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Outline of TalkOutline of TalkOutline of Talk

• Introduction
• HERA and ZEUS
• Photoproduction and Diffraction
• Rapidity Gaps
• Comparisons between Data and MC
• Event Sample and Cuts
• Summary
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High Energy CollisionsHigh Energy CollisionsHigh Energy Collisions
•Particle Scattering

• Particles interact via probe exchange
• Wavelength of probe: λ = h/Q

• h: Planck’s Constant   
• Q: related to Photon Momentum
• Smaller wavelength means greater resolution

•Lepton-Proton Collisions
• HERA: ep CMS Energy ~ 300 GeV

• Deep Inelastic Scattering: Q2 ~ 40,000 GeV2

• Currently possible to probe to 0.001fm (Proton is 1fm)
probe

lepton

probe

lepton
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Quark Parton Model and QCDQuark Quark PartonParton Model and QCDModel and QCD

• Quarks and Gluons are colored objects 
called partons

• QCD describes “Strong” Interaction
• Interactions between partons with strong coupling αs

• Interaction mediated by exchange of gluons
• Process called “Color Flow”
• Multiple gluons can be exchanged

• Individual quarks have color, but only exist 
in colorless combinations (hadrons)

• “Color Confinement”
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JetsJetsJets

•Colored Partons produced in hard scatter
•Partons undergo hadronization to form colorless hadrons 
(Fragmentation)
•Colorless collimated “spray” of hadrons called a “Jet”
•Hadronization in calorimiter observe deposited energy

What is Produced What is Observed in Detector

“Hadron
Level” “Detector 

Level”
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PhotoproductionPhotoproductionPhotoproduction

•Photon carries very little 4-momentum (Q2 ~ 0)
•Photon is almost real
•Most ep events are photoproduction

• Cross section has 1/Q4 dependence
•Direct: γ couples directly to a parton in  proton
•Resolved: 

• Fluctuation of γ into partonic state
• parton from γ couples to parton in proton

General Photoproduction Direct Resolved
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Color Non-Singlet and Singlet 
Exchange in Photoproduction
Color NonColor Non--Singlet and Singlet Singlet and Singlet 
Exchange in Exchange in PhotoproductionPhotoproduction

•Color Non-Singlet Exchange:
• Jets are color connected to each other
• Gap between jets filled with final state particles

•Color Singlet Exchange:
• Jets are not color connected to each other
• No final state particles between jets (Empty Gap)

Color Non-Singlet Exchange Color Singlet Exchange
Jet

Jet Jet

Jet
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DiffractionDiffractionDiffraction
•Final state particles preserve quantum numbers of
associated initial state particles

•Characteristics of Diffraction
• Small momentum transfer

(t) at P vertex
• Exchange object (Pomeron) has

quantum numbers of vacuum
• Absence of particles between

P and γ remnants (next slide)

t = (P-P’)

photon

pomeron

momentum

e

p p'

e’

transfer small

photon 
remnant + …

Empty 
Gap

proton 
remnant + …
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A = A0 + A1αS + A2αS
2 +...

QCD ScaleQCD ScaleQCD Scale

•Running of αS
• As scale µ increases, αS(µ) 

decreases (µ = ET or Q)

•Perturbative QCD
• Small αS(µ) (hard scale)
• Series expansion used to 

calculate observables

•Nonperturbative QCD
• Large αS(µ) (soft scale)
• Series not convergent

HERA: running of αs (µ)

0.1

0.15

0.2

0.25

10 10
2

10210 30 50

H1 (inclusive jets, µ=EB  
T,jet   )

ZEUS 96-97 (dijets, µ=Q)

ZEUS 96-97 (inclusive jets, µ=EB  
T,jet   )

from αs (MZ)= 0.1184 ± 0.0031

α s 
(µ

)

µ (GeV)

Leading Order (LO) Next to Leading Order (NLO)

HERA DIS Data: Running of αS(µ) 
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e

e’

p

photon
JET

JET

pomeron

transfer large
momentum

Hard Diffractive Scattering in 
Photoproduction

Hard Diffractive Scattering in Hard Diffractive Scattering in 
PhotoproductionPhotoproduction

•Photoproduction: Q2 ~ 0
•Diffraction: Absence of particles between jets, low t
•Hard process

• High jet ET hard scale
• Hard QCD inside soft QCD 

process
• pQCD applicable to a hard

QCD process

Sample contains more 
events with high ET jets than 
predicted by diffraction 
without hard processes

Empty 
Gap

photon 
remnant

proton 
remnant

(hard scale)
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HERA DescriptionHERA DescriptionHERA Description
•820/920 GeV Protons
•27.5 GeV e- or e+

•CMS Energy 300/318 GeV
• Equivalent to 50 TeV 

fixed target
•220 bunches

• Not all filled
•96 ns crossing time
•Currents:

