Deep inelastic scattering at ZEUS/HERA

Measurement of F_L, the longitudinal structure function

Measuring F, at ZEUS

Outline:

- Description of ZEUS experiment
- ZEUS structure function measurements and errors
 - Past structure function measurements
- Effect of longitudinal structure function on ZEUS structure function measurements
- Importance of a longitudinal structure function measurement?
 - Theory behind structure functions
 - Measured gluon distribution from F₂ structure function
- ZEUS longitudinal structure function measurement
 - Measure cross section at the same x, Q2 but different s
- Conclusions

ZEUS HERA

ZEUS is a detector on HERA

- HERA is an accelerator ring at DESY lab
- DESY lab is a German national lab in Hamburg

HERA stands for Hadron Elektron Ring Anlage

- HERA accelerates Proton bunches to 820 GeV and Electron bunches to 27 GeV
- Center of mass energy(\sqrt{s}) = 300 GeV
- Equivalent to a 47 TeV fixed target experiment
- de Broglie wavelength ~ 1.5 X10⁻¹⁸ m
- Bunches cross every 96 ns
- Radius of 1 km

ZEUS

The ZEUS detector

The Calorimeter

Richard Cross, UW-Madison

Tracking

- A solenoid surrounds the tracking chambers
 - The Vertex Detector (VXD) and Central Tracking Detector(CTD) are cylindrical drift chambers
 - The Solenoid creates a magnetic field of 1.43 T
 - Tracking information can be used to check Calorimeter energies

Installing the CTD

Drift chamber

The Calorimeter

- The ZEUS calorimeter is made of alternating layers of scintillator and depleted uranium
 - Uranium is dense Calorimeter is compact
 - Layers are designed so the Calorimeter has a linear response to hadrons and electrons to ±3%
 - Calorimeter has energy resolution of 35%/√E ±1% for hadrons and 17%/√E ±1% for electrons
 - ZEUS Calorimeter covers 99.8% of the solid angle
 - Angular resolution of 10 mrad
 - Timing resolution is 1 ns << 96 ns crossing time

Physics studied at ZEUS

Deep Inelastic Scattering

- Studies structure of the proton
- Sea quark and gluon density
- Scaling violations

Photoproduction

- Scattering at energies where the photon is almost real
- Studies the structure of the photon
- Resolved and direct process
- Physics seen in Deep Inelastic Scattering and

Photoproduction

- Jet production
- Rapidity gap events
- Vector meson production
- W[±], Z^o exchange
- Exotic particles
 - Leptoquarks
 - Excited quarks

What is Deep Inelastic Scattering?

- Deep Inelastic Scattering is the scattering of a lepton from constituents of nucleons at high momentum transfer
 - The electron-proton interaction is mediated by the exchange of a single vector boson (a photon, W[±] or Z^o force carrier)
 - W[±] and Z^o collisions are rare at ZEUS energies
 - The photon is virtual it can be polarized transversely or longitudinally.
 - Jets clusters of hadrons formed by scattered quarks and radiated gluons

The DIS process

Richard Cross, UW-Madison

DIS Variables

$$s = (k + P)^2 =$$

The center of mass energy

$$Q^2 = -q^2 = -(k-k')^2 =$$

The square of the momentum transferred

$$X = \frac{Q^2}{2P \cdot q}$$

$$y = \frac{P \cdot k}{P \cdot q}$$

x = the fraction of the proton'smomentum carried by the struck parton

y = the fraction of the electron'senergy lost in the proton rest frame

$$Q^2 = sxy$$

DIS event $Q^2 = 1600 \text{ GeV}^2$

Photoproduction

Almost real photon

Photoproduction event

DIS Backgrounds

- Backgrounds at ZEUS are beam-gas interactions (100 kHz), cosmic rays (1 kHz) and electronic noise (> 0.1 kHz).
 - Beam crossings every 96 ns.
 - Events pipelined over 5 μ s.

Energy deposit in RCAL mimics electron FCAL deposit mimics current jet

Cosmic background event

The ZEUS data acquisition chain

- Pipeline all events
- Discard background events
- Select DIS and photoproduction events
- Loose cuts at FLT are tightened at SLT and TLT

Trigger rates

ZEUS uses a 3 level trigger.

