

CMS Level-1 Trigger Review

Wesley Smith, *University of Wisconsin,* Trigger Project Manager

CMS Comprehensive Review September 27, 2004

The pdf file of this talk is available at: http://cmsdoc.cern.ch/cms/TRIDAS/tr/0409/smith_CR_sep04.pdf See also CMS Level 1 Trigger Home page at http://cmsdoc.cern.ch/cms/TRIDAS/html/level1.html

CMS Level-1 Trigger & DAQ

Overall Trigger & DAQ Architecture: 2 Levels:

Calorimeter Trig. Algorithms

W. Smith, U. Wisconsin, CMS Comprehensive Review, Sept. 27, 2004

Calorimeter Trigger Overview (in underground counting room – USC55)

Regional Calorimeter Trigger - U. Wisconsin

W. Smith, U. Wisconsin, CMS Comprehensive Review, Sept. 27, 2004

Regional Calorimeter Trigger Production: Crate, Backplane, Clock Cards - U. Wisconsin

160 MHz Backplane w/0.4 Tbit/sec dataflow:

- All data paths checked
- Production
 version validated
- all backplanes manufactured
- 3/18+7sp tested

Clock Card:

- Receives 160 MHz and 120 MHz clocks and resets from Master Clock Card or generates clocks using an oscillator for standalone testing.
- Fans out and adjusts phase to all boards via backplane.
- All 18/25 for operation/+ spares manufactured
- 6 validated through full testing procedure
- Integrated with full crate of RCT boards. Run with clock arriving via cable (from another CCC).

W. Smith, U. Wisconsin, CMS Comprehensive Review, Sept. 27, 2004

CMS Level-1 Trigger – 6

RCT Production: Receiver Card (RC) & Receiver Mezzanine Card (RMC) – U. Wisconsin

Receives 64 ECAL/HCAL trigger primitives and fine grain bits via Cu cable using 8 Vitesse 1.2 Gbaud links on RMCs.

2 4x4 Tower sums are created and sent to Jet/Summary Card with 2 MIP (OR of 4x4 HCAL FG) and 2 τ -veto bits (patterns).

16 towers of E_T sent directly to an Electron Identification Card and duplicated for edge information for other cards.

Crate-to-Crate sharing on cables of edge and corner towers for e/γ algorithm.

126/154 RCs necessary to operate/including spares

- All 154 manufactured and delivered, 5 validated
- All 1026/1420 RMCs delivered and tested

Full crate tests performed

Initial Integration with HCAL HTR & SLB performed, more tests planned with HCAL & ECAL

RCT 4 Gbaud Copper Link Cards & Serial Test Card – U. Wisconsin

SLB-STC link test setup Lisbon-Wisconsin

Test of link from Calorimeter to Regional Trigger

Electron Isolation Card (EIC) – U. Wisconsin

Receives 16 central towers directly from adjoining RC and 32 edge and corner towers from adjacent RC's or via cables into adjoining RC.

EISO ASIC uses this information to produce one isolated and one non-isolated e/γ candidate for each 4x4 trigger tower region which are sent via backplane to Jet/Summary Card for sorting.

126/154 for operation/total produced153 of 154 tested and working1 back to vendor for part replacementCompletely validated in full crate tests

Jet/Summary Card (JSC) – U. Wisconsin

Uses SORT ASICs to find top four e/γ , threshold for quiet bits. Receives 8 HF regions with Rec. Mezz. Card. Full crate test – all output/input paths verified, electron sort, jet output all verified. Integration test with GCT Done

18/25 for operation/including spares

Revision B 100% validated, Revision C (final) in production.

RCT Full Crate Test - U. Wisconsin

Full System Test of all pre-production prototypes in final configuration.

Rear: Receiver Cards

Front: Electron, Jet, Clock Cards

W. Smith, U. Wisconsin, CMS Comprehensive Review, Sept. 27, 2004

Global Calorimeter Trigger – Bristol U.

W. Smith, U. Wisconsin, CMS Comprehensive Review, Sept. 27, 2004

Global Calorimeter Trigger: Input module prototyping - Bristol U.

Tested first proto-IM in 2003

- Full function, half channel count
- Demonstrated data transfer input from RCT, out to GT
- Reported to 2003 Annual Review

Now testing pre-production IMs

- Verified clocking, FPGA, TPM interface
- Built test boxes for ECL input stage
- Testing finished in Oct '04

IM production to start Dec '04

GCT Trigger Processor Module – Bristol U.

