

Search for Same-Sign Dilepton SUSY Signatures using Top Decay Events with CMS at the LHC

M. Weinberg University of Wisconsin

CMS	/
	>

- Theory overview
 - Standard Model
 - Motivation for SUSY/top physics
- Experimental setup
 - Large Hadron Collider
 - Compact Muon Solenoid
- Monte Carlo simulation
- Object reconstruction
- Analysis workflow
 - Samples: data and Monte Carlo
 - Event selection: lepton and trigger requirements
 - Trigger and selection efficiencies
 - Top cross section extraction strategy
 - Fitting details
 - Statistical and systematic uncertainty
 - Background estimation for same-sign dileptons
- Results
- Conclusions
 - Top production cross section in muon + jets channel
 - Limit on new physics in same-sign dilepton channels

The Standard Model

Leptons

Fundamental particles:

- Constituents of matter
 - All fermions (spin-1/2)
 - Leptons: electron, muon, tau, corresponding neutrinos
 - Quarks: up, down, charm, strange, top, bottom
- Force carriers
 - All bosons (spin-1)
 - Electromagnetism: photon
 - Weak interactions: W[±], Z⁰
 - Strong interactions: gluons
- Higgs boson?
 - Generates mass of elementary particles

Quarks

Hierarchy problem

- Planck/electroweak
 scale: M_P/M_W ~ 10¹⁶
 - From weak force:
 m_H ~ EWK scale
 - From fermion loop corrections:

 Quadratically divergent correction

Dark matter

Red: baryonic matter (from X-rays) Blue: total mass (from grav lensing)

All SM particles excluded as DM candidates

- Each fermion paired with scalar boson, each vector boson paired with fermion
 - Every SM particle has "superpartner" not yet discovered
 - New particles not discovered: SUSY must be broken symmetry

Names		spin 0	spin $1/2$
squarks, quarks	Q	$\left(\widetilde{u}_L \widetilde{d}_L\right)$	$(u_L d_L)$
(× 3 families)	\overline{u}	\widetilde{u}_R^*	u_R^{\dagger}
	\overline{d}	\widetilde{d}_R^*	d_R^\dagger
sleptons, leptons	L	$(\widetilde{\nu} \widetilde{e}_L)$	(νe_L)
(× 3 families)	\overline{e}	\widetilde{e}_R^*	e_R^\dagger
Higgs, higgsinos	H_u	$(H_u^+ H_u^0)$	$\left(\widetilde{H}_{u}^{+}\widetilde{H}_{u}^{0}\right)$
	H_d	$\left(H^0_d H^d\right)$	$\left(\widetilde{H}_{d}^{0} \widetilde{H}_{d}^{-} \right)$

- New B/L number violating couplings
 - Problem given proton stability
 - **Define conserved number "R-parity":** $(-1)^{3(B-L)+2s}$
 - Lightest SUSY particle (LSP) completely stable
 - SUSY particles always decay into odd number of LSPs
 - Sparticles produced in pairs

Names	spin $1/2$	spin 1
gluino, gluon	\widetilde{g}	g
winos, W bosons	$\widetilde{W}^{\pm}\widetilde{W}^{0}$	$W^{\pm} W^0$
bino, B boson	\widetilde{B}^0	B^0

Mixing can occur between gauginos and higgsinos

- Gluino exempt due to color
- 4 neutralinos: $\tilde{\chi}_i^{\pm}$ (*i* = 1, 2, 3, 4)

2 charginos:
$$\tilde{\chi}_i^0$$
 (*i* = 1, 2)

Predicts scalar boson at EWK scale corresponding to each SM fermion

$$m_H^2 = \frac{\lambda_S}{16\pi^2} \Lambda_{\rm UV}^2 + \cdots$$

- Relative minus sign solves hierarchy problem
 - Each SM fermion accompanied by complex scalar with $\lambda_{S} = \left|\lambda_{f}\right|^{2}$ so contributions cancel
- R-parity conservation
 - Stable LSP: Massive, neutral, weakly-interacting
 - Ideal dark matter candidate

Motivation

- Top quark observation major milestone
- Understanding top quark signal vital for new physics searches
 - Top signatures similar to many new physics models
 - Semileptonic channel is major background for samesign dilepton analysis
 - Powerful tool for new

