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Outline of TalkOutline of TalkOutline of Talk

• Introduction

• HERA and ZEUS

• Photoproduction and Diffraction

• Rapidity Gaps

• Comparisons between Data and MC

• Event Sample and Cuts

• Summary
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High Energy CollisionsHigh Energy CollisionsHigh Energy Collisions

•Particle Scattering
• Particles interact via probe exchange

• Wavelength of probe:  λ = h/Q

• h: Planck’s Constant
• Q: related to Photon Momentum
• Smaller wavelength means greater resolution

•Lepton-Proton Collisions
• HERA: ep CMS Energy ~ 300 GeV

• Deep Inelastic Scattering: Q2 ~ 40,000 GeV2

• Currently possible to probe to 0.001fm (Proton is 1fm)

probe

lepton

probe

lepton
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Quark Parton Model and QCDQuark Parton Model and QCDQuark Parton Model and QCD

• Quarks and Gluons are colored objects
called partons

• QCD describes “Strong” Interaction
• Interactions between partons with strong coupling αs

• Interaction mediated by exchange of gluons

• Process called “Color Flow”

• Multiple gluons can be exchanged

• Individual quarks have color, but only exist
in colorless combinations (hadrons)

• “Color Confinement”
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JetsJetsJets

•Colored Partons produced in hard scatter

•Partons undergo hadronization to form colorless hadrons
(Fragmentation)

•Colorless collimated “spray” of hadrons called a “Jet”

•Particle shower in calorimiter � observe deposited energy

What is Produced What is Observed in Detector

“Hadron
Level”

“Detector
Level”
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PhotoproductionPhotoproductionPhotoproduction

•Photon carries very little 4-momentum (Q2 ~ 0)

•Photon is almost real

•Most ep events are photoproduction
• Cross section has 1/Q4 dependence

•Direct: γ couples directly to a parton in  proton

•Resolved:
• Fluctuation of γ into partonic state

• parton from γ couples to parton in proton

General Photoproduction Direct Resolved
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Color Non-Singlet and Singlet
Exchange in Resolved γP

Color Non-Singlet and SingletColor Non-Singlet and Singlet
Exchange in Resolved Exchange in Resolved γγPP

•Color Non-Singlet Exchange:
• Jets are color connected to each other

• Gap between jets filled with final state particles

•Color Singlet Exchange:
• Jets are not color connected to each other

• No final state particles between jets (Empty Gap)

Color Non-Singlet Exchange Color Singlet Exchange

Jet

Jet Jet

Jet
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DiffractionDiffractionDiffraction

•Final state particles preserve quantum numbers of
 associated initial state particles

•Characteristics of Diffraction

• Small momentum transfer
 (t) at P vertex

• Exchange object (Pomeron) has
quantum numbers of vacuum

• Absence of particles between
P and γ remnants (to follow)

t = (P-P’)

photon

pomeron

momentum

e

p p'

e’

transfer small

photon
remnant + …

Empty
Gap

proton
remnant + …
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A = A0 + A1αS + A2αS
2 +...

QCD ScaleQCD ScaleQCD Scale

•Running of αS

• As scale µ increases, αS(µ)
decreases (µ = ET or Q)

•Perturbative QCD
• Small αS(µ) (hard scale)

• Series expansion used to
calculate observables

•Nonperturbative QCD
• Large αS(µ) (soft scale)

• Series not convergent

HERA: running of αs (µ)

0.1
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H1 (inclusive jets, µ=EB  
T,jet   )
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ZEUS 96-97 (inclusive jets, µ=EB  
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from αs (MZ)= 0.1184 ± 0.0031
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Leading Order (LO) Next to Leading Order (NLO)

HERA DIS Data: Running of αS(µ)
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e

e’

p

photon
JET

JET

pomeron

transfer large
momentum

Hard Diffractive Scattering in
Photoproduction

Hard Diffractive Scattering inHard Diffractive Scattering in
PhotoproductionPhotoproduction

•Photoproduction: Q2 ~ 0

•Diffraction: Absence of particles between jets, low t

•Hard process

• High jet ET � hard scale

• Hard QCD inside soft QCD
process

• pQCD applicable to a hard
QCD process

Sample contains more
events with high ET jets than
predicted by diffraction
without hard processes