- Prototype TPMs were delivered in January 2004
- Verified clocking, links and data paths
- Second iteration prototype is required
 - Routing of TPM2 has started
 - Out to manufacture end Nov
- Aiming for final production July-Aug '05

GCT hardware components – Bristol U.

Crates, cables used in lab testing

- Placing orders for final production items
- Communications Module for clock fanout and DAQ interface
 - Testing started mid-August
 - Looks good so far
 - Firmware effort needed

RPC Trigger Geometry

RPC Electronics Layout

Bari/Laapperanta/Warsaw

RPC Link Boxes on Detector

- Bari, Helsinki, Lappeenranta, Warsaw

Link System tested & approved for production, cables & fibres ~ defined

RPC Trigger Splitter in USC55 – Lappeenranta

Full size & function pre-production prototype tested • BER tests passed for 60 – 100 MHz clocks

W. Smith, U. Wisconsin, CMS Comprehensive Review, Sept. 27, 2004

CMS Level-1 Trigger - 21

RPC Trigger Board – Warsaw

Pre-production prototype now being manufactured

W. Smith, U. Wisconsin, CMS Comprehensive Review, Sept. 27, 2004

New RPC Sorter Crate – Bari

Sorter boards:

Under design

Read out Subsystem:

Customized DCC (ECAL) to be tested in October 2004

BACKPLANE

RPC Trigger in June 2004 structured test beam

June 2004 RPC Trigger Synchronization with CSC Trigger

Initial results promising More tests during the October 25ns beam test.

CSC Muon Trigger Scheme

W. Smith, U. Wisconsin, CMS Comprehensive Review, Sept. 27, 2004

First time used full Track-Finding logic to identify tracks in data Full DAQ logging of inputs and outputs for offline comparisons

Compare with data sent by Peripheral Crates & internal TF logic

L1A generation a major synchronization accomplishment for trigger

- Data must be aligned spatially and temporally
- Very useful for slice tests

Track-Finder Crate Tests – Florida, Rice, UCLA

- First test of multiple peripheral crates (multiple MPC) to TF crate
 - Synchronization test
- Various clocking solutions tried to test robustness of optical links
 - MPC used QPLL 80 MHz clock on backplane for all 25 ns runs

First test of multiple Sector Processors (SP) to one Muon Sorter (MS)

_1A signal distributed out of crate

Fully operational CSC TF tested with full data format

- Agreement between the output of the Sector Processor (SP) with simulation based on logged inputs is 100%
- Agreement between the recorded trigger primitive data (via DAQ from Trigger Mother Board) and received SP data is generally at the level of 99.7%
 - Same level of agreement as obtained from the Sep.'03 beam test
- The SP in conjunction with a specially modified Clock and Control Board was able to self-trigger the experiment (including RPC)
- Muon Sorter winner bits appear to be properly recorded New DT/CSC transition card works

CSC Trigger Muon Port Card & Clock & Control Board – Rice

Muon Port Card:

- •6 boards built in 2002, equipped with FPGA mezzanines
- Tested on the bench
- Tested w/7 Trigger Motherboards
 & one Sector Processor
- Checked in peripheral crates in beam test at CERN in Sept. 2003 & June 2004
- Radiation tested at UC Davis
 cyclotron
- **Clock & Control Board;**

- Tested on the bench
- Tested w/7 Trigger Motherboards
 & one Sector Processor
- Checked in peripheral crates in beam test at CERN in June 2004
- Radiation tested at UC Davis cyclotron

CSC Track-Finder Status – Florida & Rice

- **DT/CSC Transition Card (Florida):**
 - New version tested June '04
- Sector Processor Board (Florida):
 - Schematics for final design modifications completed
 - Routing modifications submitted to vendor, about 2 weeks to complete
 - Production to commence in October
- Sorter Board (Rice):
 - 4 boards built in 2003, 3 boards assembled
 - Need only 1 in final system
 - 2 mezzanines assembled
 - Two MS boards w/mezzanines bench tested
 - Tested with Sector Processor prototype
 - Checked in the Track Finder crate during beam test at CERN in June 2004
 - Does not require irradiation test

Drift Tube Track Finder & Sorter

1 BS sorts the "best" 4 tracks out of max 24 tracks from 12 WS of barrel

W. Smith, U. Wisconsin, CMS Comprehensive Review, Sept. 27, 2004

Drift Tube Track Finder Crate

Phi & Eta Track Finders – Vienna & Madrid

Phi Track Finder PPP:

- Sector processor:"System on Chip"
- Altera Stratix: 1020 pins on mezzanine
- •JTAG chain & track-finding work
- Quality control protocol being developed
- Will test in Oct. test beam

