius of curvature

● Extends to |η| < 2.5
● Resolution:
● Inner silicon pixel detector

– High granularity

– Pixels are 100 X 150 μm

– Cylindrical layers at 4, 7, and 11 cm from beam

– High flux (10 million particles per square cm 
per second)

● Outer silicon strip detector
– 10 cylindrical layers with 4 endcaps

– Extends 130 cm from beam

– Lower flux than pixel detector (3e5 particles 
per square cm per second)

● Allows cell size up to 25 cm X 180 μm 
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CMS Electromagnetic Calorimeter

● Measures energy deposited by 
electrons and photons

● Composed of lead tungstate 
scintillating crystals
– Crystals have high density (8.28 g/cm3) 

and short radiation length (0.89 cm)
● Allows fine granularity

– 61,200 crystals in the barrel

– 7324 crystals in each of the two endcaps
– Emitted light detected by photodetectors

● 80% of light emitted in 25 ns
– Same order as LHC design bunch 

crossing time

● Energy resolution: 
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CMS Hadronic Calorimeter

● Measures energy deposited by hadrons
● Barrel and Endcaps

– Barrel (HB): |η| < 1.3

– Endcaps (HE): 1.3 < |η| < 3.0

– Wedges of brass absorber and plastic scintillator

– Wavelength shifting fibers bring scintillation light to 
electronics

– Energy resolution: 

● Forward Calorimeter (HF)
– 3.0 < |η| < 5.0

– Very high flux region

– Quartz scintillating fibers

– Steel shielding for electronics

– Energy resolution: 
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CMS Muon Chamber
● Muons are highly penetrating particles 

that are very important for new physics
– Not stopped by Calorimeters

● Need muon system

● Trajectory is bent by 2T magnetic field in 
return yoke

● 4 muon stations interspersed with iron yoke
– 610 resistive plate chambers

● Redundant trigger system, provides time coordinate

– 250 drift tubes track the muons in the barrel
● Barrel covers |η| < 1.2 region

– 500 cathode strip chambers (CSC) track the muons in 
the endcaps

● Endcaps cover up to |η| < 2.4

– Drift tubes and CSCs provide position of muon
● Both use cathode strips and anode wires
● Muons ionize gas, electrons drift to anode wires
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CMS Trigger System

● Impossible to store all data produced via 
LHC collisions

● Trigger system must reduce rate from 1 
GHz (LHC collisions) to 300 Hz 
(maximum output rate)

● Level 1 Trigger
– High speed electronics
– Basic selection and rejection
– Rate limited by readout electronics 

● Tracker has 7 μs readout time, 8 event 
buffer

● High Level Trigger
–  Compute nodes

● 20,000 cores
– Defines object filters for physics analysis

LHC

Level 1 Trigger

High Level Trigger

1 GHz

100 kHz
High Speed 
Electronics

Compute 
Nodes300 Hz

Physics Analysis

Limited by 
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CMS Level 1 Trigger
● Level 1 Trigger must analyze every 

bunch crossing
● Global trigger uses hardware algorithms 

to accept or reject each event it 
receives

● Calorimeter triggers sum energy over 
η/φ regions

– 5X5 crystal block = trigger tower
● Regional Calorimeter Trigger (RCT)

– Identify e/γ candidates 

– Sums transverse energy (ET) in 
regions 

● Global Calorimeter Trigger (GCT)

– Jet identification
● Muon trigger system (RPC,DT,CSC)

– Records energy and track geometry 
of muons

– Global Muon Trigger combines 
information to determine well 
identified muon candidates
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CMS Level 1 Trigger Upgrade
● Long Shutdown 1 (LS1) from 2013-

2015

● Increase beam energy to 6-7 TeV

● Decrease bunch spacing from 50 ns 
to 25 ns

● Need to improve tau identification 
efficiency because taus couple 
strongly to Higgs boson

– ID taus as taus, not as jets
● Example: change tau identification 

from 12X12 trigger towers to 2X1 
ECAL+HCAL towers

– Increases plateau efficiency from 0.3 
to 0.7

– Overall L1 Trigger rate remains below 
100 kHz with upgrade algorithms

Source: Level-1 Trigger Upgrade
Technical Design Report
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CMS High Level Trigger

● Processes events from L1 trigger

● Uses offline software algorithms to define filters for physics 
analysis

● Accepts events at up to 100kHz, outputs events at up to 
300 Hz

– Large reduction in rate
● Example: HLT filter used for this analysis:

– Requires isolated, well constructed muon with PT > 30 GeV

– The terms “isolated” and “well constructed” will be defined in 
future slides
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Analysis Summary