Empty
Gap

photon
remnant

proton
remnant

(hard scale)
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HERA DescriptionHERA DescriptionHERA Description

•820/920 GeV Protons

•27.5 GeV e- or e+

•CMS Energy 300/318 GeV

• Equivalent to 50 TeV
fixed target

•220 bunches

• Not all filled

•96 ns crossing time

•Currents:

• ~90mA protons

• ~40mA electrons

•Instantaneous
 Luminosity:

• 1.8x1031cm-2s-1

BH

unpunptottot RIIR
L

σ
)(−

=
DESY

Hamburg, Germany

H1(ep)
ZEUS (ep)
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HERA LuminosityHERA LuminosityHERA Luminosity

•Total Integrated
 Luminosity since 1992:
 ~193 pb-1

• e-: ~27 pb-1

• e+: ~165 pb-1

•Luminosity upgrade
 recently completed

• 5x increase in Luminosity

• Longitudinal polarization of e

•Starting up now
• Goal: 1 fb-1 by end of 2006

 HERA luminosity 1992 – 2000
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Zeus DetectorZeus DetectorZeus Detector

Electron

27.5GeV
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ZEUS CalorimeterZEUS CalorimeterZEUS Calorimeter

•Depleted Uranium and Scintillator

•99.8% Solid Angle Coverage

•Energy Resolution (single particle test beam)
• Electromagnetic:                    

• Hadronic:

•Measures energy and position of final state particles

η = 0.0  θ = 90.0ο η = −0.75  θ = 129.1οη = 1.1  θ = 36.7ο

η = 3.0  θ = 5.7ο
η = −3.0  θ = 174.3ο

)](ln[tan 2−= θη

Electromagnetic
(EMC) Cells

Hadronic
(HAC) Cells

Pseudorapidity

)(/18.0 GeVE
)(/35.0 GeVE
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Central Tracking DetectorCentral Tracking DetectorCentral Tracking Detector

•Cylindrical Drift Chamber inside 1.43 T Solenoid

•Measures event vertex

•Vertex Resolution
• Transverse (x-y): 1mm

• Longitudinal (z):  4mm

View Along Beam Pipe Side View

e p
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ZEUS TriggerZEUS TriggerZEUS Trigger

•First Level
• Dedicated custom hardware

• Pipelined without deadtime

• Global and regional energy sums

• Isolated µ and e+ recognition

• Track quality information

•Second Level
• Commodity Transputers

• Calorimeter timing cuts (next slide)

• E - pz cuts

• Vertex information

• Simple physics filters

•Third Level
• Commodity processor farm

• Full event info available

• Refined jet and electron finding

• Advanced physics filters

107 Hz Crossing
Rate

105 Hz
Background
Rate

 10 Hz Physics
Rate
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Background Rejection: TimingBackground Rejection: TimingBackground Rejection: Timing

TRCAL
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Kinematic VariablesKinematic VariablesKinematic Variables

•Center of Mass Energy of ep system squared
• s2 = (p+k)2 ~ 4EpEe

•Center of Mass Energy of γp system squared
• W2 = (q+p)2

•Photon Virtuality (4-momentum transfer squared at electron vertex)
• q2 = -Q2 = (k-k’)2

•Fraction of Proton’s Momentum carried by struck quark
• x = Q2/(2p·q)

•Fraction of e’s energy transferred to Proton in Proton’s rest frame
• y = (p·q)/(p·k)

•Variables are related
• Q2 = sxy
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Kinematic ReconstructionKinematic ReconstructionKinematic Reconstruction

                                Measured Quantities: Eh, pz, pT
2

Kinematic ReconstructionKinematic ReconstructionKinematic Reconstruction

x

Q2

y

Jacquet-Blondel Method (Eh, pz, pT
2)Variable
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Jet Finding: Cone AlgorithmJet Finding: Cone AlgorithmJet Finding: Cone Algorithm

•Maximize total ET of hadrons in cone of R=1

•Procedure
• Construct seeds (starting positions for cone)

• Move cone around until a stable position is found

• Decide whether or not to merge overlapping cones

•Advantages:
• Lorentz invariant along z axis

• Conceptually simple

R

Particles close to each other in phase space used to retrace
through hadronization to original parton

22 )()( φη ∆+∆=R
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Jet Finding: Longitudinally
Invariant KT Algorithm