- Isolated same-sign dileptons very clean signature for new physics
 - SM sources vanishingly small
 - Primary contribution from 1 isolated lepton plus "fake" (i.e. from semileptonic top events)
 - Same-sign leptons occur naturally in many new physics models

M. Weinberg University of Wisconsin

Strong interactions described by quantum chromodynamics (QCD)

- Calculable at small distances and high momentum transfer (large Q²)
 - Coupling constant α_s increases with distance

$$\alpha_s(\boldsymbol{Q}^2) \propto 1/\ln(\boldsymbol{Q}^2/\Lambda_{\rm QCD}^2)$$

 Approximate solutions obtained by perturbative expansion in α_s terms

- $\alpha_s(Q \approx M_w = 80 \text{ GeV}) \sim 0.1$: possible to expand perturbatively
 - Asymptotic freedom
- $\alpha_s(Q \approx 1 \text{ GeV}) \sim 0.62$: perturbative expansion less accurate
- $\alpha s(Q \approx \Lambda_{QCD}) \rightarrow \infty$: color confinement, perturbative QCD invalid

- Structure of colliding protons modeled with parton distributions functions (PDFs)
 - Define probability density for finding parton (quark or gluon) with momentum fraction x at momentum transfer Q² of collision
- Parton shower: Colored remnants from hard interaction shower due to color confinement
 - Eventually hadronize into collimated jets of colorless hadrons
 - Modeled from previous experiments with non-perturbative QCD

The Large Hadron Collider

Proton-proton collisions at the LHC

		Design	Achieved
	Beam energy	7 TeV	3.5 TeV
	Proton-proton Bunches/beam	2835	368 (2010) 1380 (2011)
Bunch	Protons/bunch	1.15x10 ¹¹	1.3x10 ¹¹ (2010) 2.7x10 ¹¹ (2011)
Proton	Luminosity	10 ³⁴ cm ⁻² s ⁻¹	2x10 ³² cm ⁻² s ⁻¹ 1x10 ³³ cm ⁻² s ⁻¹
Parton (quark, gluon) Particle	Lumin Intera Cross area c	bosity L = par ction rate: $\frac{dN}{dt}$ section: σ =	ticle flux/time $\dot{F} = L\sigma$ "effective" particles

Compact Muon Solenoid (CMS)

Detector geometry

M. Weinberg University of Wisconsin

 Measures path and transverse momentum (p_T) of charged particles

Helps identify electrons from top quark / SUSY particle decays

Tracker

Distinguishes electrons from photons

Electromagnetic calorimeter (ECAL)

• Measures electron/photon energy and position in $|\eta| < 3$

- ~76,000 lead tungstate crystals
 - Density: 8.3 g/cm³
 - Short radiation length: 0.89 cm (25.8 X₀ in length)
 - Small Moliere radius: 2.2 cm

Measures energy and position of showers

- Sampling calorimeter
- Used in measurement of energy of jets in event

Resolution (barrel): $\left(\frac{\sigma}{E}\right)^2 = \left(\frac{90\%}{\sqrt{E}}\right)^2 + (4.5\%)^2$ Resolution (endcap): $\left(\frac{\sigma}{E}\right)^2 = \left(\frac{198\%}{\sqrt{E}}\right)^2 + (9.0\%)^2$

M. Weinberg University of Wisconsin

- Three separate detector systems
 - Drift tubes (DT) in central region (|η| < 1.2)
 - Precise trajectory measurements
 - Cathode strip chambers (CSC) in endcaps (0.9 < $|\eta|$ < 2.4)
 - Resistive plate chambers (RPC) in barrel (|η| < 1.6)
 - Precise timing of muons in detector

University of Wisconsin

CMS

Cannot retain every event

- Beam contains ~ 10¹¹ protons
- ~ 25 ns bunch crossings
- 2.2 pp interactions per crossing
- Trigger designed to select "interesting" events for offline processing
 - Level 1 (L1) trigger
 - High-speed custom electronics
 - High level trigger (HLT)
 - Reduce final event rate to
 - ~ 300 Hz

