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Measuring F
L
 at ZEUS

• Description of ZEUS experiment

• ZEUS structure function measurements and 

errors

• Past structure function measurements

• Effect of longitudinal structure function on 

ZEUS structure function measurements

• Importance of a longitudinal structure 

function measurement?

• Theory behind structure functions

• Measured gluon distribution from F2 structure function

• ZEUS longitudinal structure function 

measurement

• Measure cross section at the same x, Q2 but different s

• Conclusions

Outline:
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ZEUS HERA
• ZEUS is a detector on HERA

• HERA is an accelerator ring at DESY lab

• DESY lab is a German national lab in Hamburg

• HERA stands for Hadron Elektron Ring Anlage
• HERA accelerates Proton bunches to 820 GeV and 

Electron bunches to 27 GeV

• Center of mass energy(√s) = 300 GeV

• Equivalent to a 47 TeV fixed target experiment

• de Broglie wavelength ~ 1.5 X10-18 m

• Bunches cross every 96 ns

• Radius of 1 km
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ZEUS
• The ZEUS detector

• The 
Calorimeter
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Tracking
• A solenoid surrounds the tracking chambers 

• The Vertex Detector (VXD) and Central Tracking 
Detector(CTD) are cylindrical drift chambers

• The Solenoid creates a magnetic field of 1.43 T

• Tracking information can be used to check Calorimeter 
energies

• Installing the CTD

• Drift chamber
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The Calorimeter
• The ZEUS calorimeter is made of alternating 

layers of scintillator and depleted uranium
• Uranium is dense - Calorimeter is compact

• Layers are designed so the Calorimeter has a linear 

response to hadrons and electrons to ±3%

• Calorimeter has energy resolution of 35%/√E ±1% for 
hadrons and 17%/√E ±1% for electrons

• ZEUS Calorimeter covers 99.8% of the solid angle

•  Angular resolution of 10 mrad

• Timing resolution is 1 ns  <<  96 ns crossing time
BCAL

RCALFCAL

η = -0.75η = 1.1

η = -log tanθ/2
Range 4.2 > η > -3.5

θ = 0
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Physics studied at ZEUS

• Deep Inelastic Scattering

• Studies structure of the proton

• Sea quark and gluon density

• Scaling violations

• Photoproduction

• Scattering at energies where the photon is almost real

• Studies the structure of the photon

• Resolved and direct process

• Physics seen in Deep Inelastic Scattering and 

Photoproduction
• Jet production

• Rapidity gap events

• Vector meson production

• W±, Zo exchange

• Exotic particles

• Leptoquarks

• Excited quarks
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What is Deep Inelastic Scattering?

e±(k')
e±(k)

(q)
xPp(P)

• Deep Inelastic Scattering is the scattering of a 
lepton from constituents of nucleons at high 
momentum transfer

• The electron-proton interaction is mediated by the exchange 

of a single vector boson (a photon, W± or Zo force carrier)

• W± and Zo collisions are rare at ZEUS energies

• The photon is virtual - it can be polarized transversely or 
longitudinally.

• Jets - clusters of hadrons formed by scattered quarks and 
radiated gluons

The DIS process

Measuring 
DIS at ZEUS

electron proton

electron

jet

proton remnant

Forward Rear

beampipe
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DIS Variables

x = the fraction of the proton's 
momentum carried by the struck parton

e±(k')
e±(k)

(q)
xPp(P)

α

α

y  = the fraction of the electron's 
energy lost in the proton rest frame

s = (k + P)2 = 
The center of mass energy

Q2 = -q2 = -(k-k')2 =
The square of 

the momentum transferred

Q2 = sxy

y = 
P•q
P•k

x = Q2

2P•q
α = electromagnetic 
coupling constant

α



electron

DIS event Q2 = 1600 GeV2

Jet
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Photoproduction

(direct) (resolved)

photon remnant

Jet fragments to 

high energy πo 

which decays to γγ 

γ  shower looks like e

Remnant

Jet

Jet

electron goes down the 

beampipe (low Q2)

photon 
remnant

q

q

q

q

Q2 < 4 GeV2

• Almost real photon

θ > 170°



Photoproduction event
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Jet

Jet

η

φ

Calorimeter 
transverse 

energy

 η φ Cone Jets



 Richard Cross, UW-Madison November, 1995

DIS Backgrounds

• Backgrounds at ZEUS are 

beam-gas interactions (100 kHz), 

cosmic rays (1 kHz) and electronic 

noise (> 0.1 kHz).

• Beam crossings every 96 ns.

• Events pipelined over 5 µs.