Jet Finding: LongitudinallyJet Finding: Longitudinally
Invariant KInvariant KTT Algorithm Algorithm

•In ep: kT is transverse momentum with respect to beamline

•For every object i and every pair of objects i, j  compute
• d2

i = E2
T,i (distance to beamline in momentum space)

• d2
ij = min{E2

T,i,E
2
T,j}[∆η2 + ∆φ2]1/2 (distance between objects)

• Calculate min{ d2
i , d

2
ij } for all objects

• If d2
ij is the smallest, combine objects i and j into a new object

• If d2
i is the smallest, the object i is a jet

•Advantages:
• No ambiguities (no seed required and no overlapping jets)

• kT distributions can be predicted by QCD

Beamline

j

ddi j
i

dij
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Photoproduction ObservablesPhotoproduction ObservablesPhotoproduction Observables

•xγ:  Fraction of γ momentum involved in collision

• Direct Photoproduction: xγ ~ 1

• Resolved Photoproduction: xγ < 1

•xP:  Fraction of P
        momentum involved in
        hard interaction

xγ
OBS in Photoproduction

e

jets
T

OBS

yE

eE

x
2

∑ −

=

η

γ P

jets
T

OBS

P E

eE

x
2

∑
=

η
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Direct Photoproduction EventDirect Photoproduction EventDirect Photoproduction Event

Jet

Jet
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Resolved Photoproduction EventResolved Photoproduction EventResolved Photoproduction Event

Jet

Jet

γ Remnant
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Model Events: PYTHIA GeneratorModel Events: PYTHIA GeneratorModel Events: PYTHIA Generator

•Parton Level

• LO Matrix Element + Parton Shower

•Hadron Level
• Fragmentation Model

•Detector Level

• Detector simulation
based on GEANT

D
etecto

r S
im

u
latio

n

Parton
Level

Hadron
Level

Factorization:  Long range
interactions below certain scale
absorbed into proton’s structure
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Topology of Rapidity GapsTopology of Rapidity GapsTopology of Rapidity Gaps

•2 jets represented as circles in (η,φ) phase space

• Distance between jet centers: ∆η

• Radius of jet cone: R~1

•Gap indicates color singlet exchange

•No final state particles between jets (Rapidity Gap)

Rapidity
Gap

e

e’

p

photon
JET

JET

pomeron

transfer large
momentum

Jet

Jet

Gap

γ Remnant

p Remnant0

2π

φ

η

R

R

-2.4 2.4
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The Gap FractionThe Gap FractionThe Gap Fraction

ησ
ησ

η
∆

∆
=∆

dd

dd
f

gap

/

/
)(

singletnonsinglet −
+= gapgapgap σσσ

Expectation for Behavior of Gap Fraction
(J. D. Bjorken, V. Del Duca, W.-K. Tang)

fgap
singlet fgap

n-s

fgap

•Non-Singlet:

•Particle production fluctuations � gap

•Non-diffractive exchange

• f(∆η) decreases exponentially with ∆η

Dijet events with
Rapidity Gap

All Dijet Events

2 3 4

•Singlet:

•f(∆η) constant in ∆η
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1994 ZEUS Results1994 ZEUS Results1994 ZEUS Results

•Color singlet exchange not in ZEUS 1994 PYTHIA

•f(∆η) excess at high ∆η suggests singlet contribution

• Excess of Gap Fraction ~ 0.07

• P and γ remnants limit size of measurable gap

Data:

PYTHIA:f(
∆

η
)

f(
∆

η
)

∆η ∆η

Gap Fraction Gap Fraction Fit

Suggests
Color
Singlet
(Diffractive)
Exchange

2 Jets With:

ET > 6GeV,

 η < 2.5,

 ∆η > 2,

|ηavg| < 0.75,

0.15  ≤ y ≤ 0.7
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2002 H1 (ep) Results2002 H1 (ep) Results2002 H1 (ep) Results

•Color Singlet exchange added in PYTHIA and HERWIG
• PYTHIA: γ exchange

• HERWIG: IP exchange

• Now agrees with data at
high ∆η

•Low Statistics for large ∆η

H1 data PYTHIA + γ (x1200)