40 MHz crossing frequency

Reconstructing electrons

Electron candidates Tracks reconstructed from hits in silicon tracker Cluster in ECAL matched to tracker hits • Require $\Delta R = \sqrt{\Delta \eta^2 + \Delta \phi^2} < 0.15^{10}$ ID based on shower shape and Tracker track-cluster matching Strips Wider spread in φ due to bremmstrahlung \bar{B} (• Small energy deposit in HCAL • E_{Had}/E_{EM} < 0.15 Pixels $\overline{}$ Isolation: No nearby energy or other tracks Рт

Reconstructed via 2 algorithms

- Tracker muon: Seeded from tracks, matched to signals in calo and muon systems
 - More efficient for low-p_T muons, require only single segment in muon chambers
- Global muon: Global simultaneous fit to tracker and muon hits
 - Useful for high-pT muons (> 200 GeV) due to improved momentum resolution
- Require muons to be reconstructed by both algorithms

- Particle Flow (PF) algorithm used to construct jets
 - Combines information from all CMS subdetectors
 - Creates list of PF objects
 - PF list includes electrons, muons, charged hadrons and neutral hadrons
 - Particle list clustered according to anti-k_T jet clustering algorithm
 - Sequential recombination algorithm

- Several particles in analysis only detectable from missing energy
 - Neutrinos, neutral LSPs interacts weakly with matter
 - Rely on momentum conservation in transverse plane
 - Define missing transverse energy (MET):

$$E_{\mathrm{T}}^{\mathrm{miss}} = \left| -\sum_{i}^{n} \overline{p_{\mathrm{T}i}} \right|$$

where *i* is index of PF object

- MET calculation involves every particle in event
 - Sensitive to mismeasurements in \mathbf{p}_{T} of any reconstructed object

Compact Muon Solenoid

Object definitions

Electrons (same-sign dileptons)

- High-p_T electron selection
 - $p_T > 20/10 \text{ GeV}, |\eta| < 2.4$
 - VBTF_ID 80
 - |d_{0, corr}| < 0.02
 - No muons within $\Delta R < 0.1$
 - No missing hits in inner layers
 - Conversion rejection (dcot > 0.02 OR dist > 0.02)
 - Relative isolation < 0.1
- Differences for low-p_T electron selection
 - $p_T > 10 \text{ GeV}, |\eta| < 2.4$
 - Relative isolation < 0.15

Muons

	Top selection	SUSY selection
Kinematic cuts	p _T > 20 GeV η < 2.1	pT > 20/10 GeV η < 2.1/2.4
Rel isolation	< 0.05	< 0.1
X²/n _{dof}	< 10	< 10
∣d _{0, corr} ∣	< 0.02 cm	< 0.02 cm
ΔZ _{vtx}	< 1 cm	< 1 cm
Silicon hits	≥ 11	≥ 11
Additional cuts	ΔR(μ, jet) > 0.3	

- Jets, MET
 - PF MET
 - L2L3 corrected PF jets with pT > 30 GeV, |η| < 2.5
 - No jets within $\Delta R < 0.4$ of lepton
 - Loose PF jet ID

- Initial cuts: single lepton trigger, MET > 30 GeV
 - QCD dominates unless some initial selection applied
- All plots shown with previous cuts applied ("progressive" plots)
- All MC "out of the box"
 - Scaled by σL (NLO σ from MC, L = 36 pb⁻¹)
- Shaded area represents rejected region for SUSY search

M. Weinberg University of Wisconsin

Electron quality selection: Rellso and d₀(bsp)

- Relative isolation < 0.1</p>
 - Rellso = (lso_{trk} + lso_{ECAL} + lso_{HCAL}) / E_T
 - High-Rellso region dominated by QCD
- d₀(bsp) < 0.02 cm
 - Transverse impact parameter (w.r.t. beamspot)

- Require triggered muon p_T > 20 GeV
 - Second muon in event must have p_T > 10 GeV
 - Ensures event has high efficiency to pass single lepton trigger
- Triggered muon must have |η| < 2.1</p>
 - Corresponds to η acceptance of muon trigger

M. Weinberg University of Wisconsin

Muon quality selection: Rellso and d₀(bsp)