Beam-gas event

Energy deposit in RCAL 
mimics electron

FCAL deposit mimics    
current jet

Incoming 
proton

RCALFCAL



Cosmic background event
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The ZEUS data acquisition chain
• Pipeline all events
• Discard background events
• Select DIS and photoproduction 

events
• Loose cuts at FLT are tightened at 

SLT and TLT
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Trigger rates

• ZEUS uses a 3 level trigger.
• The Global First Level Trigger(GFLT) triggers at the rate of 

1 kHz and digitizes the events in 46 crossings.

• Global Second Level Trigger(GSLT) triggers at 100 Hz.

• Third Level Trigger SGI farm reduces the rate to 5 Hz, or a 
data rate of 500 kilobytes/s.
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The CFLT - electron ID

• The Calorimeter First Level Trigger(CFLT) has 

the primary responsibility for getting the First 

Level Trigger below 400Hz.

• Searches for isolated electrons in Calorimeter cells.

• If the electromagnetic energy in a Calorimeter cell is above 

a threshold and HAC/EMC < 0.25, an isolated electron 

trigger bit is set.

• The isolated electron trigger is essential for measuring 

structure functions.

• The Calorimeter First Level Trigger calculates regional and 

global total energy, E
tot

, and the missing transverse energy 

E
Tmiss

 from E
x
 and E

y
.

EMC   

EMC   ↑
HAC   HAC   20 cm

EMC   ↓

EMC   
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Online presenter

• As data is taken, the online presenter 
calculates trigger efficiency vs simulated trigger 
efficiency
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DIS trigger - further cuts

• Calorimeter

• The Trigger finds electrons by looking for isolated 

electromagnetic energy deposits.

• The Calorimter First Level Trigger looks at cells in the 

Calorimeter that have energy above the electron energy 

threshold.

• If one of these regions is surrounded by quiet bits, we send 

the Global First Level Trigger an isolated electron signal.

• Isolated electron trigger allows us to set lower electron 

energy threshold.

• Tracking

• The CTD and VXD veto the event if there is no track in the 

whole detector.  Triggers on a jet track.
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Offline electron identification

• Isolated electron signature is

• Energy deposit in Electromagnetic Calorimeter cells

• Above a threshold - currently 5 GeV

• Contained in a few Calorimeter cells

• Tracking curve can be used to check energy

• Tracks leading to interaction point

• Primary electron finder - neural net.

• The experiment has several cluster finders.

• UW group is working on an electron finder that 

will be tuned to lower energies to measure FL.
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Kinematic reconstruction

• x,y,Q2 reconstructed from set of observables
• 2 independent variables - 4 observables

• Electron energy, electron angle

• Summed hadronic jet energy, jet angle

• Electron Method
• Reconstructed from scattered electron energy, angle θ

• Good resolution in x at low Q2

• Sensitive to miscalibrations

• yelectron  = 1 - E'/2E(1 - cosθ)

• Qelectron = 2EE'(1 + cosθ)

• xelectron  = (E/P)*E(1 + cosθ)/(2E -E'(1-cosθ))

• Double Angle method
• Reconstructed from electron angle, hadronic jet angle

• Depends only on ratios of energies

• Better mean resolution over whole x-Q2 plane

• Weakly affected by miscalibrations

• yθγ  = sinθ(1 - cosγ)/(sinθ + sinθ - sin(θ + γ)

• Qθγ = 4E2 sinθ(1 + cosγ)/(sinθ + sinθ - sin(θ + γ)

• xθγ  = (E/P)*(sinθ + sinθ + sin(θ + γ)/(sinθ + sinθ - sin(θ + γ)

2

2

γ
θ PE

E'
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ZEUS x-Q2 range
• ZEUS covers a much greater range of x-Q2 

than any previous experiment
• ZEUS x-Q2 range now overlaps earlier 

experiments because of new components
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DIS cross section

DIS photon differential cross section
  d2σ           2πα2

             =            [Y+ F2(x,Q2) - y2FL(x,Q2)] (1+δr)
dxdQ2         xQ4

Virtual photon can be longitudinally or transversely polarized

F2(x,Q2) = Structure function gives the interaction between 
transversely polarized photons and spin 1/2 partons.  This is the 
charge weighted sum of the quark distributions.

FL(x,Q2) = Structure function that gives the cross section due to 
longitudinally polarized photons that interact with the proton.  
The partons that interact have transverse momentum. 
 