HERWIG + BFKL

ET
gap < 1.0 GeV

0.03

0.04

0.05

0.06

0.08

0.1

0.2

2.6 2.8 3 3.2 3.4 3.6 3.8

f(
∆

η
)

∆η

Jet Cuts:

  ET
Jet 1 > 6.0 GeV

  ET
Jet 2 > 5.0 GeV

  η1,2 < 2.65

  2.5 < |∆η| < 4.0

165 < Wγp < 233 GeV

Color Singlet
Exchange Added
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Event Selection – 1996 ZEUS DataEvent Selection Event Selection –– 1996 ZEUS Data 1996 ZEUS Data

•|zvtx| < 40cm
• Region of best acceptance

and prediction by MC 

• No Scattered Electron
• Select photoproduction events

•0.2 < yJB < 0.85
• Lower: Remove beam gas

• Upper: Remove DIS events

•FLT
• Total CAL energy > 14 GeV

• Good Track

•SLT
• E-pz > 8.0 GeV

• Eliminates beam gas events
• ET

Box > 8.0 GeV

• Sum of ET in all CAL cells
excluding 1st ring around FCAL
beam pipe

• Ensure energy is not from
proton remnant

• At least one CAL SLT EMC
cluster

• Vert. Tracks/Tot. Tracks > 0.15

•TLT
• >2 jets with ET ≥ 4 GeV, |η| < 2.5

• pz/E < 1.0

Trigger Cuts Offline Cuts

Work done this
summer by P. Ryan
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Jet FindingJet FindingJet Finding

• Jets built using calorimeter cells

• kT Algorithm

• Jets ordered in decreasing ET

• Cuts on Jets:

• ET
Jet 1 > 6 GeV

• ET
Jet 2 > 5 GeV

• |ηJet 1,2| < 2.4

• |∆η| > 2.0 Jets Separated
by a large

rapidity gap~25,000 Events
passed cuts
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Simulation of Event VertexSimulation of Event VertexSimulation of Event Vertex

Position of
interaction
vertex well
simulated.

Important as
anchor of
tracking
reconstruction
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Simulation of yJBSimulation of ySimulation of yJBJB

yJB = (E-pz)/55 GeV
Reweighting
PYTHIA in yJB

may be
necessary

Upper yJB cut

Lower yJB cut
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Jet Distributions: Highest ET JetJet Distributions: Highest EJet Distributions: Highest ETT Jet Jet

Jet
kinematics
and detector
effects well
understood
and simulated

First Jet Ordered in E_t
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ZEUS Data
vs. PYTHIA

Direction
and energy
of produced
partons
understood
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Jet Distributions: 2nd Highest ET

Jet
Jet Distributions: 2Jet Distributions: 2ndnd Highest E Highest ETT

JetJet
Second Jet Ordered in E_t
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Jet
kinematics
and detector
effects well
understood
and
simulated

ET

η

φ

ZEUS Data
vs. PYTHIA

2nd Jet
allows test
of jet
finding
algorithms
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Simulation of ∆ηSimulation of Simulation of ∆η∆η

10

10 2

10 3

10 4

1.5 2 2.5 3 3.5 4 4.5 5

|∆η|

E
ve

nt
s •Validates

• Jet finding

• Hadron models

• Detector
simulation

•Distance in η
between jets well
simulated

• Important for
study of
Rapidity Gaps

∆η
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Direct and Resolved ContributionsDirect and Resolved ContributionsDirect and Resolved Contributions
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Fit of MC to Data
yields:

    43% Direct

    57% Resolved

DirectResolved

xγOBS used to

distinguish

direct and

resolved

Below 0.75 is
resolved
enhanced
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SummarySummarySummary

• Conclusions

• Compare diffractive photoproduction events to pQCD  predictions

• First look at rapidity gaps in ZEUS 1996 Photoproduction Data

• Jet kinematics are well understood and simulated and detector
effects accounted for

• Hard Scale in Soft Process � pQCD applicable for a soft process

• Plans
• First add 1997 Data and then 1999-2000 Data (~160,000 events)

• Measure jet cross-sections and gap fraction

• Understand systematic uncertainties

• Cuts on kinematic variables
• Mixing of direct and resolved PYTHIA contributions
• Calorimeter energy scale
• Use of HERWIG instead of PYTHIA for acceptance corrections