Eta Track Finder PPP:

- VDHL model done and tested
- Agreement with ORCA is 100%.
- Tests were used to establish standard quality control protocol for Production
- •2 boards available
- Integration test with PHTF will follow

Drift Tube Wedge & Barrel Sorters – Bologna

Wedge Sorter:

- Prototype fully tested @ 40 MHz standalone
- Combined static test done with old PHTF
- Combined test @ 40 MHz w/new PHTF now
- Will test in October test beam
- Tender for production done
- Production starts Oct 04, ends Dec 04
 on schedule

Barrel Sorter:

- Electrical design for main board (VME 9U, with all connectors & transceivers) done
- Mezzanine design under way: ghost busting & sorting 4 out 24 in 3 BX is complex fits only in a big Stratix II FPGA (1508 pins)
- Prototype expected by end Nov 04

Barrel Sorter board lavout (1:2) v7 - A.Montanari, 25-Aug

Global Muon Trigger Overview – Vienna

Global Muon Trigger Status – Vienna

Logic Board

- Mezzanine for FF896 package built & tested
 - For Input FPGAs
- Mezzanine for BF957 produced & under test
 - For Logic, MIP/ISO Assignment, Sort FPGAs
- Schematics complete
- Layout & routing complete, final checks now
 - For both GMT Logic Board and Input Board
- Production planned this month,
 - Available Oct./Nov. 2004, tests until Dec. 04
 - Integration tests possible from Jan. 05
- Firmware: 10 Xilinx Virtex II FPGAs
 - All chips completed (New: Sorter, Input FPGAs, Readout Processor)
 - All verified against ORCA simulation. 100% agreement.
- **Online Software**
 - Developed generic JTAG Access Library (JAL) to program the flash PROMs via VME (common project with DT, GT)

conn. conn.

FPGAs

Boards in Global Trigger Crate – Vienna

The Global Trigger Processor consists of the following electronics boards:

PSB (Pipelined Synchronizing Buffer) Synchronization of inputs (7 modules) GTL (Global Trigger Logic) Global Trigger logic (1–2 modules) **GMT** (Global Muon Trigger) Global Muon Trigger logic (1 module, 4 slots wide) **FDL** (Final Decision Logic) Trigger decision (1 module) TCS (Trigger Control System Module) Central trigger control (1 module, 2 slots wide) **CONV6U (Conversion Boards) Reception of fast signals** L1A (Level-1 Accept Module) Distribution of trigger decision (2 modules) TIM (Timing Board) Timing (1 module) GTFE (Global Trigger Frontend) Readout (1 module)

GT Backplane & Pipeline Synchronizing Buffer (PSB9U)

Backplane:

- Transfer of signals GTL+ 80 MHz
- 4 needed: 1 for GT + 3 spares

Status & Tests:

- 6U prototype available
- 2 9U final backplanes tested
- 2 final GT crates delivered, 1 assembled

Pipelined Synchronizing Buffer:

- Receive & synchronize inputs
- 15 needed: 4 for GT, + 3 for GMT + 8 spares

Status

- 6-channel 6U prototype PSB6U available
- No pre-production prototype foreseen
- Layout in progress
- All boards produced in one step by end 04
- Existing test PSB6U SW will be upgraded

Tests

- PSB6U prototype is fully tested
- Successful integration test with GCT input module July 03

Global Trigger Logic & Final Decision Logic Boards – Vienna

Global Trigger Logic Board

- 4 needed: 1 for GT + 3 spares
- 20-channel 6U prototype GTL6U tested
- GTL-CONV module for testing is available
- Schematic design almost finished
- Production Oct-Nov 04
- Software from GTL6U being upgraded

Final Decision Logic Board

- 4 needed: 1 for GT + 3 spares
- 1 assembled final board under test & MEZZ-957 incorporated
- 3 empty boards available
- Test software under development

Global Trigger Frontend & Central Trigger Control Boards

– Vienna

Front End Board (GTFE)

- Provides readout
- 4 needed: 1 for GT + 3 spares
- Schematic to be done
- Production: Jan Feb 05

Final Decision Logic (FDL9U)

- All boards produced in one step
- 1 board under test,
- Have components for 2 more
- First version software for hardware tests exists

Global Trigger Timing Board – Vienna

13 Needed:

1 for GT+ 7 for DTTF
+ 5 spares

Status

- 2 preproduction boards tested & 1 under test
 - Use TTCrm

- New boards for TTCrq developed
- Old boards have same functionality as new ones
- New boards will be produced by Feb. 2005
- Final test software with GUI exists