- The Global First Level Trigger(GFLT) triggers at the rate of 1 *kHz* and digitizes the events in 46 crossings.
- Global Second Level Trigger(GSLT) triggers at 100 Hz.
- Third Level Trigger SGI farm reduces the rate to 5 *Hz*, or a data rate of 500 *kilobytes/s*.

The CFLT - electron ID

- The Calorimeter First Level Trigger(CFLT) has the primary responsibility for getting the First Level Trigger below 400Hz.
 - Searches for isolated electrons in Calorimeter cells.
 - If the electromagnetic energy in a Calorimeter cell is above a threshold and HAC/EMC < 0.25, an isolated electron trigger bit is set.
 - The isolated electron trigger is essential for measuring structure functions.
 - The Calorimeter First Level Trigger calculates regional and global total energy, E_{tot} , and the missing transverse energy E_{Tmiss} from E_x and E_y .

Online presenter

 As data is taken, the online presenter calculates trigger efficiency vs simulated trigger efficiency

DIS trigger - further cuts

Calorimeter

- The Trigger finds electrons by looking for isolated electromagnetic energy deposits.
- The Calorimter First Level Trigger looks at cells in the Calorimeter that have energy above the electron energy threshold.
- If one of these regions is surrounded by quiet bits, we send the Global First Level Trigger an isolated electron signal.
- Isolated electron trigger allows us to set lower electron energy threshold.

Tracking

 The CTD and VXD veto the event if there is no track in the whole detector. Triggers on a jet track.

Offline electron identification

- Isolated electron signature is
 - Energy deposit in Electromagnetic Calorimeter cells
 - Above a threshold currently 5 GeV
 - Contained in a few Calorimeter cells
 - Tracking curve can be used to check energy
 - Tracks leading to interaction point
- Primary electron finder neural net.
- The experiment has several cluster finders.
- UW group is working on an electron finder that will be tuned to lower energies to measure F₁.

Kinematic reconstruction

- x,y,Q² reconstructed from set of observables
- 2 independent variables 4 observables
 - Electron energy, electron angle
 - Summed hadronic jet energy, jet angle

Electron Method

- Reconstructed from scattered electron energy, angle θ
- Good resolution in x at low Q²
- Sensitive to miscalibrations

•
$$y_{electron} = 1 - E'/2E(1 - \cos\theta)$$

•
$$Q_{electron} = 2EE'(1 + \cos\theta)$$

•
$$x_{electron} = (E/P)*E(1 + \cos\theta)/(2E - E'(1-\cos\theta))$$

Double Angle method

- Reconstructed from electron angle, hadronic jet angle
- Depends only on ratios of energies
- Better mean resolution over whole x-Q² plane
- Weakly affected by miscalibrations

•
$$y_{\theta \gamma} = \sin\theta (1 - \cos\gamma)/(\sin\theta + \sin\theta - \sin(\theta + \gamma))$$

•
$$Q_{\theta \gamma}^2 = 4E^2 \sin\theta (1 + \cos\gamma)/(\sin\theta + \sin\theta - \sin(\theta + \gamma))$$

$$\bullet \, x_{\theta \gamma} \, = (\mathsf{E}/\mathsf{P})^* (\sin \theta \, + \, \sin \theta \, + \, \sin (\theta \, + \, \gamma) / (\sin \theta \, + \, \sin \theta \, - \, \sin (\theta \, + \, \gamma)$$

ZEUS x-Q² range

- ZEUS covers a much greater range of x-Q² than any previous experiment
- ZEUS x-Q² range now overlaps earlier experiments because of new components

DIS cross section

DIS photon differential cross section

$$\frac{d^{2}\sigma}{dxdQ^{2}} = \frac{2\pi\alpha^{2}}{xQ^{4}} [Y_{+} F_{2}(x,Q^{2}) - y^{2}F_{L}(x,Q^{2})] (1+\delta_{r})$$

Virtual photon can be longitudinally or transversely polarized

 $F_2(x,Q^2)$ = Structure function gives the interaction between transversely polarized photons and spin 1/2 partons. This is the charge weighted sum of the quark distributions.