- Relative isolation < 0.1</p>
 - Defined as for electrons
 - High-Rellso region dominated by QCD
- d₀(bsp) < 0.02 cm
 - Transverse impact parameter (w.r.t. beamspot)
 - Ensures that muon comes from primary interaction

Same-sign dilepton trigger selection

- Necessary to use multiple single-lepton, H_T triggers
 - Move to higher thresholds with increasing luminosity so triggers remain unprescaled
- Divide analyses based on trigger:
 - Single-muon triggers for top cross section measurement (μ + jets channel)
 - Lepton (electron OR muon) triggers for high-p_T same-sign dilepton search
 - H_T triggers for low-p_T same-sign dilepton search
- H_T trigger efficiency vs reconstructed H_T
 - Measured from data via muon triggers
 - Efficiency reaches (94 ± 5)% at H_T = 300 GeV
- Lepton trigger efficiency
 - For μ + jets channel (from T&P):
 Scale factor = 0.97 ± 0.002
 - For same-sign dileptons (from T&P in MC): 0.99 ± 0.01 for all three final states

- To estimate backgrounds, we first extract top cross section in topenriched single muon region
 - Lose all statistics once we impose second same-sign lepton requirement
 - Determine MC scale factors for use in SUSY search
- Extract top cross section using binned maximum likelihood fit
 - Use fit templates taken from MC samples to model each process
 - Simultaneous fit to discriminating variables across multiple jet bins
 - Normalization template implicitly fixed by shape of jet multiplicity spectrum

VISCONSIN

Shape comparisons

Fit performed with muon variables

- Appropriate due to insensitivity to systematics like JES
- Tried multiple variables, jet bin combinations
- Additional constraints
 - W/Z cross section ratio within 30% of theory value
 - Single top cross section within 30% of theory value

THE UNIVERSITY

W + jets modeling

- Fit relies on MC prediction for W + jets shape
 - Necessary to verify shape matches data
- Use W-enhanced selection
 - M_T > 55 GeV (reduces QCD), H_T < 200 (reduces ttbar)
- Sample dominated by W + jets

M. Weinberg University of Wisconsin

Z + jets modeling

- Fit relies on MC prediction for W + jets shape
 - Necessary to verify shape matches data
- Use Z-enhanced selection
 - Standard selection, 76 GeV < M_{II} < 106 GeV
- Sample dominated by Z + jets

M. Weinberg University of Wisconsin

Comparison of data with exactly on PV to data with 2 or more PVs

- Consider only good quality vertices
- Shapes are in reasonable agreement
 - Do not expect pile-up to have large impact on analysis
 - Use MC with pileup and L1Offset corrections in data/MC

M. Weinberg University of Wisconsin

- Perform 3000 pseudo-experiments
 - From nominal MC templates
 - Represents expected distribution of data
- Fit to bin-by-bin Poisson fluctuated MC templates

Pulls show distribution of $(\sigma_{fit} - \sigma_{exp})/(fit error)$

- Mean of 0, width of 1 indicate fit is well behaved
- Sigma of fit represents statistical uncertainty
 - 7.6% statistical uncertainty

M. Weinberg University of Wisconsin

Mear

3000

0.1275

- Vary JES by 1 sigma (using JetMET prescription)
 - Table shows percentage change in MC event yields
 - Templates from per-jet uncertainty for W/Z + jets, QCD and ttbar
- Uncertainty determined from pseudoexperiments fit to nominal MC
 - Mean indicates systematic uncert

(Measured - True)/True

Jet energy scale uncertainty vs jet multiplicity and muon p_T

 Effect of shift in JES for ttbar events (top) and W + jets events (bottom)

> 1σ shift includes effects due to pileup and p_T- / ηdependent uncertainty

Result of template fit to muon p_T, η distributions in 3 and ≥ 4 jet bins

- Scale factors applied to backgrounds in same-sign dilepton signal region
- Backgrounds to search well under control
- Factors adjusted for results of trigger, ID and isolation efficiency measurements
 - Efficiency differences between data and MC obtained via tag and probe method

Sample	Scale factor
$t\overline{t}$	1.01 ± 0.08
$W \rightarrow l \nu$	1.11 ± 0.07
$Z/\gamma^* \to l^+ l^-$	1.16 ± 0.33
Single-top	1.04 ± 0.30
QCD	2.47 ± 0.43