• ~90mA protons
• ~40mA positrons

•Instantaneous
Luminosity: 

• 1.8x1031cm-2s-1

BH

unpunptottot RIIRL
σ

)(−
=

DESY
Hamburg, Germany

H1(ep)
ZEUS (ep)
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HERA LuminosityHERA LuminosityHERA Luminosity

•Total Integrated
Luminosity since 1992:
~193 pb-1                               

• e-: ~27 pb-1

• e+: ~165 pb-1

•Luminosity upgrade
recently completed

• 5x increase in Luminosity
• Longitudinal polarization of e

•Starting up now
• Goal: 1 fb-1 by end of 2006

 HERA luminosity 1992 – 2000
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Zeus DetectorZeus DetectorZeus Detector

Electron

27.5GeV
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ZEUS Calorimeter ZEUS Calorimeter ZEUS Calorimeter 

•Depleted Uranium and Scintillator
•99.8% Solid Angle Coverage
•Energy Resolution (single particle test beam)

• Electromagnetic:                   
• Hadronic:                  

•Measures energy and position of final state particles

η = 0.0  θ = 90.0ο η = −0.75  θ = 129.1οη = 1.1  θ = 36.7ο

η = 3.0  θ = 5.7ο η = −3.0  θ = 174.3ο

)](ln[tan 2−= θη

Electromagnetic 
(EMC) Cells

Hadronic
(HAC) Cells

Pseudorapidity

)(/18.0 GeVE
)(/35.0 GeVE
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Central Tracking DetectorCentral Tracking DetectorCentral Tracking Detector

•Cylindrical Drift Chamber inside 1.43 T Solenoid
•Measures event vertex
•Vertex Resolution

• Transverse (x-y): 1mm
• Longitudinal (z):  4mm

View Along Beam Pipe Side View

e p
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ZEUS TriggerZEUS TriggerZEUS Trigger
•First Level

• Dedicated custom hardware
• Pipelined without deadtime
• Global and regional energy sums
• Isolated µ and e+ recognition
• Track quality information

•Second Level
• Commodity Transputers
• Calorimeter timing cuts (next slide)
• E - pz cuts
• Vertex information
• Simple physics filters

•Third Level
• Commodity processor farm
• Full event info available
• Refined jet and electron finding
• Advanced physics filters

107 Hz Crossing 
Rate

105 Hz 
Background 
Rate

10 Hz Physics 
Rate
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Background Rejection: TimingBackground Rejection: TimingBackground Rejection: Timing

TRCAL
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Kinematic VariablesKinematicKinematic VariablesVariables

•Center of Mass Energy of ep system squared
• s2 = (p+k)2 ~ 4EpEe

•Center of Mass Energy of γp system squared
• W2 = (q+p)2

•Photon Virtuality (4-momentum transfer squared at electron vertex) 
• q2 = -Q2 = (k-k’)2

•Fraction of Proton’s Momentum carried by struck quark
• x = Q2/(2p·q)

•Fraction of e’s energy transferred to Proton in Proton’s rest frame
• y = (p·q)/(p·k)

•Variables are related
• Q2 = sxy
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Kinematic ReconstructionKinematicKinematic ReconstructionReconstruction
Measured Quantities: Eh, pz, pT

2

Kinematic ReconstructionKinematic ReconstructionKinematic Reconstruction

x

Q2

y

Jacquet-Blondel Method (Eh, pz, pT
2)Variable

JB

hT

y
p
−1

2
,

JB

JB

ys
Q
⋅

2

e

hzh

E
pE

2
,−

Pe
e’
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Jet Finding: Cone AlgorithmJet Finding: Cone AlgorithmJet Finding: Cone Algorithm

•Maximize total ET of hadrons in cone of R=1
•Procedure

• Construct seeds (starting positions for cone)
• Move cone around until a stable position is found
• Decide whether or not to merge overlapping cones

•Advantages:
• Lorentz invariant along z axis
• Conceptually simple

R

Particles close to each other in phase space used to retrace 
hadronization and fragmentation processes to original parton

22 )()( φη ∆+∆=R



Rapidity Gaps. Patrick Ryan. Univ. of Wisconsin Preliminary Exam, Dec. 17, 2002 - 21

Jet Finding: Longitudinally 
Invariant KT Algorithm

Jet Finding: Longitudinally Jet Finding: Longitudinally 
Invariant KInvariant KTT AlgorithmAlgorithm

•In ep: kT is transverse momentum with respect to beamline
•For every object i and every pair of objects i, j compute