● Simulation techniques
– Monte Carlo (MC) techniques used to 

simulate signal and background 

● Object Identification and 
Reconstruction
– Muons

– Jets

– Taus

● Initial Data/Monte Carlo Comparison
● Analysis Selections
● Results and Future Plans
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Monte Carlo Generators

● Madgraph
– Matrix element MC generator

– Partonic interactions

● Pythia
– Quarks allowed to radiate gluons
– Hadronization, showering

● Tauola
– Simulates Tau decay

–  Used in conjunction with Pythia
– Takes into account tau polarization 

and spin

Parton Parton Scattering

Hadronic Shower
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Monte Carlo Workflow

● Generate samples with Madgraph + Tauola and 
Pythia

– Partonic level to hadronization and tau decay
● Use GEANT to simulate detector interactions

– Software for simulating passage of particles 
through matter

– Currently responsible for most of signal 
simulation

● New signal monte carlo studies are ongoing
● Use CMSSW software to reconstruct MC events 

to be compatible with CMS analysis framework

● Scale MC samples to 19.71 fb-1 of data

– 8 TeV dataset used in this analysis



Aaron Levine 26

Muon Reconstruction

● Standalone Muons

– Offline reconstructed track segments 
in muon chambers

● Global Muons

– Match standalone muons to tracks in 
silicon tracker

– Fit and reconstruct path

● Tracker Muons

– ID low PT muons that don't register as 
standalone muons

– Reconstruct track with P > 2.5 GeV, 
PT > 0.5 GeV matched with hit in 
muon chamber

Silicon Tracker Muon Chambers
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Muon Isolation
● Muon from LFV Higgs decay should be isolated

● Define isolation cone around muon 

–

● Relative Isolation Definition
– Tracker isolation: sum of PT of tracks in isolation cone

– ECAL isolation: sum of ECAL energy deposited in isolation 
cone

– HCAL isolation: sum of HCAL energy deposited in isolation 
cone

< 0.4

< 0.12 
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Particle Flow Objects
● Reconstruct hadrons, photons, 

muons, and electrons
– Used to identify jets, taus, and 

missing ET (MET)

● Particle Flow Algorithms identify 
objects
– Identify calorimeter clusters and 

tracker hits

– Reconstruct path and identify 
particles

● Example:
– Electron will have a curved path in 

tracker and will leave an energy 
deposit in ECAL

Electron

Muon

MET
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Jet Identification
● Particle flow jets

– Reconstruct jets from energy deposited by particle flow 
objects

● Define distance measures dij and diB

– dij = distance between particles i and j

– diB = distance between particle i and beam

– If dij < diB then combine particles i and j

– If dij > diB then call particle i a jet

● Use Anti-kt jet algorithm (p = -1) with R = 0.5
● Anti-kt algorithm keeps jet cone well defined

– Cone unaffected by soft radiation

– Hard events within cone are combined based on energy 
and position

– Collinear and infrared safe

● Find cones by identifying clusters of HCAL 
depositions
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Tau Reconstruction
● Use hadronic tau decays for identification 

– 64% branching ratio

● Three primary decay modes
– Single prong (π)

– Single prong plus strip (π and π0 or π0π0)

– Three prong (π π π)

● Hadron Plus Strips (HPS) algorithm
– Photons from π0 decay may convert to electrons in tracker

● Trajectory of electrons is bent by magnetic field
● Use “strips” in ECAL to reconstruct  π0 candidates

– π0 candidates matched to tau signatures in particle flow jets

– π candidates matched to HCAL depositions

Single Prong
Single Prong 
+ Strip

Three Prong

ECAL Strip

π0

π0

η

φ

γ

γ
γ

γ

0.05

0.20

ECAL Strips

π

π0
π0

π

π
π

π
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Preselection Strategy

● Apply loose “preselection” 
cuts before applying full 
analysis cuts

● Allows data/MC comparison
– More statistics than signal 

region
– Allows testing of analysis 

strategies before 
implementation in signal region

● “Blind” portion of preselection 
region
– Hide data events where the 

signal is non-negligible to 
prevent biased selection

● Require well reconstructed Muon

– P
T
 > 30 GeV

–  |η| < 2.1 

● Require well reconstructed Tau

– P
T
 > 25 GeV

– |η| < 2.3

● Eliminate events irrelevant to 
signal
– Require Muon and Tau to have 

opposite sign
● Separate events into 0, 1, and 2 jet 

channels 

– 0 and 1 jet events correspond to 
gluon gluon fusion

– 2 jet events correspond to VBF
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H→μτh 0 Jet Preselection 
Z→ττ: (embedded data samples for shape,
DY + (1,2,3,4) jet samples for normalization

