

Search for a Lepton Flavor Violating Higgs Boson Using the Compact Muon Solenoid Detector at the Large Hadron Collider

Aaron Levine University of Wisconsin-Madison

Outline

- Theoretical Background
 - Standard Model
 - Higgs Boson
 - Lepton Flavor Violation
 - Signal and Backgrounds
- Experimental Background
 - Large Hadron Collider (LHC)
 - Compact Muon Solenoid (CMS)
- Analysis
 - Monte Carlo Generation
 - Selections
 - Results
 - Outlook

Standard Model (Particles)

- Theoretical framework that
 describes particle interactions
- Quarks
 - Six quarks in three generations
 - Quarks form hadrons (ex: proton, neutron)
- Leptons
 - Three generations
 - Each charged lepton has a neutrino partner
- Gauge Bosons
 - Force carriers
- Higgs Boson
 - Responsible for masses of quarks, leptons, and massive gauge bosons

Standard Model (Forces)

Up quar

- Strong Nuclear Force
 - Mediated by gluon
 - Binds quarks within hadrons
- Weak Nuclear Force
 - Mediated by W and Z bosons
 - Responsible for beta decay of the neutron
- Electromagnetic Force
 - Mediated by photon

Gluons holding quarks together to form a proton

(diagram from Scientific American)

Up guark

Gluon

Down guark

Massive Gauge Bosons

- Weak interaction has very short range
 - 10⁻¹⁷ m
- Requires massive mediators
 - W and Z bosons

- Weak interaction and electromagnetic interaction can be combined into Electroweak Lagrangian
 - Contains triplet of weak isospin currents with SU(2) symmetry and single hypercharge current with U(1) symmetry
 - W and Z mass terms of the form $M^2 W^{\mu} W_{\mu}$ are not SU(2) X U(1) gauge invariant

Standard Model Higgs Boson (Theory)

- Higgs Mechanism
 - Higgs field produces spontaneous symmetry breaking of Lagrangian in weak isospin x hypercharge space
 - Gauge transformation generates mass terms in Lagrangian for quarks, leptons, and massive bosons
 - SM Higgs has no charge, no spin, and is its own antiparticle
- Discovery
 - Discovery of Higgs Boson with a mass of 125-126 GeV announced on July 4th 2012

SM Higgs Boson (Major Production Mechanisms)

- Gluon Gluon fusion
 - Dominant at LHC
 - Higgs couples to virtual top ^g
 quarks in loop
 - More than 10 times more likely than any other production mechanism
- Vector boson fusion
 - Second largest at LHC
 - Quarks in proton exchange virtual W or Z Boson
 - Higgs couples to virtual bosons

Gluon Gluon Fusion Vector Boson Fusion

SM Cross Sections at MH = 125 GeV and $\sqrt{5}$ = 8 TeV

Source: Handbook of LHC Higgs Cross Sections: 3. Higgs Properties

Lepton Flavor Violation

- Lepton flavor violating Higgs
 - Some beyond the standard model (BSM) theories predict flavor violating Higgs boson
 - Search for Higgs decaying directly to a tau and a muon

9

Lepton Flavor Violating Higgs Decay

- SM process: $H \rightarrow \tau_{\mu} \tau_{h}$
 - τ_h denotes a tau decaying hadronically (hadrons and a tau neutrino)
 - τ_{μ} denotes a tau decaying to a muon (with a tau neutrino and an antimuon neutrino)
 - MET denotes missing energy
 - Neutrinos are not detected by CMS
 - H $\rightarrow \tau \tau$ Branching Ratio (BR) of 6.3 % at M_H = 125 GeV
- Similar BSM LFV process: $H \rightarrow \mu \tau_h$
 - No previous direct experimental searches
 - BR up to 13%
 - Based on analysis of ATLAS H →ττ data by Harnik, Kopp, Zupan
 - Larger visible mass than SM process
 - Search Higgs Mass range of 125-126 GeV
 - Assume SM production modes

Large Hadron Collider

- 14 TeV Center of Mass proton/proton collider
 - Currently operating at 8 TeV
- 27 km circumference
- Four experiments
 - CMS, ATLAS: General purpose high energy physics detector
 - LHCb: High energy B physics
 - ALICE: High energy heavy ion physics

LHC Collisions

- Acceleration Process
 - Electric field strips Hydrogen atoms of electrons
 - Linear accelerator accelerates protons to 50 MeV
 - Synchrotrons accelerate protons to 450 GeV
 - Protons then go to main LHC beam, accelerated to 4 TeV
- Protons are guided by superconducting magnets cooled by liquid helium
 - Dipoles accelerate protons
 - Quadrupoles focus protons along horizontal and vertical planes
- RF system creates bunches of protons
 - 25 ns design bunch spacing