- Measured top production cross section:
 - σ(tt) = 159.1 ± 12.1(stat) +33.8/-28.2(syst) ± 6.4 (lumi) pb
 - In excellent agreement with theoretical expectation based on NLO calculation

Summary of all uncertainties

- Uses optimized fit of muon pT and eta to 3 and ≥ 4 jet bins
- Removing 2 jet bin dramatically decreases contribution from Q² scale systematic
- Dominant contribution to uncertainty now comes from JES

Summary of Uncertainties				
Source	Relative uncertainty			
JES	+12.8/-10.7%			
Q^2 scale up/down ($t\bar{t}$)	+11.7/-7.0%			
Q^2 scale up/down (W/Z)	$\pm 4.8\%$			
Matching up/down $(t\bar{t})$	+2.1/-2.0%			
Matching up/down (W/Z)	$\pm 8.2\%$			
Pile up	$\pm 4.2\%$			
PDF	$\pm 3.0\%$			
ISR / FSR	$\pm 4.6\%$			
μ -trigger/ID/iso scale	$\pm 3.0\%$			
Total systematic	+21.2/-17.7%			
Statistical	$\pm 7.6\%$			
Total uncertainty (stat + syst)	+22.6/-19.3%			
Lumi	$\pm 4.0\%$			

Distributions before fit

M. Weinberg University of Wisconsin

Distributions after fit

MC scaled by result of simultaneous template fit

- Data

tī

W→Iv

4

Jet multiplicity

Z/γ*→I[⁺]I[⁻]

Single-top

--- LM0 SUSY

M. Weinberg University of Wisconsin

3

CMS Preliminary

1200

1000

800

600

400

200

36 pb⁻¹ at √s = 7 TeV

- Same-sign dilepton signature strongly suppressed in SM backgrounds
- Multiple possible mass scales
 - Large difference between squark/gluino mass and chargino mass → large hadronic activity in event
 - Large difference between chargino mass and LSP mass → high-p_T leptons in event
- Consider different search regions to cover widest possible phase space:
 - High-p_T leptons, H_T > 60 GeV, MET > 80 GeV

- High-p_T leptons, H_T > 200 GeV, MET > 30 / 20 GeV for same / opposite flavor leptons
- Low- p_T leptons, $H_T > 300$ GeV, MET > 30 GeV

Signal regions

- High-p_T lepton region similar to previous selection
- Require additional (same-sign) lepton
 - Move to region with significantly smaller statistics

	High-p _⊤ leptons	Low-p _T leptons, high H_T
Triggers	Lepton triggers, allow lower H _T	H _⊤ triggers, allow lower lepton p _T
Preselection: 2 same-sign leptons	p _{T1} > 20 GeV p _{T2} > 10 GeV	р _Т > 10 GeV
Isolation	lso < 0.1, Iso = Iso _{COMB} / max[20 GeV, p _T]	lso < 0.15, lso = lso _{COMB} / p _T
m _z veto: Opp-sign, same-flavor leptons	m _∥ - m _z < 15 GeV	m _∥ - m _Z < 15 GeV
m _{II}	Opp-sign, same-flavor leptons, m _∥ > 12 GeV	Same-sign leptons, m _{ll} > 5 GeV
Sort	No duplicate events; sort by priority: μμ, eμ, ee	No duplicate events; sort by priority: μμ, eμ, ee
Jets	At least 2 PF jets, E _T > 30 GeV	At least 2 PF jets, E _T > 30 GeV
Η _T	$H_{T} > 60 \text{ GeV} / H_{T} > 200 \text{ GeV}$	H _T > 300 GeV
MET	MET > 80 GeV / MET > 20 GeV	MET > 30 GeV