 $F_L(x,Q^2)$ = Structure function that gives the cross section due to longitudinally polarized photons that interact with the proton. The partons that interact have transverse momentum.

$$Q^{2} = -(k - k')^{2} = -q^{2} = sxy$$
 $x = Q^{2} / 2P \cdot q$
 $y = P \cdot q / P \cdot k$ $Y_{+} = 1 \pm (1 - y)^{2}$

 $\delta_{\mathbf{r}}$ = radiative corrections

Parton model

Bjorken Scaling

- x fraction of proton momentum carried by the struck quark
- No parton parton interactions
- Parton has no transverse momentum
- $\bullet \, \mathsf{F_2} = \mathsf{F_2}(\mathsf{x})$
- No longitudinal collisions
- $F_2(x) = x \sum_i e_i^2 q_i(x)$
- Charge weighted sum of quark distributions

Infinite momentum frame

- Parton Distribution Functions describe sharing nucleon's momentum among constituents
- But scaling is violated...

QCD

- Transverse momentum for quarks generated due to parton interactions
- Causes scaling violation

$$F_2(x,Q^2) = x \sum_{i} e_i^2 q_i(x,Q^2)$$

Extraction of F₂ requires knowledge of F_L.

The existing measurements use these QCD inspired calculations of F_L to obtain F_2 .

Boson Gluon fusion

Richard Cross, UW-Madison November, 1995

QCD Compton

Richard Cross, UW-Madison November, 1995

Extracting F₂

- Bin data in x, Q²
- Subtract background
- Cross section multiplied by QCD F_L
 calculation using existing parameterizations
 of q(x,Q²) and G(x,Q²)
- Acceptance estimated from Monte Carlo
- F₂ unfolded iteratively until MC matches
 data
- Estimate Systematic Error

F, results - increase at low x!

• GRV94 PDF - $xq(x,Q^2) -> 0$ as x -> 0

Scaling Violations

Slope gets steeper as x decreases

Q² Dependence with GRV94

Richard Cross, UW-Madison November, 1995

Extracting gluon Density

- $G(x,Q^2) = xg(x,Q^2)$ from $dF_2(x,Q^2)/dlnQ^2$
- QCD interactions ∞ In(Q²)
- Given by DGLAP equations (LO) QCD
 - DGLAP Dokshitzer-Gribov-Lipatov-Altarelli-Parisi

$$\frac{dF_2(x,Q^2)}{d\ln Q^2} = \frac{\alpha_s(Q^2)}{2\pi} \left[\int_{x}^{1} \frac{dy}{y} P_{qq}(\frac{x}{y}) F_2(y,Q^2) + 2\sum_{f} e_f \int_{x}^{1} \frac{dy}{y} (\frac{x}{y}) P_{qg}(\frac{x}{y}) yg(y,Q^2) \right]$$

Splitting functions

- Prytz method:
 - Neglect quark term (P_{qq})
 - Approximate G(x,Q²) –

$$\frac{\mathrm{dF}_2(\frac{x}{2}, Q^2)}{\mathrm{dln}Q^2} \approx \frac{10\alpha_s(Q^2)}{27\pi}G(x, Q^2)$$

- Ellis-Kunszt-Levin (EKL) method:
 - solution to DGLAP equations in momentum space
 - include quark term
 - assume functional form of $x^{-\omega_0}$ for F_2 and G
 - predict ω_o of $G(x,Q^2)$

Gluon distribution

- MRSD^L singular gluon distribution
- MRSD₁ constant gluon distribution
- $\alpha_s = .203 \pm .010$ at $Q^2 = 20 \text{ GeV}^2$ DGLAP fit $x^{-.33}$

F, Correction to 1993 Data

x = .00042 Correction

x = .00085 Correction

x = .0016 Correction

- Estimated F₁ correction is large for low x.
- Statistical uncertainty will be ~1% by 1995.
- Systematic uncertainty from other sources dominate published 1993 data.
- In the future, dominant uncertainty will be due to F_L.

Systematic uncertainty of F₂

• 1993 systematics

Systematic Uncertainties

- Better electron finder reduces background while improving efficiency.
- New detectors improve acceptance, position and energy resolution making electron method more viable.
- Hadron variable uncertainty is removed by using electron method.
- Radiative correction and other unfolding uncertainties will improve by iterating with measured F₂.
- So, systematic error in high y bins will reduce substantially due to all causes except F₁.