Trigger Module Database

						Prod.	Prod.	Test	Prod. %	Test	Test %	Ready for	Ready for
Subsys.	Item	Explanation	Needed	Total Responsible	Status	Start	Finish	Start	Compl.	Finish	Compl.	904	USC55
CSC	CCB	CSC Clock & Control Board	1	3 Rice	PPP	Oct-04	Jan-05	Dec-04	0%	Mar-05	0%	Apr-05	Jun-05
CSC	CSC Bckpl	CSC Track - Finder Crate Backplane	1	3 U. Florida	PPP	Oct-04	Jan-05	Dec-04	0%	Mar-05	0%	Apr-05	Jun-05
CSC	MPC	CSC Muon Port Card	60	72 Rice	PPP	Oct-04	Jan-05	Dec-04	0%	Mar-05	0%	Apr-05	Jun-05
CSC	SR/SP	CSC Sector Processor/ Receiver	12	15 U. Florida	PPP	Oct-04	Jan-05	Dec-04	0%	Mar-05	0%	Apr-05	Jun-05
CSC	Sort	CSC Track-Finder Sorter	1	3 Rice	PPP	Jan-05	Feb-05	Feb-05	0%	Mar-05	0%	Apr-05	Jun-05
DT	DT Backplane	Drift Tube Track-Finder Crate Backplane	6	8 Vienna	PPP	Jan-05	Mar-05	Mar-05	0%	Apr-05	0%	Feb-05	Jun-05
DT	PHTF	Drift Tube Phi Track-Finder	72	90 Vienna	PPP-Aug-04	Jan-05	Mar-05	Mar-05	0%	Apr-05	0%	Feb-05	Jul-05
DT	ETTF	Drift Tube Eta Track-Finder	12	15 Vienna	PPP	Nov-04	Dec-04	Dec-04	0%	Feb-05	0%	Feb-05	Jun-05
DT	Optical Input	DTTF Gigabit Optical Receiver	96	110 Bologna	PPP-Nov-04	Apr-05	Aug-05	Apr-05	0%	Aug-05	0%	May-05	Sep-05
DT	ws	Drift Tube Wedge Sorter	12	15 Bologna	PPP-Nov-04	Dec-04	Jan-05	Dec-04	0%	Feb-05	0%	Feb-05	Mar-05
DT	BS	Drift Tube Barrel Sorter	1	3 Bologna	PPP-Nov-04	Jan-05	Feb-05	Jan-05	0%	Mar-05	0%	Mar-05	Apr-05
DT	ТІМ	Timing Module	7	10 Vienna	PPP	Jan-05	Feb-05	Feb-05	0%	Apr-05	0%	Feb-05	Jun-05
DT	Data-Link	DTTF Data Concentrator Interface	6	8 Vienna	PPP-Sep-04	Oct-04	Jul-04	Sep-04	0%	Feb-05	0%	Feb-05	Jun-05
DT	CSC Transition	Data-Link between DTTF & CSC TF systems	24	30 Vienna	PPP	Oct-04	Dec-04	Jan-05	0%	Feb-05	0%	Feb-05	Jun-05
DT	Data Concentrator	DTTF Data Collection, Compression, DAO Link	1	3 Vienna	PPP-Oct-04	Feb-05	Aua-04	Sep-04	0%	Apr-05	0%	Feb-05	Jun-05
DT	Control Backplane	DTTF Control Crate Backplane	1	3 Vienna	-	Nov-04	Dec-04	Dec-04	0%	Dec-04	0%	Feb-05	Jun-05
GCT	IM	Input Module	18	22 Bristol	PPP	Dec-04	Jan-05	Feb-05	0%	Mar-05	0%	Apr-05	Apr-05
GCT	IM Backplane	Input Module Crate Backplane	2	4 Bristol	PPP	Dec-04	Jan-05	Feb-05	0%	Mar-05	0%	Apr-05	Apr-05
GCT	ТРМ	Trigger Processor Module	9	12 Bristol	PPP-Oct-04	Jul-05	Aug-05	Aug-05	0%	Dec-05	0%	Mar-05	Dec-05
GCT	TPM Backplane	Trigger Processor Module Crate Backplane	1	3 Bristol	PPP	Jul-05	Aug-05	Aug-05	0%	Dec-05	0%	Mar-05	Dec-05
GCT	СМ	Communications Module	1	4 Bristol	PPP-Jul-04	Jul-05	Aug-05	Aug-05	0%	Dec-05	0%	Mar-05	Dec-05
GMT	TLB	Trigger Logic Board	1	4 Vienna	Design	Aug-04	Oct-04	Oct-04	0%	Nov-04	0%	Dec-04	Jun-05
GMT	PSB	Pipeline Synchronization Buffer Board	3	6 Vienna	Final	Sep-04	Nov-04	Nov-04	0%	Dec-04	0%	Dec-04	Jun-05
GT	Backplane	Global Trigger Backplane	1	3 Vienna	Final	Dec-03	Apr-04	May-04	100%	Jun-04	100%	Oct-04	Jun-05
GT	PSB	Pipeline Synchronization Buffer Board	4	9 Vienna	Final	Sep-04	Nov-04	Nov-04	0%	Dec-04	0%	Dec-04	Jun-05
GT	GTL6U	Global Trigger Logic Board	1	4 Vienna	Proto	Oct-02	Nov-03	Nov-03	100%	Apr-04	100%	Oct-04	Jun-05
GT	GTL	Global Trigger Logic Board	1	4 Vienna	Final	Dec-04	Feb-05	Feb-05	0%	Apr-05	0%	Jun-05	Aug-05