Backgrounds from fake leptons

- Background with one fake lepton
 - Prompt lepton + b-jet (ttbar): Dominant background
 - Prompt lepton + light quark/gluon jet (W/Z + jets)
- Background with two fake leptons
 - Dijets (QCD): Most uncertain background
- Measured via fake rate method
 - Define "loose" and "tight" (full selection) leptons
 - Determine probability that lepton passing loose selection also passes tight selection (fake rate)
 - Take events after all cuts (minus lepton selection)
 - Single-fake events: Require one tight lepton and one loose (but not tight) lepton; events weighted by FR / (1 – FR)
 - Double-fake events: Require both leptons to be loose (but not tight); events weighted by FR₁ / (1 FR₁) * FR₂ / (1 FR₂)

Fake rates

- Lepton-triggered data
 - Require reco jet instead of jet trigger
 - Remove real leptons from W/Z decays:
 - MET < 20 GeV and M_T(lep, MET) < 25 GeV
 - |M_{II} M_Z| > 20 GeV
 - Take fake rate as constant above 35 GeV
- "Looser" lepton definition to increase statistics
 - Electron: I_{rel} < 0.5, remove ID and d₀(bsp) cuts
 - Muon: I_{rel} < 0.75, χ²/n_{dof}
 < 50, d₀(bsp) < 2 mm

Ph.D. Thesis Defense 11-Aug-11 muon n

Same-sign dilepton yields for all analyses

- Background predicted via fake rate method
 - Includes looser fake definitions to improve statistical uncertainty
- MC contribution predicted from fake rate method applied to simulation
 - Scale factors obtained from fit results included in calculation
 - Includes pileup + L1 offset corrections
 - Results are in better agreement with predicted BG
- No evidence of excess over background
 - Set 95% confidence upper limit using Bayesian method with flat prior
 - From LM0 simulation: Expect 5.0 events, 6.0 events, and 5.7 events in each search region

Search Region	Search Region ee		$\mu\mu$ $e\mu$		$95\%~{\rm CL}~{\rm UL}$ Yield
Lepton Trigger					
$E_T^{\text{miss}} > 80 \text{ GeV}$					
MC	0.09	0.20	0.28	0.58	
predicted BG	0.07 ± 0.04	0.43 ± 0.22	0.64 ± 0.17	1.14 ± 0.25	
observed	1	0	0	1	4.2
$H_T > 200 \text{ GeV}$					
MC	0.26	0.11	0.47	0.84	
predicted BG	0.22 ± 0.08	0.54 ± 0.19	0.79 ± 0.18	1.55 ± 0.26	
observed	1	0	1	2	5.2
H_T Trigger					
Low- p_T					
MC	0.16	0.05	0.18	0.39	
predicted BG	0.15 ± 0.02	0.05 ± 0.03	0.33 ± 0.08	0.52 ± 0.07	
observed	1	0	0	1	4.5

- Both events in data passing same-sign cuts
 - 2-electron event (left) passes all three selections
 - Electrons: Charge = -1, $E_T = 77$ GeV, 22 GeV
 - H_T = 355 GeV, MET = 109 GeV
 - Electron-muon event (right) passes H_T > 200 GeV selection
 - Leptons: Charge = +1, electron E_T = 33 GeV, muon p_T = 32 GeV
 - H_T = 212 GeV, MET = 49 GeV

Exclusion contour taken from SUS-10-004 paper

- Calculated top production cross section in muon + jets channel
 - Results in excellent agreement with theory
- Used fit result to scale MC for same-sign dilepton analyses
 - See better agreement between MC and predicted BG from fake rate method
- Set 95% confidence level upper limit on same-sign dilepton signal yield

Backup slides

- Data collected from April November, 2010
 - Total integrated luminosity of 36 ± 1 pb⁻¹
 - Re-reconstructed using CMSSW_3_9_7 (Dec22 rereco)
 - Official JSON file to select good runs, lumi sections:
 - Cert_136033-149442_7TeV_Dec22ReReco_Collisions10_JSON_v4.txt
 - Use multiple datasets for different analyses:

Data samples						
Time period	2010A	2010B				
Electrons	$/\mathrm{EG/Run2010A}\text{-}\mathrm{Dec22ReReco_v1}/\mathrm{AOD}$	$/ Electron/Run2010B\text{-}Dec22ReReco_v1/AOD$				
Muons	$/\mathrm{Mu}/\mathrm{Run2010A}\text{-}\mathrm{Dec22ReReco_v1}/\mathrm{AOD}$	$/{\rm Mu}/{\rm Run2010B}\text{-}{\rm Dec22ReReco_v1}/{\rm AOD}$				
Jets	$/{\tt JetMET/Run2010A\text{-}Dec22ReReco_v1/AOD}$	/MultiJet/Run2010B-Dec22ReReco_v1/AOD				

