

Measurement of Event Shapes in Deep Inelastic Scattering with ZEUS at HERA

Adam Everett

Study of Partons

Particle Scattering

- Study charge & magnetic moment distributions
- Scattering via probe exchange

• Wavelength
$$\lambda = \frac{\hbar}{Q}$$
 h : Plank's Constant

Q: related to momentum of photon

- Special Case : Deep Inelastic Scattering
 - High energy lepton transfers momentum to a nucleon via probe

Naïve Quark Parton Model

Scattering on proton is sum of elastic scattering on all of the proton's constituents (partons)

Point-like Partons

Structure Functions: quantify distribution of partons and their momentum Bjorken Scaling: C

$$F_2 = \sum_{i} e_i^2 x f_i(x) \qquad F_i \to F_i(x)$$

Bjorken Scaling: Only x dependence

x related to fraction of momentum carried by quark

Parton Distribution Functions (PDF)

Must be derived from experiment

QCD Theory

Gluons: vector colored bosons carry strong force

- Gluons produce quark and gluon pairs
- Quarks gain transverse momentum

Gluon-driven increase in F₂

⇒Bjorken Scaling Violation:

$$F_i(x) \rightarrow F_i(x,Q^2)$$

⇒Observation of QCD effects

Deep Inelastic Scattering

Center of Mass Energy of ep system squared:

Photon Virtuality (4-momentum transfer squared at electron vertex):

•
$$q^2 = -Q^2 = (k-k')^2$$

Fraction of Proton's Momentum carried by struck quark:

•
$$x_{Bjorken} = Q^2/(2p \cdot q)$$

Fraction of e's energy transferred to Proton in Proton's rest frame:

•
$$y = (p \cdot q)/(p \cdot k)$$

Perturbative and Non-Perturbative QCD

Leading Order (LO)

Lowest Order no α_s vertex

QPM

QCD Compton (initial & final)

Boson gluon fusion

Leading Order (LO) Next to Leading Order (NLO) $A = A_0 + A_1 \alpha_S + A_2 \alpha_S^2 + \dots$

Perturbative: Q² large

Nonperturbative: Q² small

Small α_s (hard scale)

Large α_s (soft scale)

Can expand with α_s

Can't expand in α_s

High energy scale

Low energy scales

⇒Small distances

⇒ Large distances

From Partons to Hadrons

hard scattering ⊗ parton showers ⊗ hadronization

- Hard scattering: hard scale (short distance) perturbative process
- Parton showers: initial QCD radiation of partons from initial partons
- Hadronization: colorless hadrons produced from colored partons soft process (large distance) - not perturbatively calculable phenomenological models and experimental input
- Jets: colored partons evolve into ~collinear "spray" of colorless hadrons

Energy Flow

- The hard scattering process determines the initial distribution of partons
- Parton Shower + Hadronization determine the final energy flow of the event
 - Event shape is energy flow carried by hadrons
- Universality of the hadronization process tested by comparison of measurements of energy flow dependence in reactions with different initial states
 - ep, e⁺e⁻
- Power Corrections (see next slide) offer an opportunity to analytically study hadronization
- Use Event Shapes to check the validity of Power Corrections

Approach to Non-perturbative Calculations

pQCD prediction—phenomenology—measured distribution

Correction factors for non-perturbative (soft) QCD effects

Proposed theory*: Use power corrections to correct for non-perturbative effects in infrared and collinear safe event shape

variable, F:

Used to determine the hadronization corrections $(\alpha_s: not \ an \ input)$

$$\langle F \rangle = \langle F \rangle_{perturbative} + \langle F \rangle_{power correction}$$

$$\langle F \rangle_{pow} = a_V \frac{3MA_1(\alpha_s, \overline{\alpha}_0)}{\pi O}$$

Valid for event shape means and differential distributions

Power correction (PC)

Independent of any fragmentation assumptions

$$\overline{\alpha_0}$$
 = Universal "non-perturbative parameter"
* - (Dokshitzer, Webber, phys. Lett. B 352(1995)451)

HERA Description

- 920 GeV p+
- 27.5 GeV e- or e+
- 318 GeV cms
- Equivalent to 50 TeV Fixed Target