  Q2 = -(k - k')2 = -q2 = sxy          x = Q2 / 2P•q     

  y = P•q / P•k
                                       

    Y±= 1 ± (1 - y)2

  δr = radiative corrections

e±(k')e±(k)

p(P)

α

α

γ∗(q)

Jet
Jet
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Parton model

• Bjorken Scaling

• x - fraction of proton momentum carried by 

the struck quark

• No parton - parton interactions

• Parton has no transverse momentum

• F2 = F2(x)

• No longitudinal collisions

•
• Charge weighted sum of quark distributions

α α

Before

± 1 +  1
2

= ± 1
2

After

0 + 1
2

≠ ± 1
2

Transverse
Collisions
Allowed

Longitudinal
Collisions
Forbidden

F2(x) = x ei
2

i
∑ qi (x)

Lz
Lz

Infinite momentum frame

• Parton Distribution Functions describe sharing 

nucleon's momentum among constituents

• But scaling is violated...
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QCD

• Transverse momentum for quarks 
generated due to parton interactions

• Causes scaling violation

        α
s
(Q2)x2      dz   8

F
L
 =                             F

2
(z,Q2) + 4Σe

q
2(1-x/z) xg(z,Q2)

    2π          z3   3
 ∫

F2(x,Q2) = x ei
2

i
∑ qi (x,Q2 )

Extraction of F
2
 requires knowledge of F

L
.

The existing measurements use these QCD 
inspired calculations of F

L
 to obtain F

2
.

α

α

α
s

QCD Compton

γ∗
α

sα

α
γ∗

Boson-Gluon Fusion

electron electron

gluon

gluon

q
q

q

x
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Boson Gluon fusion

p(P)

α

α

γ∗(q)

α
s

gluon

electron

Jet 2

Jet 1

Lab frame

proton remnant

αs

αs = strong 
coupling constant

e±(k')
e±(k)

Jet 1

Jet 2

Jet
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QCD Compton

Suppressed by αs

e±(k')
e±(k)

xP

p(P)

α

α α
s

γ∗(q)

electron

Gluon 
jet

Quark jet

Lab frame

Remnant   
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Extracting F
2

• Bin data in x, Q2

• Subtract background

• Cross section multiplied by QCD FL 

calculation using existing parameterizations 

of q(x,Q2) and G(x,Q2)

• Acceptance estimated from Monte Carlo

• F2 unfolded iteratively until MC matches 

data

• Estimate Systematic Error 
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F
2
 results - increase at low x!

• GRV94 PDF - xq(x,Q2) -> 0 as x ->0
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Scaling Violations

Q2 Dependence with GRV94

1

2

F
2

x = 5.0e-5 x = 1.2e-4 x = 2.0e-4

1

2

x = 3.54e-4

F
2

x = 4.5e-4 x = 8.00e-4

1

2

1 10 100

x = 1.20e-3

Q2

F
2

1 10 100

x = 4.03e-3

Q2

ZEUS(prelim)

H1(prelim)

E665

• Slope gets steeper as x decreases
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Extracting gluon Density
• G(x,Q2) = xg(x,Q2) from  dF2(x,Q2)/dlnQ2

• QCD interactions ∝ ln(Q2)
• Given by DGLAP equations (LO) QCD

• DGLAP - Dokshitzer-Gribov-Lipatov-Altarelli-Parisi

• Prytz method:
• Neglect quark term (Pqq)

• Approximate G(x,Q2) −  

• Ellis-Kunszt-Levin (EKL) method:
• solution to DGLAP equations in momentum space

• include quark term

• assume functional form of x-          for F2 and G

• predict       of G(x,Q2)

dF2( x

2
,Q2 )

dlnQ2 ≈ 10αs (Q2 )
27π

G(x,Q2 )

Splitting functions

P
qq P

qg

ωo

ωo 

dF2(x,Q2 )
dlnQ2 = αs (Q2 )

2π
[

dy
yx

1
∫ Pqq (

x
y

)F2(y,Q2 ) + 2 ef
dy
yx

1
∫ (

x
y

)Pqg(
x
y

)yg(y,Q2 )]
f
∑
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Gluon distribution

ZEUS 1993
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• MRSD' - singular gluon distribution
• MRSD' - constant gluon distribution
• αs = .203 ± .010 at Q2 = 20 GeV2

• DGLAP fit - x

-
0

-.33
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F
L
 Correction to 1993 Data

• Estimated FL correction is large for low x.

• Statistical uncertainty will be ~1% by 1995.

• Systematic uncertainty from other sources 

dominate published 1993 data.

• In the future, dominant uncertainty will be 

due to FL.
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Systematic uncertainty of F
2
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Systematic Uncertainties

• Better electron finder reduces background 

while improving efficiency.

• New detectors improve acceptance, position 

and energy resolution making electron method 

more viable.

• Hadron variable uncertainty is removed by 

using electron method.

• Radiative correction and other unfolding 

uncertainties will improve by iterating with 

measured F2.