GT	FDL	Final Decision Logic Board	i	4 Vienna	Final	Jun-04	Sep-04	Sep-04	50%	Nov-04	0%	Nov-04	Jun-05
GT	GTFE	Global Trigger Front End - Readout	i	3 Vienna	Final	Feb-05	Mar-05	Mar-05	0%	.lun-05	0%	Jun-05	Aug-05
GT	TCS	Central Trigger Control System Board	i	3 Vienna	Final	Dec-03	.lun-04	Jun-04	100%	Oct-04	50%	0ct-04	Jun-05
GT	LIA	Level 1 Accept Output Module	2	5 Vienna	Final	Mar-04	Aug-04	.lul-04	80%	Oct-04	50%	Oct-04	Jun-05
GT	CONV	Fast Signal Converter Boards	4	10 Vienna	Final	Dec-03	Jun-04	Jul-04	25%	Oct-04	50%	0ct-04	Jun-05
GT	TIM V1 (for TTCrm)	Timing Module	1	3 Vienna	PPP	lan-03	Mar-03	Mar-03	100%	lun-03	100%	0ct-04	Jun-05
GT	TIM V2 (for TTCra)	Timing Module	1	3 Vienna	Final	lan-05	Mar-05	Apr-05	0%	May-05	0%	May-05	lun-05
RCT	Bckpl	Regional Cal Trigger Backplane	18	25 Wisconsin	Frist	lan-04	lun-04	lun-04	100%	Oct-04	12%	Dec-04	Jun-05
RCT		Clock and Control Card	18	25 Wisconsin	Exist	lan-04	lun-04	lun-04	100%	Oct-04	20%	Dec-04	Jun-05
RCT	RC	Receiver Card	126	154 Wisconsin	Frist	lan-04	Δυσ-04	Nov-04	100%	Oct-04	2%	Dec-04	Jun-05
RCT	RMC	Receiver Mezzanine Card	1026	1420 Wisconsin	Done	Sen-03	Oct-03	Oct-03	100%	Dec-03	100%	Dec-04	Jun-05
RCT	FIC	Electron Identification Card	126	154 Wisconsin	Done	lan-04	Mar-04	Mar_04	100%	Oct-04	100%	Dec-04	Jun=05
RCT		let/Summary Card	18	25 Wisconsin	PPP	Aug-04	Sen-04	Oct-04	0%	Nov-04	0%	Dec-04	Jun-05
RCT	MCC	Master Clock Card	1	3 Wisconsin	Design	lan-05	Feb-05	Feb-05	0%	Mar-05	0%	Mar-05	Jun=05
RPC	IR	Link Box (includes front & back planes)	108	124 Lann /Wars	PPP	Mar-04	lun-04	Oct-04	0%	lun-05	0%	May-05	May-05
RPC	MIR	Master Link Roard	588	676 Lann /Wars	PPP	Mar-04	Jun-04	Oct-04	0%	Sen-04	0%	May-05	May-05
PDC	SIR	Slave Link Board	980	1127 Lann /Wars	DDD	Mar-04	Jun-04	Oct-04	0%	Sep-04	04	May-05	May-05
	CB	Control Board	216	248 Jann /Ware	DDD	Mar-04	Jun-04	Oct-04	0%	Sep-04	046	May-05	May-05
	I Bhoy BE11	Link Roy DE11 (includes front & back planes)	12	14 Lopp /Wars	DDD	Mai-04	Jun-04	Oct-04	0%	Dec-04	0%	1 May-03	
		Master Link Board PE11	72	84 Japp /Wars	Proto	Mar-04	May_04	Mar-05	0%	Dec-04	0%		
		Control Board PE11	12	14 Lopp /Wars	Proto	Mar-04	May-04	Mar-05	0%	Dec-05	0%		
	Splitter	Solitter Board	60	69 Lappenranta	DDD	Aug-04	Son-04	Nov-04	0%	Eeb-05	0%	Apr-05	101-05
	Trigger Backplane	Trigger Crate Backplane	12	14 Worsow		Aug-04	Sep-04	lan_05	0%	Mar-05	0%	Apr-05	Jul-05
RFC DDC		Trigger Crate Backplane	109	124 Warsow		Jui-04	Sep-04	Jan-05	070	Mar-05	0%	Apr-05	
DDC	Sorter Backplane	Sorter Crote Backplane	100	2 Bari/Wareaw	Decian	Jun-04	Mar-05	Jan-05	0%0	May_05	0%0	- Api-05	Jui-05
DDC		Sorter Grate Daukpiane	1	3 Dall/ WalsaW 3 Pori	Design	Mor OF	Max-05	Api-05	0%0	Dec OF	0%		Jui-05
DDC	JD Final Carter Board	Suiter Duatu Chast Puster & Serter Board	1	J Dall	Design	Mar-05	May-05	Jun-05	0%	Dec-05	0%0		JUI-05
RPC	Final Softer Board	UNUSL-DUSTER & SOFTER DOARD	2	4 Dari	Design	Jun-04	May-05	Jun-05	0%	Dec-05	0%	JUI-05	JUI-05
RPC		Data Concentrator Card	3	5 warsaw/ECAL	777 000	Jan-05	May-05	Jun-05	0%	Dec-05	0%	Jui-05	JUI-05
RPC	LLO	CIOCK and Control System	3	5 warsaw/ i racker	rrr	Jan-05	мау-05	Jun-05	0%	Dec-05	0%	Jui-05	<u></u> 5

