

Rapidity Gaps in Photoproduction at HERA

Preliminary Examination

Patrick Ryan University of Wisconsin Dec. 17, 2002

Preliminary Exam, Dec. 17, 2002 - 1

Outline of Talk

- Introduction
- HERA and ZEUS
- Photoproduction and Diffraction
- Rapidity Gaps
- Comparisons between Data and MC
- Event Sample and Cuts
- Summary

High Energy Collisions

Particle Scattering

- Particles interact via probe exchange
- Wavelength of probe: $\lambda = h/Q$
 - h: Planck's Constant
 - Q: related to Photon Momentum
 - Smaller wavelength means greater resolution

Lepton-Proton Collisions

- HERA: ep CMS Energy ~ 300 GeV
 - Deep Inelastic Scattering: Q² ~ 40,000 GeV²
- Currently possible to probe to 0.001fm (Proton is 1fm)

- Quarks and Gluons are colored objects called partons
- QCD describes "Strong" Interaction
 - Interactions between partons with strong coupling $\alpha_{\rm s}$
- Interaction mediated by exchange of gluons
 - Process called "Color Flow"
 - Multiple gluons can be exchanged
- Individual quarks have color, but only exist in colorless combinations (hadrons)
 - "Color Confinement"

- •Colored Partons produced in hard scatter
- •Partons undergo hadronization to form colorless hadrons (Fragmentation)

•Colorless collimated "spray" of hadrons called a "Jet"

Particle shower in calorimiter

 observe deposited energy
 observe deposited energy

Photoproduction

General Photoproduction

Direct

- Photon carries very little 4-momentum (Q² ~ 0)
- Photon is almost real
- Most ep events are photoproduction
 - Cross section has 1/Q⁴ dependence
- •Direct: γ couples directly to a parton in proton
- •Resolved:
 - Fluctuation of γ into partonic state
 - parton from γ couples to parton in proton

Resolved

Color Non-Singlet and Singlet Exchange in Resolved γP

•Color Non-Singlet Exchange:

- Jets are color connected to each other
- Gap between jets filled with final state particles
- •Color Singlet Exchange:
 - Jets are not color connected to each other
 - No final state particles between jets (Empty Gap)

Diffraction

•Final state particles preserve quantum numbers of associated initial state particles

Characteristics of Diffraction

- Small momentum transfer
 (t) at P vertex
- Exchange object (Pomeron) has quantum numbers of vacuum
- Absence of particles between P and γ remnants (to follow)

t = (P - P')

Next to Leading Order (NLO)

Leading Order (LO)

•Running of α_{S}

• As scale μ increases, $\alpha_{s}(\mu)$ decreases ($\mu = E_{T}$ or Q)

Perturbative QCD

- Small $\alpha_{s}(\mu)$ (hard scale)
- Series expansion used to calculate observables

Nonperturbative QCD

- Large $\alpha_{s}(\mu)$ (soft scale)
- Series not convergent

Hard Diffractive Scattering in Photoproduction

- Photoproduction: Q² ~ 0
- Diffraction: Absence of particles between jets, low t
- Hard process
 - High jet $E_T \rightarrow$ hard scale
 - Hard QCD inside soft QCD process
 - pQCD applicable to a hard QCD process

HERA Description

DESY Hamburg, Germany •820/920 GeV Protons

- •27.5 GeV e⁻ or e⁺
- •CMS Energy 300/318 GeV
 - Equivalent to 50 TeV fixed target
- •220 bunches
 - Not all filled
- •96 ns crossing time
- Currents:
 - ~90mA protons
 - ~40mA electrons

Instantaneous
 Luminosity:

• 1.8x10³¹cm⁻²s⁻¹

 $L = \frac{R_{tot} - (I_{tot}/I_{unp})R_{unp}}{R_{unp}}$ σ_{BH}

HERA Luminosity

Zeus Detector

- •99.8% Solid Angle Coverage
- •Energy Resolution (single particle test beam)
 - Electromagnetic: $0.18 / \sqrt{E(GeV)}$
 - Hadronic: $0.35/\sqrt{E(GeV)}$
- Measures energy and position of final state particles

- Cylindrical Drift Chamber inside 1.43 T Solenoid
- Measures event vertex
- Vertex Resolution
 - Transverse (x-y): 1mm
 - Longitudinal (z): 4mm

ZEUS Trigger

•First Level

- Dedicated custom hardware
- Pipelined without deadtime
- Global and regional energy sums
- + Isolated μ and e+ recognition
- Track quality information

Second Level

- Commodity Transputers
- Calorimeter timing cuts (next slide)
- E p_z cuts
- Vertex information
- Simple physics filters

Third Level

- Commodity processor farm
- Full event info available
- Refined jet and electron finding
- Advanced physics filters

"Distance" between FCAL and RCAL is ~10ns

Kinematic Variables

- Center of Mass Energy of ep system squared
 - $s^2 = (p+k)^2 \sim 4E_p E_e$
- Center of Mass Energy of yp system squared
 - $W^2 = (q+p)^2$

•Photon Virtuality (4-momentum transfer squared at electron vertex)