Instantaneous
Iuminosity max:
1.8 x 10³¹ cm⁻²s⁻¹

- 220 bunches
- 96 ns crossing time
 I_P~90mA p
 I_e~40mA e⁺

DESY Hamburg, Germany

ZEUS Detector

Central Tracking Detector

View Along Beam Pipe

Side View

Drift Chamber inside 1.43 T Solenoid Can resolve up to 500 charged tracks Average event has ~20-40 charged tracks Determine interaction vertex of the event Measure number of charged particles (tracks) Region of good acceptance: -1.75 < η < 1.75

$$\eta = -\ln(\tan(\frac{\theta}{2}))$$

Uranium-Scintillator Calorimeter (CAL)

alternating uranium and scintillator plates (sandwich calorimeter)

$$\eta = -3.0 \ \theta = 174.3^{\circ}$$

- compensating equal signal from hadrons and γ / e^{\pm} particles of same energy - e/h = 1
- •energy resolution $\sigma_e/E_e = 18\% / \sqrt{E}$ $\sigma_{\rm b}/E_{\rm b}=35\%$ / \sqrt{E} , E in GeV
- •covers 99.6% of the solid angle in the lab frame

$$\eta = -\ln(\tan(\frac{\theta}{2}))$$

ZEUS Trigger

10⁷ Hz Crossing Rate,10⁵ Hz Background Rate, 10 Hz Physics Rate

- → First Level
 - Dedicated custom hardware
 - Pipelined without deadtime
 - Global and regional energy sums
 - •Isolated μ and e⁺ recognition
 - Track quality information
- **→**Second Level
 - "Commodity" Transputers
 - Calorimeter timing cuts
 - •E p_z cuts
 - Vertex information
 - Simple physics filters
- → Third Level
 - Commodity processor farm
 - Full event info available
 - Refined Jet and electron finding
 - Advanced physics filters

HERA Kinematic Range

$$Q^2 = sxy$$

 $0.1 < Q^2 < 20000 \text{ GeV}^2$
 $10^{-6} < x < 0.9$

Dijet Event

Extraction of α_0 and α_S

Two separate (but related) analyses:

Apply Power Corrections to Event Shape Means vs. Q²

- Measure <F> and compare to pQCD calulcation (NLO) plus power correction (PC)
- Extract α_0 and α_S from fits to means
 - Check consistency to test PC model

Apply Power Corrections to Event Shape Distributions

- Measure F and compare to theoretical calculation plus power correction
- Extract α_0 and α_s from fits to distributions
 - Check consistency to test PC model

Current Hemisphere of the Breit Frame

Current region of Breit frame

- equiv. to single hemisphere e⁺e⁻
- e⁺e⁻: quarks produced back to back with E=√s/2
- DIS: struck quark with E=Q/2
- quark's hadronization products in current hemisphere
- Breit frame great for identifying jets of particles

Particle and Energy Flow

Three classes of event shapes studied in this analysis

- Axis independent
 - Analysis done in current region of Breit frame
 - Invariant jet mass: M²
 - C-Parameter: C
- Axis dependent
 - Analysis done in current region of Breit frame
 - Thrust: T_T , T_{γ}
 - Broadening: B_T, B_γ
- Multi-jet
 - Analysis done in full Breit frame
 - Out-of-plane Momentum: K_{out}
 - Jet transition parameter: y_n

Axis Independent Shapes

0 < S < 1

Sphericity: describes isotropy of energy flow

- Theoretical issue:
 NOT collinear and infrared safe
 - Unusable in DIS

C-Parameter:

 collinear and infrared safe combination of the sphericity eigenvalues

Invariant Jet Mass

$$S = \frac{3}{2} (\lambda_2 + \lambda_3)$$

$$S^{\alpha\beta} = \frac{\sum_{i} p_i^{\alpha} p_i^{\beta}}{\sum_{i} |\vec{p}_i|^2}$$

C Parameter

$$C = \frac{3\sum_{ij} |\vec{p}_i| |\vec{p}_j| \sin^2(\theta_{ij})}{2(\sum_i |\vec{p}_i|)^2}$$

Jet Mass

$$M^{2} = \frac{\left(\sum_{i} p_{i}^{\mu}\right)^{2}}{\left(2\sum_{i} E_{i}\right)^{2}}$$

Thrust in DIS

Linear collimation of hadronic system along a specified ("thrust") axis

T interpretation depends on choice of axis:

• Four Thrusts in DIS: T_{γ} , T_{M} , T_{m} , T_{T}

$$T = \max_{\hat{n}_k} \frac{\sum_{i} |\vec{p}_i \cdot \hat{n}|}{\sum_{i} |\vec{p}_i|}$$

$$\frac{1}{2} \le T_T \le 1$$

$$0 \le T_{\gamma} \le 1$$

Thrust and Sphericity

Collimated

Planar

Isotropic

T _T =1	Increase	T _T =3/4	Increase	T _T =1/2
S=0	Increase	S=1/2	Increase	S=1

Broadening

Broadening of particles in transverse momentum wrt. thrust axis

$$B = \frac{\sum_{i} |\vec{p}_{i} \times \vec{n}|}{\sum_{i} |\vec{p}_{i}|}$$

$$0 \le B \le \frac{1}{2}$$

Jet Finding: Longitudinally Invariant k₁ Algorithm→y₂

In ep: k_T is transverse momentum with respect to beamline

Algorithm

- For every object i and every pair of objects i, j compute
- $d_i = E_{T,i}^2$ (distance to beamline in momentum space)
- $d_{ij} = min\{E_{T,i}^2, E_{2T,j}\}[D_h^2 + D_f^2]$ (distance between objects)
- Calculate min{ d_i, d_{ii} } for all objects
- If (d_{ij}/R^2) is the smallest, combine objects i and j into a new object
 - R is radius in η ϕ space
- If d_i is the smallest, then object i is a jet

Advantages:

k_T distributions can be predicted by QCD

Jet Rate

$$y_n \equiv \min\{d_i, d_j, d_{ij}\}$$

Event Shapes With Jets: Kout

Momentum out of plane

$$K_{out} = \sum_{i} |\vec{p}_{i}|$$

Energy flow out of event plane defined by proton direction and thrust major axis

- Sensitive to perturbative & non-perturbative contributions
- Dijet event:
 - LO dijet pQCD calculation gives K_{out} = 0
 - First contribution to K_{out} is from non-perturbative part or from NLO dijet pQCD calculation

Modeling DIS with Monte Carlo

Next

slide

Event generators use algorithms based on QCD and phenomenological models to simulate DIS events

- Hard subprocess: pQCD
- Parton Cascade
- Hadronization
- Detector Simulation
 - correct for detector effects: finite efficiency, resolutions & acceptances

Parton Cascades

- LO Matrix Element + Parton **Showers (MEPS)**
- Color Dipole Model (CDM)

Next slide

NLO calculations stop here: μ_R

factorizaton scale

 μ_{F}

PDFs

Hadronization Models

- String Fragmentation (Lund)
- Cluster Model

Parton

Level

Hadron Level

Detector Simulation

Monte Carlo models: parton cascades and hadronization

Models for parton cascades:

Parton Shower Model:

 cascade of partons with decreasing virtuality continuing until a cut-off

LEPTO HERWIG

Color Dipole Model:

• Gluons are emitted from the color field between quark-antiquark pairs, supplemented with BGF processes. quark

ARIADNE

Hadronization models:

Lund String Model:

- color "string" stretchedbetween q and q moving apart,
- •string breaks to form 2 color singlet strings, and so on until only on-mass-shell hadrons.

Cluster Fragmentation Model:

- color-singlet clusters of neighboring partons formed
- Clusters decay into hadrons

HERWIG

ZEUS Event Shape Analysis: HERA I Data

Used well studied NC DIS sample of events taken in 1998-00 ~ 82.2 pb⁻¹

Luminosity upgrade in 2003/2004: HERA II

•5x increase in Luminosity

ZEU	# events (10 ⁶)		
Year	HERA	ZEUS on-tape	Physics
e -: 93-94, 98-99	27.37	18.77	32.01
e +: 94-97, 99-00	165.87	124.54	147.55

Inclusive Event Selection

ZEUS 98-00 (82.2 pb⁻¹)

General DIS cuts

- $Q^2_{DA} \ge 80 (100) \text{ GeV}^2$
- $y_{JB} > 0.04$
- $y_{el} < 0.9$
- Vertex with |z| < 40 cm
- 38 < E-p₇ < 60 GeV
- Good positron
 - electron probability > 0.9
 - E_e, > 10 GeV

Additional Requirements •Global Shapes

- $|\eta_{lab}| < 1.75$
- $p_t > 0.15 \text{ GeV}$
 - Use the full tracking acceptance
- Current region multiplicity > 1
- $E_C/Q > 0.25$

•K_{out}

- $|\eta_{lab}| < 2.2$
- $p_t > 0.15 \text{ GeV}$
- $\eta_{Breit} < 3$
 - Select current region
- At least 2 jets in the Breit Frame
- $y_2 > 0.1$

•y₂

- At least 1 particle in Breit frame
- $p_t > 0.15 \text{ GeV}$

Event Shape Means

Apply Power Corrections to Event Shape Means vs. Q²

- Measure <F> and compare to pQCD calculcation (NLO) plus power correction (PC)
 - NLO calculated with DISENT (Seymour and Catani) and DISASTER++ (Graudenz)
- Extract α_0 and α_S from fits to means
 - Check consistency to test PC model