W. Smith, U. Wisconsin, CMS Comprehensive Review, Sept. 27, 2004

- Software for test of trigger boards was developed for all trigger sub-systems
- Most of the software is based on standard CMS tools (XDAQ, HAL, SOAP, I2O) and can be reused later in the experiment
- Configuration, Operation, Monitoring and Testing functions are becoming available
- Software teams for all trigger sub-systems are now in place
- Focusing on Coordination J. Varela, Lisbon

Trigger Software Structure

Trigger Software Functions

Configuration Hardware configuration Parameter settings Data base access Resources allocation

Operation

State management Hardware initialization Start/stop/pause/resume Read spying events Test & Diagnostics Boundary scan tests Functional tests Interconnection tests Diagnosis user help

Resource Management

User interface to data base Hardware management Firmware management Software management Configuration management

Reporting

Hardware status

Alarms Statistics

Administration

User registration Access permissions

Monitoring

Analysis of spy events

Histograming, visualization

Trigger Software Working Group

New composition:

Sub-System	People
Chair	Joao Varela
TS	Ildefons Magrans
GMT	Hannes Sakulin
CSC	Darin Acosta
RPC	Michal Pietrusinki
DTTF	Jorge Troconiz
DT	
GCT	Jim Brooke
RCT	Monika Grothe
ECAL	Nuno Almeida
HCAL	Jeremy Mans
GT	Joscko Strauss
ттс	Emlyn Corrin

W. Smith, U. Wisconsin, CMS Comprehensive Review, Sept. 27, 2004

Trigger SW Development Plan

Consolidate sub-systems software teams & present work:

- Document what exists
- Promote use of common technologies
 - XDAQ, HAL, SOAP, I2O, DSTORE
- **Consolidate hardware related layer:**
 - Hardware management in Equipment Database
 - · Board description, identification & history
 - Agree on scheme for storage and verification of Firmware and LUT contents

Configuration data

- Use CMS Configuration DB Infrastructure (need this)
- Sub-systems define their Configuration Data Schema
- **Trigger supervision**
 - Define requirements and architecture → Documentation
 - Integrate with RCS and trigger sub-systems
- **Trigger testing and monitoring**
 - Translate Integration Test Plans into Software → Bldg 904 setup
 - Trigger Online Monitoring → Use DAQ Monitoring Infrastructure
 - Test & run trigger emulation

Trigger Installation Startup

Installation in Underground Counting Room (USC55)

Expect start by Nov 30 '05 — "ready for crates"

- Racks & Infrastructure installed
- Date was June '05 in CR03
- Sufficient time for installation & some testing but not for complete commissioning with detectors
 - Significant time needed for integration in synchronous pipelined system

Surface tests in SX5

- Soon with both HCAL and EMU
- More during magnet test
- Verify trigger functions & interfaces w/detectors on surface.