• So, systematic error in high y bins will reduce 

substantially due to all causes except FL.
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Uncertainty in F
2
 slope due to F

L

Q2 GeV

F
2

F2 vs lnQ2 for FL=0, FL=FL
QCD, FL=F2

1

1.25

1.5

1.75

2

2.25

2.5

2.75

8 9 10 20 30 40 50

dF2/dlnQ2     Prytz:xG(2x,Q2)    x = 8.5 10-4

0.393±0.033    16.45±1.396

0.453±0.034    18.95±1.452

0.601±0.038    25.12±1.602

• Slopes in F
2
 vs lnQ2 enable 

measurement of gluon.
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Effect of FL on Prytz gluon distribution
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ZEUS 1993 data

Lowest x point unpublished

Only statistical uncertainty shown on points

Systematic uncertainty limits due to

FL assumptions are shown and are seen

to dominate particularly at small x

Effect of F
L
 on gluon distribution

R ≈ F
L
 / (F

2
 - F

L
)

• Lack of knowledge of R dominates the systematic uncertainty in 
xG(x,Q2).

• In Prytz's method, illustrated here, one can tune the central 
values by varying the input gluon distribution which constrains 
the R(x,Q2).

• QCD analysis, using d2σ/dxdQ2, i.e., fitting quark and gluon 
simultaneously, assumes that F

L
 is calculable.  
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Past F
2
 & F

L
 measurements

• Fixed target

• F
L
 - SLAC electron beam - 4-20 GeV

• F
2
 - 
• CERN

• BCDMS EMC NMC SMC - muon beam - 100-280 GeV

• Minimum x of .05 at Q2 = 20 GeV2

• CDHSW CHARM - neutrino beam - 100-280 GeV

• FNAL

• CCFR - 30-600 GeV

• E665 - 490 GeV

• Minimum x of .02 at  Q2 = 20 GeV2

• 10-2 < x < .9 

• .1 < Q2 < 200 GeV2

• ZEUS

• 10-5 < x < .1

• 1 < Q2 < 5000 GeV2

• FL not verified in ZEUS kinematic range.

• Where FL is best measured QCD prediction 
does not explain the data
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Data and QCD fits at Q2=5 GeV2

R vs x at Q2 = 5 (GeV/c)2
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x

• How good is FL calculation 
in ZEUS x < 10-3 range?

R ≈ F
L
 / (F

2
 - F

L
)

R is not well understood in ZEUS kinematic region

PDFs
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ZEUS F
L
 measurement method

• Measure dσ/dxdQ2 in same x,Q2 bins at two 
different values of s -> Q2 = sxy

• Straight line fit yields R = slope/intercept
• To measure R = 0 ± 0.1 requires measuring 

cross section to 3% with ε separation of 0.3

Example R fit

0.7

0.8

0.9

1

1.1

1.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

∆ε = 0.3

∆σ = 2%

R = 0.42 ± 0.16

ε

1/
Γ 

d2 σ/
dx

dQ
2

  1     d2σ           
                  =   [σ

T
(x,Q2) + ε σ

L
(x,Q2)](1+δ

r
)

  Γ   dxdQ2
     

ε ≈ (1 - y) / (1 - y + y2/2)      
ε is the polarization of the virtual photon

R = σ
L
 / σ

T
 ≈ 

F
L
 / (F

2
 - F

L
)
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F
L
 Experimental issues

• Must change s to get FL

• Luminosity is lower at lower √s

• Conflicts with other measurements/searches

• Lower electron or proton beam energy

• At lower electron energies, electron ID is more difficult

• Photoproduction background - same as at high proton 

beam energy

• Electron and proton energies are still being optimized, 

but if other systematic errors remain at 5% either choice 

is fine.

• Best points for gluon density are at high y - 

low electron energy

• Look most like photoproduction

• Low transverse energy - hard to id
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Variation of luminosity with energy
Luminosity vs machine energy
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L = 15 × (E / 775)2 for E < 775 GeV

• HERA tuned to run best at 30/820

• 15 pb-1 nominal - 5 pb-1 lower
• 500 GeV run will give a third as much data
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Lowering proton energy
Statistical uncertainty in R at P = 820, 500 GeV for L = 15, 5 pb-1
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Statistical uncertainty (∆R/R %) is shown
Kinematic resolution effects are not included
but finder acceptance is folded in.

• Binning chosen to ensure 100 % 

overlap at two energy settings

• Maximizes ε reach and acceptance
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Conclusions

• ZEUS can measure a new kinematic range 

of x, Q2

• F
L
 error to F

2
 is large in low x, Q2 range

• F
2
 can be used extract the gluon distribution

• Low x, Q2 range is most sensitive to gluon distribution

• FL measurement will test constant vs singular gluon 

models

• We can measure F
L
 by changing √s (center 

of mass energy) and measuring the cross 

section at the same x, Q2 points as old √s

• Lowering proton or electron energy to make 

an F
L
 measurement will reduce our F

2
 and 

gluon errors
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