	Design	2010	2011	2012	Upgrade (2015-2018)
Beam Energy (TeV)	7	3.5	3.5	4	6-7
Bunches/Beam	2835	368	1380	1380	2835
Protons/Bunch(1e11)	1.15	1.3	1.5	1.5	1.2
Peak Luminosity(1e32cm ⁻² s ⁻¹)	100	2	30	60	100
Integrated Luminosity (fb-1)	100/year	.036	6	19.71	50/year

Compact Muon Solenoid (CMS)

- General background
 - Located 100 meters underground in Cessy, France
 - One of two general physics detectors at the LHC
 - Size
 - 21 meters long
 - 15 meters wide
 - 12500 tons
- Physics Goals
 - Study Higgs Boson
 - Search for BSM (Beyond the Standard Model) physics

Pseudorapidity (η) is a Lorentz invariant quantity that describes the position of a particle relative to the beam axis.

$$\eta$$
 = -ln[tan(θ/2)]
θ = angle relative to z axis

Transverse mass (M_T) and momentum (P_T) correspond to the mass and momentum of a particle perpendicular to the beam axis

CMS Tracker

- Measures P_T and charge of muons, electrons, and hadrons, using 3.8 T magnetic field
 - P_T determined by examining tracker hits to reconstruct the radius of curvature
- Extends to $|\eta| < 2.5$
- Resolution: $(\frac{\delta pT}{pT})^2 = (15pT(TeV)\%)^2 + (0.5\%)^2$
- Inner silicon pixel detector
 - High granularity
 - Pixels are 100 X 150 µm
 - Cylindrical layers at 4, 7, and 11 cm from beam
 - High flux (10 million particles per square cm per second)
- Outer silicon strip detector
 - 10 cylindrical layers with 4 endcaps
 - Extends 130 cm from beam
 - Lower flux than pixel detector (3e5 particles per square cm per second)
 - Allows cell size up to 25 cm X 180 μm

CMS Electromagnetic Calorimeter

- Measures energy deposited by electrons and photons
- Composed of lead tungstate scintillating crystals
 - Crystals have high density (8.28 g/cm³) and short radiation length (0.89 cm)
 - Allows fine granularity
 - 61,200 crystals in the barrel
 - 7324 crystals in each of the two endcaps
 - Emitted light detected by photodetectors
- 80% of light emitted in 25 ns
 - Same order as LHC design bunch crossing time
- Energy resolution: $(\frac{\sigma}{E})^2 = (\frac{2.8\%}{\sqrt{E}})^2 + (\frac{0.12}{E})^2 + (0.30\%)^2$

CMS Hadronic Calorimeter

- Measures energy deposited by hadrons
- Barrel and Endcaps
 - Barrel (HB): |η| < 1.3
 - Endcaps (HE): 1.3 < |η| < 3.0
 - Wedges of brass absorber and plastic scintillator
 - Wavelength shifting fibers bring scintillation light to electronics
 - Energy resolution: $(\frac{\sigma}{E})^2 = (\frac{115\%}{\sqrt{E}})^2 + (5.5\%)^2$
- Forward Calorimeter (HF)
 - 3.0 < |η| < 5.0
 - Very high flux region
 - Quartz scintillating fibers
 - Steel shielding for electronics
 - Energy resolution: $(\frac{\sigma}{E})^2 = (\frac{280\%}{\sqrt{E}})^2 + (11\%)^2$

CMS Muon Chamber

- Muons are highly penetrating particles that are very important for new physics
 - Not stopped by Calorimeters
 - Need muon system
- Trajectory is bent by 2T magnetic field in return yoke

- 4 muon stations interspersed with iron yoke
 - 610 resistive plate chambers
 - Redundant trigger system, provides time coordinate
 - 250 drift tubes track the muons in the barrel
 - Barrel covers $|\eta| < 1.2$ region
 - 500 cathode strip chambers (CSC) track the muons in the endcaps
 - Endcaps cover up to $|\eta| < 2.4$
 - Drift tubes and CSCs provide position of muon
 - Both use cathode strips and anode wires
 - Muons ionize gas, electrons drift to anode wires Aaron Levine

CMS Trigger System

Aaron Levine

- Trigger system must reduce rate from 1 GHz (LHC collisions) to 300 Hz (maximum output rate)
- Level 1 Trigger
 - High speed electronics
 - Basic selection and rejection
 - Rate limited by readout electronics
 - Tracker has 7 µs readout time, 8 event buffer
- High Level Trigger
 - Compute nodes
 - 20,000 cores
 - Defines object filters for physics analysis