 Use a variety of single lepton and H_T triggers, based on unprescaled ranges

Trigger selection						
Run range	e triggers	μ triggers	Jet triggers			
132440 - 140040	HLT_Ele10_LW_L1R	HLT_Mu9	HLT_HT100U			
140041 - 143962	HLT_Ele15_SW_L1R	HLT_Mu9	HLT_HT100U			
143963 - 146427	$HLT_Ele15_SW_CaloEleId_L1R$	HLT_Mu9	HLT_HT100U			
146428 - 147116	$HLT_Ele17_SW_CaloEleId_L1R$	HLT_Mu9	HLT_HT100U			
147117 - 148058	$HLT_Ele17_SW_TightEleId_L1R$	HLT_Mu15_v1	HLT_HT140U			
148058 - 148818	$\rm HLT_Ele17_SW_TightEleId_L1R$	HLT_Mu15_v1	HLT_HT150U_v3			
148819 - 149180	$\rm HLT_Ele22_SW_TighterEleId_L1R_v2$	HLT_Mu15_v1	HLT_HT150U_v3			
149181 - 149442	$\rm HLT_Ele22_SW_TighterEleId_L1R_v3$	HLT_Mu15_v1	HLT_HT150U_v3			

MC samples generated with MADGRAPH and PYTHIA

- Default event tune Z2 used for nominal samples
- Tune D6T used for systematic studies
- All MC samples reconstructed using CMSSW_3_9_7 (Winter10)
- All samples include pileup corresponding to latest data from 2010 run

Monte Carlo samples						
Process	Generator	Kinematic cuts	σ (pb)	Generated events		
		Common samples				
$t\bar{t}$	MADGRAPH		157.5	1165716		
$W \rightarrow l\nu$	MADGRAPH		31314.0	15154787		
$Z/\gamma^* \to l^+ l^-$	MADGRAPH	$m_{ll} > 50 \mathrm{GeV}$	3048.0	5257046		
t (s-channel)	MADGRAPH		1.4	494967		
t (t-channel)	MADGRAPH		20.93	484060		
tW	MADGRAPH		10.6	494961		
Samples for $t\bar{t}$ production cross section measurement						
QCD (µ-enriched)	PYTHIA	$\hat{p_{\rm T}} > 20 {\rm GeV}, p_{\rm T}^{\mu} > 15 {\rm GeV}$	84679.3	29504868		

Note: For certain studies, a factor of 2 is used to normalize the QCD contribution

M. Weinberg University of Wisconsin

Muon selection: quality cuts

M. Weinberg University of Wisconsin

Electron identification: Barrel

M. Weinberg University of Wisconsin

M. Weinberg University of Wisconsin

Electron selection: Conversion rejection

M. Weinberg University of Wisconsin

H_T and MET

M. Weinberg University of Wisconsin

Top analysis: Event yields

Predicted and observed event yields for 36.0 pb^{-1}								
Cut	$t\overline{t}$	$W \rightarrow l\nu$	Single-top	QCD	Sum MC	Data		
1 jet	29	17565	1655	63	6762	26075	25183	
2 jets	116	3253	279	69	764	4480	4816	
3 jets	199	555	54	31	111	950	1049	
\geq 4 jets	224	118	13	12	19	386	406	

QCD model

Comparison of non-isolated data and **QCD MC to nominal QCD MC**

- Not suitable model for QCD
- Non-iso data and **QCD** agree very well; QCD reasonable

M. Weinberg University of Wisconsin

Ph.D. Thesis Defense 11-Aug-11

η

--- Nominal yield Q² scale ±1σ Q² scale +1σ

--- Q² scale -1σ

Jet multiplicity

CMS Preliminary 36 pb⁻¹ at√s = 7 TeV

Q^2 scale systematic yield change							
Cut	Sys	Sys $t\bar{t} W \to l\nu Z/\gamma^* \to b$					
2 jets	Scale +	+5.5%	-22%	-17%			
	Scale -	-6.1%	+66%	+49%			
3 jets	Scale +	+4.1%	-35%	-32%			
	Scale -	-3%	+100%	+67%			
\geq 4 jets	Scale +	-5.1%	-44%	-41%			
	Scale -	+9%	+96%	+74%			