Tests in Electronics Integration Center

- Labs and row of racks for all electronics subsystems
- Test interfaces & integration as much as possible before move to USC55
- Prevessin 904 (next slides)

Underground

Counting Room

USC55 central core racks see: http://cmsdoc.cern.ch/~wsmith/USC55_racks.html

+Z			Upper	Floor	(Zone S2	2)		-Z	
	Α	В	С	D	Ε	\mathbf{F}		G	\mathbf{H}
01				ECAL spare	Cal Reg Trig	HCAL H	TR		
02	TOTEM	TOTEM	DAQ	ECAL ULR	Cal Reg Trig	HCAL H	TR	DAQ	х
03	TOTEM	TOTEM	HCAL Calib	ECAL ULR	Cal Reg Trig	HCAL H	TR	EBE DCS	х
04	TOTEM	TOTEM	HCAL Calib	ECAL ULR	Cal Reg Trig	HCAL H	TR	EBE DCS	Х
05	TOTEM	DAQ	HCAL Calib	ECAL SKP/TIC	%Cal Keg 1rig	%HCAL I	TIK P	resh. DCS	Х
06	ASSM	EB HV	HCAL DCS	ECAL ULR	Cal Reg Trig	HCAL H	TR	EB HV	х
07	ASSM	EB HV	HCAL DCS	ECAL ULR	Cal Reg Trig	HCAL H	TR	EB HV	х
*08	ASSM	EB HV	HCAL SrcDrv	ECAL ULR	Cal Reg Trig	HCAL H	TR	EB HV	Х
*09	ASSM	EE HV	HPD HV	DAQ	Cal Reg Trig	DAQ		EE HV	х
10	ASSM	Presh. LV/HV	HPD HV	Presh. FED	Cal Reg Trig	х	Pro	esh. LV/HV	х
11	ASSM	Presh. LV/HV	HPD HV	Presh. FED	TOTEM Trig	EBE Lt I	Mn Pro	esh. LV/HV	F.D.
12	ASSM	Presh. LV/HV	HPD HV	DAQ	CASTOR Trig	EBE Lt I	Mn Pro	esh. LV/HV	F.D.
13	ASSM	Presh. Misc	HPD HV	ECAL Cool	X	EBE Lt I	Mn	EB LV	F.D.
14	ASSM	X	PMT HV	ECAL Cool	Align PCs	EBE Las	ser	EE LV	F.D.
15	ASSM	DSS	DSS	DSS	Align Laser	DSS		DSS	F.D.
+7.			Lo	wer Floor	(Zone \$1)				-Z
. 2	Α	В	C	D	E	F	G	н	
00				Presh, FEC	TK. FEC	TK. FEC	DT/RO/SC		
01	(111)			DT TrkFnd	Opt.Cpl.	RPC Trig	Pixel FEC		
02	TK. Ctrl	DAO	DAO	DT TrkFnd	TTC	RPC Trig	Pixel Ctrl	RPC B	HV
03	TK. Ctrl	TK. FED TIB+TID	TK. FED TOB	DT TrkFnd	TTC	RPC Trig	Pixel FED	RPC B	HV
04	TK. Ctrl	TK. FED TIB+TID	TK. FED TOB	CSC TrkFnd	Global	RPC Trig	Pixel FED	RPC B	HV
05	TK. Ctrl	TK. FED TIB+TID	TK. FED TOB	CSC TrkFnd	%Cal Global	%RPC Trig	DAQ	RPC B	HV
06	CSC HV	DAQ	DAQ	DAQ	TTS	RPC Trig	CSC FED	RPC B	HV
07	CSC HV	FED PCs	DAQ	DT HV	TTS	RPC Trig	CSC FED	RPC B	HV
*08	CSC HV	DAQ	DAQ#	DT HV	BPTX	RPC Trig#	CSC FED	RPC E+	HV#
*09	CSC HV	TK. FED TEC-	TK. FED TEC+#	DT HV	LHC	DAQ#	ME1/1 HV	RPC E+	HV
10	CSC HV	TK. FED TEC-	TK. FED TEC+	DT HV	BPM	DSS	ME1/1 HV	RPC E-	HV
11	DAQ	TK. FED TEC-	TK. FED TEC+	DT HV	DSS	DSS	DSS	RPC E-	HV