CMS Level 1 Trigger

- Level 1 Trigger must analyze every bunch crossing
- Global trigger uses hardware algorithms to accept or reject each event it receives
- Calorimeter triggers sum energy over η/ϕ regions
 - 5X5 crystal block = trigger tower
- Regional Calorimeter Trigger (RCT)
 - Identify e/γ candidates
 - Sums transverse energy (E_T) in regions
- Global Calorimeter Trigger (GCT)
 - Jet identification
- Muon trigger system (RPC,DT,CSC)
 - Records energy and track geometry of muons
 - Global Muon Trigger combines information to determine well identified muon candidates

Aaron Levine

CMS Level 1 Trigger Upgrade

- Long Shutdown 1 (LS1) from 2013-2015
- Increase beam energy to 6-7 TeV
- Decrease bunch spacing from 50 ns to 25 ns
- Need to improve tau identification efficiency because taus couple strongly to Higgs boson
 - ID taus as taus, not as jets
- Example: change tau identification from 12X12 trigger towers to 2X1 ECAL+HCAL towers
 - Increases plateau efficiency from 0.3 to 0.7
 - Overall L1 Trigger rate remains below 100 kHz with upgrade algorithms

Source: Level-1 Trigger Upgrade Technical Design Report

CMS High Level Trigger

- Processes events from L1 trigger
- Uses offline software algorithms to define filters for physics analysis
- Accepts events at up to 100kHz, outputs events at up to 300 Hz
 - Large reduction in rate
- Example: HLT filter used for this analysis:
 - Requires isolated, well constructed muon with $P_T > 30 \text{ GeV}$
 - The terms "isolated" and "well constructed" will be defined in future slides

Analysis Summary

- Simulation techniques
 - Monte Carlo (MC) techniques used to simulate signal and background
- Object Identification and Reconstruction
 - Muons
 - Jets
 - Taus
- Initial Data/Monte Carlo Comparison
- Analysis Selections
- Results and Future Plans

Monte Carlo Generators

- Madgraph
 - Matrix element MC generator
 - Partonic interactions
- Pythia
 - Quarks allowed to radiate gluons
 - Hadronization, showering
- Tauola
 - Simulates Tau decay
 - Used in conjunction with Pythia
 - Takes into account tau polarization and spin

Parton Parton Scattering

Hadronic Shower

Monte Carlo Workflow

- Generate samples with Madgraph + Tauola and Pythia
 - Partonic level to hadronization and tau decay
- Use GEANT to simulate detector interactions
 - Software for simulating passage of particles through matter
 - Currently responsible for most of signal simulation
 - New signal monte carlo studies are ongoing
- Use CMSSW software to reconstruct MC events to be compatible with CMS analysis framework
- Scale MC samples to 19.71 fb⁻¹ of data
 - 8 TeV dataset used in this analysis

Muon Reconstruction

- Standalone Muons
 - Offline reconstructed track segments in muon chambers
- Global Muons
 - Match standalone muons to tracks silicon tracker
 - Fit and reconstruct path
- Tracker Muons
 - ID low PT muons that don't register as standalone muons
 - Reconstruct track with P > 2.5 GeV, $P_T > 0.5$ GeV matched with hit in muon chamber

Muon Isolation

- Muon from LFV Higgs decay should be isolated
- Define isolation cone around muon

 $-\Delta R = \sqrt{\phi^2 + \eta^2} < 0.4$

- Relative Isolation Definition
 - Tracker isolation: sum of PT of tracks in isolation cone
 - ECAL isolation: sum of ECAL energy deposited in isolation cone
 - HCAL isolation: sum of HCAL energy deposited in isolation cone

 $Iso_{Rel} = \frac{Iso_{HCAL} + Iso_{ECAL} + Iso_{Tracker}}{\mu P_T} < 0.12$

Particle Flow Objects

CMS

- Reconstruct hadrons, photons, muons, and electrons
 - Used to identify jets, taus, and missing E_T (MET)
- Particle Flow Algorithms identify objects
 - Identify calorimeter clusters and tracker hits
 - Reconstruct path and identify particles
- Example:
 - Electron will have a curved path in tracker and will leave an energy deposit in ECAL