Z+jets (other): 
Monte Carlo used for 
shape and normalization 

TT+Jets: Monte Carlo used for
 shape and normalization

WW: Monte Carlo used for 
shape and normalizaiton

QCD: Data driven norm
Muon isolation inversion 
(shape)

W+jets: data driven 
(high Mt (tau,MET) sideband)

Single top: Monte Carlo used 
for shape and normalization 

blinded

Data 
approximately 
matches MC 
models

MC statistical 
uncertainty

B
lin

d
ed

0 Jet Events: 
(80-140 
GeV)

Signal: 1700

Background: 26000

Signal/Background 0.07
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H→μτh 1 Jet Backgrounds

● Backgrounds are 
determined in the same way 
as the 0 jet backgrounds

● Data approximately matches 
MC models within statistical 
uncertainty

B
lin

d
ed

1 Jet Events: 
(80-140 
GeV)

Signal: 820

Background: 13000

Signal/Background 0.07
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H→μτh  VBF (2 Jet) Backgrounds

Z־→ττ: (embedded data samples for shape,
DY + (1,2,3,4) jet samples for normalization

TT+Jets: Normalization and 
shape from Monte Carlo

WW: Normalization and Shape from Monte Carlo

Fakes: Includes QCD, W+jets
     Determined by Fake Rate Method

2 Jet Events: (70-120 GeV)

Signal: 290

Background: 1600

Signal/Background 0.19

MC and Fake rate
 statistical uncertainty

Data/MC agreement 
suggests that systematic 
uncertainties
 should be increased. Studies are 
ongoing.

B
lin

d
ed

D
at

a/
M

C
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W+Jets and QCD Estimation Techniques

● Get W+jets shape from Monte 
Carlo

● Compute the appropriate 
normalization factor by scaling 
W+jets in region dominated by 
W+jets

–  MT(τ,MET) > 70 GeV

– Require (W+jets events) = (data 
events - other background events)

– Scale factor of 0.8 for 0 Jet

– Scale factor of 1.0 for 1 Jet

● Determine QCD shape by 
inverting muon isolation in 
the data sample

– Invert isolation to enter rich 
realm of QCD statistics

– Compute normalization 
factor by requiring QCD to 
agree with data in same 
sign region

● Same sign: muon and tau 
have same sign

● High QCD statistics in this 
region
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W+Jets Estimation Results 

0 Jets, Preselection
Scaled for MT(τ,MET) > 70 GeV
 

0 Jets, Signal region
No MT(τ,MET) < 10 cut

Check scaling close to signal region 

B
lin

d
ed

B
lin

d
e

d
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H→μτh VBF Fakes Estimation 

● The fake rate method is a way of improving 
W+jets and QCD background estimation in 
the 2 jet channel

● Select events with two muons and a tau 
– fake tau rich region

● Estimate tau fake rate (fTau) by computing 
the fraction of events that are identified as 
taus but are not isolated 

● Invert tau isolation in data sample to enter 
rich region of tau fakes

● Weight events by a factor of fTau/(1-fTau)  

– Gives shape and yield of “fake” tau events
– This group of events is dominated by W+jets 

and QCD
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VBF Fake Rate Validation

● Compare W+jets Monte Carlo and data 
driven QCD to fake rate method in fakes 
control region
– Preselection cuts

– Muon and tau have same sign

–  MT(μ,MET) > 70 GeV

● Data/MC agreement within uncertainties

Calculate uncertainty in fake rate
by shifting fake rate up and down by error bars
from data (previous slide).

D
at

a/
M

C

D
at

a/
M

C

SS Region SS Region 
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Z→ττ Estimation
● Examine method in VBF Z→ττ control 

region

– Preselection Cuts 

–  ΔR(μ,τ) < 2.0

● Low Z+jets MC statistics

– Estimate shape from Z→ττ embedded samples

– Normalization from Drell Yan + (1,2,3,4) Jet MC
● Drell Yan: quark/anti-quark annihilation that 

produces Z boson
● Z+jets(other) negligible in VBF channel Embedded Method

Z+Jets MC

D
at

a/
M

C

B
lin

d
e

d

D
at

a/
M

C

B
lin

d
ed
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H→μτh Signal Region Cuts: 
Gluon Gluon Fusion (GGF)

● Selection optimized in 0 Jet GGF category by varying cuts to 
maximize 

0-Jet Category:

● Preselection
● 0 Jets (p

T 
> 30 GeV)

 