W. Smith, U. Wisconsin, CMS Comprehensive Review, Sept. 27, 2004

Approved Plan for B 904

Plans for the CMS Electronics Integration Centre at Prevessin (B 904)

Trigger Component Interfaces

- Each interface specified by a CMS Internal Note signed by all parties to the individual interface
- Integration tests planned or already done for each interface before equipment bought to Point 5

Structured Beam Tests:

- Operation of trigger systems with detectors in 25 ns beam checks synchronization and phase offsets
- **Tests in Electronics Integration Center (B 904)**
 - Simulate conditions in USC55 as closely as possible

Surface test in SX5:

 Trigger components will participate in the surface tests & magnet tests in SX5 as permitted by front end electronics and detector availability

Install/Commission Trig. Crates Dec '05 – Apr '06

- Tested Trigger Crates installed, re-tested, interconnected, inter-synchronized
- Regional and Global Detector trigger systems integrated with each other and Global Trigger

Integrate w/Detector Electronics May '06 – Oct '06

- Cal Trig connected to E/HCAL USC55 electronics
- Muon Triggers connected to optical fibers carrying trigger data from detector
- Global Trigger connected to TTC distribution system
- Operation with Local DAQ

Integrate w/Central Trig. & DAQ Nov '06 – Apr '07

- Subset of triggers available to detectors in UXC55
- Dedicated testing with individual detectors
- Detailed synchronization testing of all systems
- Testing with Central DAQ

System Commissioning

- Full capability of trigger system available
- Tests with all detectors and trigger operating simultaneously together and partitioned
 - Trigger and DAQ can operate in 8 separate partitions

Ready for Data Taking August, 2007

May '07 – Aug '07

CMS Electronics Installation Plans Consistent with Trigger Plans

4 month slip wrt. schedule shown at CR03

	2Q 04				3Q 04			4Q 04			1Q 05			2Q 05			Q 0	5	5 4Q 05			1Q 06		2Q 06			3Q 06		4	4Q 0	រ 1Q 0				2Q	07	3Q 07			4Q		
	А	Μ	J	J	A	S	6 C) N	1 D	J	F	Μ	Α	М	J	J	A S	S	0 N	D	J	FN	MA	Λ	J	J	A	S	0	N E) J	I F	М	Α	М	J	J	A	S	1 0	1 C)
Lower CMS																								_							_			_								_
Connect Cables to USC																														_	_							T			\pm	_
USC Ready for Crates			S	ta	art	Ħ	h	st	al	a	tic	pn		va	IS																										_	_
UXC Ready for Crates		_		J	u	he	₹	'0	5	at	(Ĵ	RC)3					€					G	MS		40		j						⊢⊔ر 						+	
SCX connected to USC			(а	C	¢e	S	SS	to	J	JS	50	25	55)‡												_			-				-				_			+	_
Ready for LHC Beams																				L			र्ष		e) la		26		76	HÀÀ	HA	A			a) a		96	į I			+	_
Complete ESRs for CMS Electronics																																					-y		ŀ		+	_
Complete EIC, Prevessin 904										_										ľ														-			4	- 	ŀ		+	
Testing Electronics in EIC																																									-	
Install Electronics in USC & UXC																				L											_								ŀ		+	_
Commission (Self Test)					-																										_										+	_
Commission (Local DAQ)																																		-							+	_
Commission (Remote DAQ)					-																										_										+	_
Commission Trigger (Stand alone)																										_															+	_
Commission Trigger (Sub - Detectors)																															_										+	_
Send Triggers to Sub-Detectors					-					_																															+	_
Commission Complete System																		+																-							\pm	_
																																										_

W. Smith, U. Wisconsin, CMS Comprehensive Review, Sept. 27, 2004

Trigger Conclusions

Good Progress on all fronts:

- Prototyping concluding & production starting or underway
- Integration tests complete or underway
- Software being developed
- Passed Trigger Electronics System Review May '04

Installation:

- Time is tight to accomplish the necessary tasks
- Steps taken, planning established to meet schedule
 - Interfaces: Documents, Integration Tests
 - Tests: Structured Beam, Surface Tests in SX5
 - Use of Electronics Integration Center in Prevessin 904
 - Careful layout and plan for USC55
 - Flexible system partitioning allows work in parallel