Jet Identification

- Particle flow jets
 - Reconstruct jets from energy deposited by particle flow objects
- Define distance measures d_{ij} and d_{iB}
 - $d_{ij} = distance between particles i and j$
 - d_{iB} = distance between particle i and beam
 - If $d_{ij} < d_{iB}$ then combine particles i and j
 - If $d_{ij} > d_{iB}$ then call particle i a jet
- Use Anti-kt jet algorithm (p = -1) with R = 0.5
- Anti-kt algorithm keeps jet cone well defined
 - Cone unaffected by soft radiation
 - Hard events within cone are combined based on energy and position
 - Collinear and infrared safe
- Find cones by identifying clusters of HCAL depositions

 $d_{ij} = \min(k_{ti}^{2p}, k_{tj}^{2p}) \frac{\Delta_{ij}^2}{R^2}$ $d_{iB} = k_{ti}^{2p}$ $\Delta_{ij}^2 = (y_i - y_j)^2 + (\phi_i - \phi_j)^2$ $k_t = \text{transverse momentum}$ $y = \frac{1}{2} ln \frac{E + p}{E - p} = \text{rapidity}$

0.20

 Π^{0}

V

0.05

ECAL Strips

π0

γ

φ

- 64% branching ratio
- Three primary decay modes
 - Single prong (π)
 - Single prong plus strip (π and π^0 or $\pi^0\pi^0)$
 - Three prong ($\pi \pi \pi$)
- Hadron Plus Strips (HPS) algorithm
 - Photons from π^0 decay may convert to electrons in tracker
 - Trajectory of electrons is bent by magnetic field
 - Use "strips" in ECAL to reconstruct $\,\pi^0$ candidates
 - π^0 candidates matched to tau signatures in particle flow jets
 - π candidates matched to HCAL depositions

Preselection Strategy

- Apply loose "preselection" cuts before applying full analysis cuts
- Allows data/MC comparison
 - More statistics than signal region
 - Allows testing of analysis strategies before implementation in signal region
- "Blind" portion of preselection region
 - Hide data events where the signal is non-negligible to prevent biased selection

- Require well reconstructed Muon
 - P_T > 30 GeV
 - |η| < 2.1
- Require well reconstructed Tau
 - P_T > 25 GeV
 - $|\eta| < 2.3$
- Eliminate events irrelevant to signal
 - Require Muon and Tau to have opposite sign
- Separate events into 0, 1, and 2 jet channels
 - 0 and 1 jet events correspond to gluon gluon fusion
 - 2 jet events correspond to VBF

$H \rightarrow \mu \tau_h$ 1 Jet Backgrounds

- Backgrounds are determined in the same way as the 0 jet backgrounds
- Data approximately matches MC models within statistical uncertainty

1 Jet	Events: (80-140 GeV)	C
Signal:	820	Data/M
Background:	13000	
Signal/Background	0.07	

$H \rightarrow \mu \tau_h$ VBF (2 Jet) Backgrounds

W+Jets and QCD Estimation Techniques

- Get W+jets shape from Monte Carlo
- Compute the appropriate normalization factor by scaling W+jets in region dominated by W+jets
 - $M_T(\tau, MET) > 70 \text{ GeV}$
 - Require (W+jets events) = (data events other background events)
 - Scale factor of 0.8 for 0 Jet
 - Scale factor of 1.0 for 1 Jet

- Determine QCD shape by inverting muon isolation in the data sample
 - Invert isolation to enter rich realm of QCD statistics
 - Compute normalization factor by requiring QCD to agree with data in same sign region
 - Same sign: muon and tau have same sign
 - High QCD statistics in this region

W+Jets Estimation Results

- The fake rate method is a way of improving W+jets and QCD background estimation in the 2 jet channel
- Select events with two muons and a tau
 - fake tau rich region
- Estimate tau fake rate (fTau) by computing the fraction of events that are identified as taus but are not isolated
- Invert tau isolation in data sample to enter rich region of tau fakes
- Weight events by a factor of fTau/(1-fTau)
 - Gives shape and yield of "fake" tau events
 - This group of events is dominated by W+jets and QCD

VBF Fake Rate Validation

- Compare W+jets Monte Carlo and data driven QCD to fake rate method in fakes control region
 - Preselection cuts
 - Muon and tau have same sign
 - M_T(µ,MET) > 70 GeV
- Data/MC agreement within uncertainties

Calculate uncertainty in fake rate by shifting fake rate up and down by error bars from data (previous slide).