● p
T
(μ) > 40 GeV

● p
T
(τ) > 25 GeV

● ΔΦ(μ,MET)> 2.5
● ΔΦ(τ,MET) < 0.3
● M

T
(τ,MET) < 10 GeV

1-Jet Category:

● Preselection
● 1 Jet (p

T 
> 30 GeV)

 

● p
T
(μ) > 40 GeV

● ΔΦ(τ,MET) < 0.3
● p

T
(τ) > 25 GeV

● M
T
(τ,MET) < 10 GeV

Sensitive to GGF
LFV Higgs process has 
low MT(τ,MET) and ΔΦ(τ,MET) 
because the emitted tau 
and neutrino are roughly collinear

Ongoing Work



 

Levine 41

Signal Region: H→μτh 0 and 1 Jet Channels

0 Jets Events:
(80-140 GeV)

Signal 620

Background 1100

Signal/Background 0.55

1 Jet Events:
(70-140 GeV)

Signal 290

Background 890

Signal/Background 0.33

B
lin

d
ed

B
lin

d
e

d
S/B increase by factor of 7.9 from preselection S/B increase by factor of 4.7 

from preselection
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H→μτh Signal Region Cuts: 
Vector Boson Fusion (VBF)

● Selection optimized by varying cuts to maximize 

Sensitive to VBF

Central jet veto 
reduces ttbar and QCD

VBF jets have 
pronounced separation in  η

Central jet veto eliminates
 jets with PT > 30 GeV that 
are not either of the 2 leading jets Heavy t quark may radiate gluons 

which produce hadronic showers 
(central jets)

ttbar backgroud
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Signal Region: H→τ
h
μ 2 Jet Channel

2 Jets Events:
(60-140 GeV)

Signal 21

Background 3.9

Signal/Background 5.4

Recall: S/B = 0.19 for Preselection Cuts

Improvement by factor of 28 

B
lin

d
ed
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Systematic Uncertainties
Source Uncertainty

Common (Signal+Background)

Luminosity 2.6%

Trigger 1-3%

Muon 
Trigger/ID/Isolation

2%

Tau ID/Isolation 6%

● Small luminosity and trigger uncertainties are standard CMS values

● Object ID and Isolation uncertainties are from the respective particle object groups

● Tau fake uncertainty
– Shift fake yield up and down by uncertainty on Z→μμ data

– (Yieldup – Yield)/Yield = (Yield-Yielddown)/Yield = 30%

● MC Backgrounds: estimate of 10-15% uncertainty on MC

● Systematic uncertainties used for the expected limit calculations

Backgrounds

Z → ττ Embedding 3%

WJets/QCD 20% 

Tau Fakes 30%

WW+Jets (MC NLO) 15%

TTBar+Jets 10%

SingleTop 10%

SM Higgs 10 %

Signal Uncertainties – 10%
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Sensitivity to Exclusion Limits 
All numbers given are expected limits on branching ratio (BR) (H→τ

h
μ)

95% Confidence Level (Blinded Analysis)

0 Jets 1 Jet 2 Jets All

τ
had

μ BR: 1.69 +/-
0.86%

BR: 2.50 +/- 
1.29%
(not 

optimized)

BR: 2.12 +/-
1.08%

BR: 1.12 +/-
0.57 %

Expected Limit: Limit that can be established after unblinding if 
signal is not detected

Definition of 95% confidence level limit:

           Probability[BR(H→μτh) < 1.12%] ≥ 95%

These limits are computed using the standard confidence level 
estimation procedure for CMS and ATLAS 
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Future Plans  
● Pre-upgrade analysis goals

– Repeat limits with new signal MC
● Pileup and tau decay with tauola

– Add jet energy scale and tau systematics
– Unblind analysis and compute BR(H→μτ)

● Will verify or put new constraints on BSM theories
● Planned LHC upgrade for 2015

– Beam energy of 6-7 TeV
– Gluon gluon Higgs production cross section will increase to 50 pb (at 14 

TeV)
● Increase by factor of 2.6

– VBF cross section will increase to 4.2 pb (at 14 TeV)
● Increase by factor of 2.7

– Cross sections of major backgrounds expected to increase by factor of 2
– Expected limit will improve by about a factor of 3
– Expect 50 fb-1 of new data in first year of upgrade to use for my thesis
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Conclusions

● This analysis is currently sensitive to an expected limit 
of 1.12% +/- 0.57% for BR(H→μτ) 
– Improved sensitivity to come with LHC upgrade

● This analysis is well equipped to search for the BSM 
H→μτh process

● This is the first analysis to make a direct search for a 
Lepton Flavor violating Higgs boson
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