• $q^2 = -Q^2 = (k-k')^2$

Fraction of Proton's Momentum carried by struck quark

• $x = Q^2/(2p \cdot q)$

•Fraction of e's energy transferred to Proton in Proton's rest frame

• $y = (p \cdot q)/(p \cdot k)$

Variables are related

• $Q^2 = sxy$

Measured Quantities: E_h , p_z , p_T^2

Variable	Jacquet-Blondel Method (E _h , p _z , p _T ²)
У	$\frac{E_h - p_{z,h}}{2E_e}$
Q ²	$\frac{p_{T,h}^2}{1 - y_{JB}}$
X	$\frac{Q_{JB}^2}{s \cdot y_{JB}}$

Jet Finding: Cone Algorithm

Particles close to each other in phase space used to retrace through hadronization to original parton

$$R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$$

•Maximize total E_T of hadrons in cone of R=1

Procedure

- Construct seeds (starting positions for cone)
- Move cone around until a stable position is found
- Decide whether or not to merge overlapping cones

•Advantages:

- Lorentz invariant along z axis
- Conceptually simple

- In ep: k_T is transverse momentum with respect to beamline
 For every object *i* and every pair of objects *i*, *j* compute
 - $d_{i}^{2} = E_{T,i}^{2}$ (distance to beamline in momentum space)
 - $d_{ij}^2 = \min\{E_{T,i'}^2 E_{T,j}^2\}[\Delta \eta^2 + \Delta \phi^2]^{1/2}$ (distance between objects)
- Calculate min{ d_i^2 , d_{ij}^2 } for all objects
 - If d_{ij}^2 is the smallest, combine objects *i* and *j* into a new object
 - If d_i^2 is the smallest, the object *i* is a jet
- •Advantages:
 - No ambiguities (no seed required and no overlapping jets)
 - + \mathbf{k}_{T} distributions can be predicted by QCD

Rapidity Gaps. Patrick Ryan. Univ. of Wisconsin

Preliminary Exam, Dec. 17, 2002 - 23

Rapidity Gaps. Patrick Ryan. Univ. of Wisconsin

Preliminary Exam, Dec. 17, 2002 - 24

Model Events: PYTHIA Generator

Parton Level

•2 jets represented as circles in (η , ϕ) phase space

- Distance between jet centers: $\Delta \eta$
- Radius of jet cone: R~1
- Gap indicates color singlet exchange

No final state particles between jets (Rapidity Gap)

Color singlet exchange not in ZEUS 1994 PYTHIA
 f(Δη) excess at high Δη suggests singlet contribution

- Excess of Gap Fraction ~ 0.07
- P and γ remnants limit size of measurable gap

Color Singlet exchange added in PYTHIA and HERWIG

ZEUS

Event Selection – 1996 ZEUS Data

Trigger Cuts

- Total CAL energy > 14 GeV
- Good Track
- •SLT

•FLT

- E-p_z > 8.0 GeV
 - Eliminates beam gas events
- $E_T^{Box} > 8.0 \text{ GeV}$
 - Sum of E_T in all CAL cells excluding 1st ring around FCAL beam pipe
 - Ensure energy is not from proton remnant
- At least one CAL SLT EMC cluster
- Vert. Tracks/Tot. Tracks > 0.15
- **•TLT**
 - >2 jets with $E_T \ge 4$ GeV, $|\eta| < 2.5$
 - $p_z/E < 1.0$

Offline Cuts

•lz_{vtx}l < 40cm

- Region of best acceptance and prediction by MC
- No Scattered Electron
 - Select photoproduction events
- •0.2 < y_{JB} < 0.85
 - Lower: Remove beam gas
 - Upper: Remove DIS events

Work done this summer by P. Ryan

Jet Finding

- Jets built using calorimeter cells
- k_T Algorithm
- Jets ordered in decreasing E_T
- Cuts on Jets:
 - $E_T^{Jet 1} > 6 GeV$
 - $E_T^{\text{Jet 2}} > 5 \text{ GeV}$
 - Iη^{Jet 1,2}I < 2.4
 - I∆ηI > 2.0 **-**

~25,000 Events passed cuts

Jet Distributions: Highest E_T Jet

First Jet Ordered in E t

FUS

Simulation of $\Delta \eta$

Δη

Rapidity Gaps. Patrick Ryan. Univ. of Wisconsin

Preliminary Exam, Dec. 17, 2002 - 36

Summary

Conclusions

- Compare diffractive photoproduction events to pQCD predictions
- First look at rapidity gaps in ZEUS 1996 Photoproduction Data
- Jet kinematics are well understood and simulated and detector effects accounted for
- Hard Scale in Soft Process → pQCD applicable for a soft process

• Plans

- First add 1997 Data and then 1999-2000 Data (~160,000 events)
- Measure jet cross-sections and gap fraction
- Understand systematic uncertainties
 - Cuts on kinematic variables
 - Mixing of direct and resolved PYTHIA contributions
 - Calorimeter energy scale
 - Use of HERWIG instead of PYTHIA for acceptance corrections