Uncertainty in F₂ slope due to F_L

$$F_2$$
 vs lnQ^2 for $F_L=0$, $F_L=F_L^{QCD}$, $F_L=F_2$

 Slopes in F₂ vs lnQ² enable measurement of gluon.

Effect of F, on gluon distribution

Effect of F₁ on Prytz gluon distribution

 $R \approx F_L / (F_2 - F_L)$

- Lack of knowledge of R dominates the systematic uncertainty in xG(x,Q²).
- In Prytz's method, illustrated here, one can tune the central values by varying the input gluon distribution which constrains the R(x,Q²).
- QCD analysis, using $d^2\sigma/dxdQ^2$, i.e., fitting quark and gluon simultaneously, assumes that $F_{_L}$ is calculable.

Richard Cross, UW-Madison November, 1995

Past F₂ & F_L measurements

- Fixed target
- F_I SLAC electron beam 4-20 GeV
- F₂ -
 - CERN
 - BCDMS EMC NMC SMC muon beam 100-280 GeV
 - Minimum x of .05 at $Q^2 = 20 \text{ GeV}^2$
 - CDHSW CHARM neutrino beam 100-280 GeV
 - FNAL
 - CCFR 30-600 GeV
 - E665 490 GeV
 - Minimum x of .02 at $Q^2 = 20 \text{ GeV}^2$
 - $10^{-2} < x < .9$
 - \bullet .1 < Q^2 < 200 GeV²
- ZEUS
 - $\bullet 10^{-5} < x < .1$
 - $1 < Q^2 < 5000 \text{ GeV}^2$
- F, not verified in ZEUS kinematic range.
- Where F_L is best measured QCD prediction does not explain the data

Data and QCD fits at Q²=5 GeV²

 How good is F_L calculation in ZEUS x < 10⁻³ range?

R

R vs x at
$$Q^2 = 5 (GeV/c)^2$$

$$R \approx F_L / (F_2 - F_L)$$

X

R is not well understood in ZEUS kinematic region

ZEUS F, measurement method

Example R fit

$$\frac{1}{\Gamma} \frac{d^2\sigma}{dxdQ^2} = \frac{\left[\sigma_T(x,Q^2) + \epsilon \sigma_L(x,Q^2)\right](1+\delta_r)}{\epsilon \approx (1-y)/(1-y+y^2/2)} = \frac{R = \sigma_L/\sigma_T \approx F_L/(F_2-F_L)}{\epsilon \text{ is the polarization of the virtual photon}}$$

- Measure $d\sigma/dxdQ^2$ in same x,Q² bins at two different values of s -> Q² = sxy
- Straight line fit yields R = slope/intercept
- To measure R = 0 \pm 0.1 requires measuring cross section to 3% with ϵ separation of 0.3

F_L Experimental issues

- Must change s to get F_L
 - Luminosity is lower at lower √s
 - Conflicts with other measurements/searches
- Lower electron or proton beam energy
 - At lower electron energies, electron ID is more difficult
 - Photoproduction background same as at high proton beam energy
 - Electron and proton energies are still being optimized,
 but if other systematic errors remain at 5% either choice is fine.
- Best points for gluon density are at high y low electron energy
 - Look most like photoproduction
 - Low transverse energy hard to id

Variation of luminosity with energy

Luminosity vs machine energy

- HERA tuned to run best at 30/820
- 15 pb⁻¹ nominal 5 pb⁻¹ lower
- 500 GeV run will give a third as much data

Richard Cross, UW-Madison November, 1995

Lowering proton energy

Statistical uncertainty in R at P = 820, 500 GeV for L = 15, 5 pb^{-1}

- Binning chosen to ensure 100 % overlap at two energy settings
- Maximizes ε reach and acceptance

Conclusions

- ZEUS can measure a new kinematic range of x, Q²
- F_L error to F₂ is large in low x, Q² range
- F₂ can be used extract the gluon distribution
 - Low x, Q² range is most sensitive to gluon distribution
 - F_L measurement will test constant vs singular gluon models
- We can measure F_L by changing \sqrt{s} (center of mass energy) and measuring the cross section at the same x, Q^2 points as old \sqrt{s}
- Lowering proton or electron energy to make an F_L measurement will reduce our F₂ and gluon errors