$Z \rightarrow \tau \tau$ Estimation

- Low Z+jets MC statistics
 - Estimate shape from $Z \rightarrow \tau \tau$ embedded samples
 - Normalization from Drell Yan + (1,2,3,4) Jet MC
 - Drell Yan: guark/anti-guark annihilation that produces Z boson
- Z+jets(other) negligible in VBF channel

- Examine method in VBF $Z \rightarrow \tau \tau$ control region
 - Preselection Cuts
 - $\Delta R(\mu,\tau) < 2.0$

Signal Region: $H \rightarrow \mu \tau_h 0$ and 1 Jet Channels

S/B increase by factor of 7.9 from preselection Levine

S/B increase by factor of 4.7 41 from preselection

$H \rightarrow \mu \tau_h$ Signal Region Cuts: Vector Boson Fusion (VBF)

signal • Selection optimized by varying cuts to maximize $\sqrt{background}$

Central jet veto reduces ttbar and QCD

ttbar backgroud

2-Jet Category:

```
Preselection
2 Jets (p_{T} > 30 \text{ GeV})
Mjj > 600 \text{ GeV}
|\Delta \eta(jj)| > 3.5
p_{T}(\mu) > 45 \text{ GeV}
p_{T}(\tau) > 45 \text{ GeV}
M_{\tau}(\tau, MET) \leq 30 \text{ GeV}
Central jet veto (30 GeV)
```

Heavy t quark may radiate gluons which produce hadronic showers (central jets)

VBF jets have pronounced separation in n Central jet veto eliminates jets with $P_{\tau} > 30$ GeV that Sensitive to VBF are not either of the 2 leading jets

Signal Region: $H \rightarrow \tau_h \mu$ 2 Jet Channel

2 Jets	Events: (60-140 GeV)
Signal	21
Background	3.9
Signal/Background	5.4

Recall: S/B = 0.19 for Preselection Cuts

Improvement by factor of 28

Systematic Uncertainties

Source	Uncertainty	Backgrounds		
Common (Signal+Background)		$Z \rightarrow \tau \tau$ Embedding	3%	
Luminosity	2.6%	WJets/QCD	20%	
Trigger	1-3%	Tau Fakes	30%	
Muon 2% Trigger/ID/Isolation		WW+Jets (MC NLO)	15%	
Tau ID/Isolation	6%	TTBar+Jets	10%	
		SingleTop	10%	
		SM Higgs	10 %	
		Signal Uncertainties – 10%		

- Small luminosity and trigger uncertainties are standard CMS values
- Object ID and Isolation uncertainties are from the respective particle object groups
- Tau fake uncertainty
 - Shift fake yield up and down by uncertainty on $Z \rightarrow \mu \mu$ data
 - (Yield_{up} Yield)/Yield = (Yield-Yield_{down})/Yield = 30%
- MC Backgrounds: estimate of 10-15% uncertainty on MC
- Systematic uncertainties used for the expected limit calculations

Sensitivity to Exclusion Limits

All numbers given are expected limits on branching ratio (BR) ($H \rightarrow \tau_h \mu$)

95% Confidence Level (Blinded Analysis)

	0 Jets	1 Jet	2 Jets	ΑΙΙ
τ _{, μ}	BR: 1.69 +/- 0.86%	BR: 2.50 +/- 1.29% (not optimized)	BR: 2.12 +/- 1.08%	BR: 1.12 +/- 0.57 %

Expected Limit: Limit that can be established after unblinding if signal is not detected

Definition of 95% confidence level limit:

Probability[BR($H \rightarrow \mu \tau_h$) < 1.12%] \geq 95%

These limits are computed using the standard confidence level estimation procedure for CMS and ATLAS

Future Plans

- Pre-upgrade analysis goals
 - Repeat limits with new signal MC
 - Pileup and tau decay with tauola
 - Add jet energy scale and tau systematics
 - Unblind analysis and compute $BR(H \rightarrow \mu \tau)$
 - Will verify or put new constraints on BSM theories
- Planned LHC upgrade for 2015
 - Beam energy of 6-7 TeV
 - Gluon gluon Higgs production cross section will increase to 50 pb (at 14 TeV)
 - Increase by factor of 2.6
 - VBF cross section will increase to 4.2 pb (at 14 TeV)
 - Increase by factor of 2.7
 - Cross sections of major backgrounds expected to increase by factor of 2
 - Expected limit will improve by about a factor of 3
 - Expect 50 fb⁻¹ of new data in first year of upgrade to use for my thesis

Conclusions

• This analysis is currently sensitive to an expected limit of 1.12% +/- 0.57% for BR(H ${\rightarrow}\mu\tau)$

- Improved sensitivity to come with LHC upgrade

- This analysis is well equipped to search for the BSM $H{\rightarrow}\mu\tau_h$ process
- This is the first analysis to make a direct search for a Lepton Flavor violating Higgs boson