Matching uncertainty

CMS Preliminary

36 pb⁻¹ at√s = 7 TeV

0 0

0.8

M. Weinberg University of Wisconsin

Ph.D. Thesis Defense 11-Aug-11

Jet multiplicity

Top analysis: Rellso and M_T(W) NLO cross section

M. Weinberg University of Wisconsin

 $M_{T}(W)$ [GeV/c²]

M. Weinberg University of Wisconsin

Ph.D. Thesis Defense 11-Aug-11

THE UNIVERSITY

MADISON

Top analysis: PF jet p_T and η NLO cross section

M. Weinberg University of Wisconsin

M. Weinberg University of Wisconsin

Top analysis: H_T and M3 NLO cross section

M. Weinberg University of Wisconsin

M. Weinberg University of Wisconsin

Implementation of fake rate method

- Measure fake rate using lepton-triggered data
 - Require jet of certain energy in place of jet trigger
 - For single jet events, require ΔR(lep, jet) > 1
 - Require lepton matched to triggered HLT object
 - Remove real leptons from W/Z decays:
 - MET < 20 GeV and $M_T(lep, MET)$ < 25 GeV (for W + jets)
 - |M_{II} M_Z| > 20 GeV (for Z + jets)
 - Take fake rate as constant above 35 GeV
- "Loose" lepton definition loosened further to increase statistics
 - Electron: I_{rel} < 0.5, remove ID and d₀(bsp) cuts
 - Muon: $I_{rel} < 0.75$, $\chi^2/n_{dof} < 50$, $d_0(bsp) < 2 \text{ mm}$

SUSY analysis: Background composition

Expected number of background events with one or two fake leptons for the three search regions

	MET > 80 GeV		$H_T > 200 \text{ GeV}$			Low-p _T			
	1 fake <i>l</i>	2 fake <i>l</i>	total BG	1 fake <i>l</i>	2 fake <i>l</i>	total BG	1 fake <i>l</i>	2 fake <i>l</i>	total BG
ee	0.07	0.0	0.07	0.22	0.0	0.22	0.12	0.03	0.15
$ e\mu$	0.64	0.0	0.64	0.79	0.0	0.79	0.31	0.02	0.33
$\mid \mu\mu$	0.43	0.0	0.43	0.54	0.0	0.54	0.0	0.05	0.05
total	1.14	0.0	1.14	1.55	0.0	1.55	0.43	0.09	0.52

SUSY analysis: Event displays

Results from SUS-10-004

Search Region	ee	μμ	еμ	total	95% CL UL Yield
Lepton Trigger					
$E_T^{\text{miss}} > 80 \text{ GeV}$					
MC	0.05	0.07	0.23	0.35	
predicted BG	$0.23^{+0.35}_{-0.23}$	$0.23^{+0.26}_{-0.23}$	0.74 ± 0.55	1.2 ± 0.8	
observed	0	0	0	0	3.1
$H_T > 200 \text{ GeV}$					
MC	0.04	0.10	0.17	0.32	
predicted BG	0.71 ± 0.58	$0.01\substack{+0.24\\-0.01}$	$0.25^{+0.27}_{-0.25}$	0.97 ± 0.74	
observed	0	0	1	1	4.3
H _T Trigger					\sim
Low-p _T					
MC	0.05	0.16	0.21	0.41	
predicted BG	0.10 ± 0.07	0.30 ± 0.13	0.40 ± 0.18	0.80 ± 0.31	
observed	1	0	0	1	4.4
	$e\tau_h$	$\mu \tau_h$	$\tau_h \tau_h$	total	95% CL UL Yield
τ_h enriched		\sim			
MC	0.36	0.47	0.08	0.91	
predicted BG	0.10 ± 0.10	0.17 ± 0.14	0.02 ± 0.01	0.29 ± 0.17	
observed	0	0	0	0	3.4