Event Shapes, A. Everett, U. Wisconsin

Kinematic Bins

- •Analysis conducted in 8 bins of Q²
- •Lowest two Q² bins are divided into two bins of x
- •Two studies:
 - Means of each variable in each bin
 - Differential distributions of each variable in each bin

NOTE: multiple x bins at low Q²

Fitted Mean Event Shapes to NLO + Power Correction

Add Power Correction to NLO in order to agree with data

2-parameter NLO + PC fit

- Simultaneous fit for α_s and α_0
- Each shape fit separately

Fits use Hessian method for statistical and systematic errors

 Complete error matrix with error correlations

NLO calculation using DISASTER++

T_γ illustrates PC limitations: x

Systematic Studies

Studies systematic effect of cuts and analysis method on the event shape measurement

$$\delta_{} = \frac{_{systematic} - _{central}}{_{central}}$$

Largest systematic uncertainties:

- Corrected particle energies (1-2%)
- Loosen the particle cuts (2-10%)
- Correct data with HERWIG (LEPTO) (2-10%)

Other systematic uncertainties smaller than the statistical uncertainties.

Extraction of α_0 and α_8 from Mean Event Shapes

Extracted free parameters for each shape

- Fitted α_s values consistent
 - (excluding B_T, T_{γ})
- Fitted α₀
 consistent to
 ~10%
 - (excluding Tγ)

Theory errors dominate, except for γ axis shapes

Differential Distributions: Resummation and Matching

Apply Power Corrections to Event Shape Distributions

- Fit theory prediction to measured F
 - Resummation of next-to-leading log (NLL) corrections for small F
 - Because perturbative radiation is suppressed
 - Match NLL to fixed-order results that are valid at large F
 - Six choices for matching method:
 - M, M2, logR, Mmod, M2mod, logRmod
 - Fit sub-range where calculation is expected to be correct
 - Means were fitted to full range
 - Resummation, Matching, and PC calculated with DISRESUM
- Extract α_0 and α_S from fits to distributions
 - Check consistency to test PC technique

Fit to M², C, T_T Differential Distributions

0.4 1-T_T

Fit of ZEUS 98-00 differential distribution to NLO+NLL+PC

- NLO Calculated with DISPATCH
- Resummation is applied with DISRESUM
- Bins for which theoretical calculations are expected to be questionable are omitted from fit

10¹⁰

ZEUS 98-00

- <Q> = 21 GeV
- <Q> = 29 GeV
- <Q> = 42 GeV
- <Q> = 59 GeV
- <Q> = 82 GeV
- <Q> = 113 GeV
- NLO+Resum.+PC (fitted)
- ----- NLO+Resum.+PC (unfitted)

Fit over this range gives a good χ^2 /dof

0.2

10²

Fit to T_y, B_y Differential Distributions

Fit of ZEUS 98-00 differential distribution to NLO+NLL+PC

- NLO Calculated with DISPATCH
- Resummation is applied with DISRESUM
- Bins for which theoretical calculations are expected to be questionable are omitted from fit

Fit over this range gives a good χ^2/dof

Differential α₀ and α_s Extraction

Extracted free parameters for each shape

- Fitted α_s values consistent
- Fitted α_0 consistent
 - (excluding C)

M2mod matching

Measured Distributions and Means of y₂

event shape: y₂

 Distributions and means measured in bins of (x,Q²)

Compared to NLO (without PC) calculated by DISENT

 Theoretical mechanism for applying Power Correction not yet available

Conclusion: hadronization for y₂ is very small

Measured Distributions and Means of K_{out}

New event shape variable: K_{out}

Distribution and means measured in bins of (x,Q²)

Compared to ARIADNE (LO): parton and hadron level

Theoretical mechanism for applying Power Correction not yet available

Conclusion:

- Hadron level describes data well
- Hadronization effects are significant for K_{out}

Summary

Precise measurement of event shapes in DIS has been done

- Means
 - α_0 and α_s still do not give a self-consistent results for all shapes
- Differential distributions
 - α_0 are consistent within 10% (exclude C) in range 0.4-0.5
 - α_s are in good agreement with the world average
- y₂ and K_{out} await theoretical input

PC technique

- Generally successful
- Suggests importance of higher-order processes

Event Shapes Beyond HERA

Universality of Power Corrections

- Higher energies
- Different kinematic regions
- Test validity in pp collisions