• d2
i = E2

T,i (distance to beamline in momentum space)
• d2

ij = min{E2
T,i,E2

T,j}[∆η2 + ∆φ2]1/2 (distance between objects)
• Calculate min{ d2

i , d2
ij } for all objects

• If d2
ij is the smallest, combine objects i and j into a new object

• If d2
i is the smallest, the object i is a jet

•Advantages:
• No ambiguities (no seed required and no overlapping jets)
• kT distributions can be predicted by QCD

Beamline

j

ddi j
i

dij
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Photoproduction ObservablesPhotoproductionPhotoproduction ObservablesObservables
•xγ: Fraction of γ momentum involved in collision

• Direct Photoproduction: xγ ~ 1
• Resolved Photoproduction: xγ < 1

•xP:  Fraction of P
momentum involved in 
hard interaction

xγ
OBS in Photoproduction

e

jets
T

OBS

yE

eE

x 2

∑ −

=

η

γ P

jets
T

OBS

P E

eE

x 2

∑
=

η
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Direct Photoproduction EventDirect Direct PhotoproductionPhotoproduction EventEvent

Jet

Jet
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Resolved Photoproduction EventResolved Resolved PhotoproductionPhotoproduction EventEvent

Jet

Jet

γ Remnant



Rapidity Gaps. Patrick Ryan. Univ. of Wisconsin Preliminary Exam, Dec. 17, 2002 - 25

Model Events: PYTHIA GeneratorModel Events: PYTHIA GeneratorModel Events: PYTHIA Generator

•Parton Level
• LO Matrix Element + Parton Shower

•Hadron Level
• Hadronization Model

•Detector Level
• Detector simulation

based on GEANT

D
etector Sim

ulation

Parton
Level

Hadron
Level

Factorization:  Long range 
interactions below certain scale 
absorbed into proton’s structure
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Topology of Rapidity GapsTopology of Rapidity GapsTopology of Rapidity Gaps

•2 jets represented as circles in (η,φ) phase space
• Distance between jet centers: ∆η
• Radius of jet cone: R~1

•Gap indicates color singlet exchange
•No final state particles between jets (Rapidity Gap)

Rapidity
Gap

e

e’

p

photon
JET

JET

pomeron

transfer large
momentum

Jet

Jet

Gap

γ Remnant

p Remnant0

2π

φ

η

R

R

-2.4 2.4



Rapidity Gaps. Patrick Ryan. Univ. of Wisconsin Preliminary Exam, Dec. 17, 2002 - 27

The Gap FractionThe Gap FractionThe Gap Fraction

ησ
ηση

∆
∆

=∆
dd
ddf gap

/
/)(

singletnonsinglet −
+= gapgapgap σσσ

Expectation for Behavior of Gap Fraction 
(J. D. Bjorken, V. Del Duca, W.-K. Tang)

fgap
singlet fgap

n-s

fgap

•Non-Singlet:
•Particle production fluctuations gap

•Non-diffractive exchange

• f(∆η) decreases exponentially with ∆η

Dijet events with 
Rapidity Gap

All Dijet Events

2 3 4

•Singlet:
•f(∆η) constant in ∆η
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1994 ZEUS Results1994 ZEUS Results1994 ZEUS Results

•Color singlet exchange not in ZEUS 1994 PYTHIA
•f(∆η) excess at high ∆η suggests singlet contribution

• Excess of Gap Fraction ~ 0.07
• P and γ remnants limit size of measurable gap

Data:

PYTHIA:f(∆
η)

f(∆
η)

∆η ∆η

Gap Fraction Gap Fraction Fit

Suggests 
Color 
Singlet 
(Diffractive) 
Exchange

2 Jets With:

ET > 6GeV,

η < 2.5,

∆η > 2, 

|ηavg| < 0.75,

0.15  ≤ y ≤ 0.7
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2002 H1 (ep) Results2002 H1 (2002 H1 (epep) Results) Results

•Color Singlet exchange added in PYTHIA and HERWIG
• PYTHIA: γ exchange
• HERWIG: IP exchange
• Now agrees with data at 

high ∆η

•Low Statistics for large ∆η

H1 data PYTHIA + γ (x1200)

HERWIG + BFKL

ET
gap < 1.0 GeV

0.03

0.04

0.05

0.06

0.08

0.1

0.2

2.6 2.8 3 3.2 3.4 3.6 3.8

f(∆
η)

∆η

Jet Cuts:
ET

Jet 1 > 6.0 GeV

ET
Jet 2 > 5.0 GeV

η1,2 < 2.65

2.5 < |∆η| < 4.0

165 < Wγp < 233 GeV

Color Singlet 
Exchange Added
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Event Selection – 1996 ZEUS DataEvent Selection Event Selection –– 1996 ZEUS Data1996 ZEUS Data

•|zvtx| < 40cm
• Region of best acceptance 

and prediction by MC 
• No Scattered Electron

• Select photoproduction events
•0.2 < yJB < 0.85

• Lower: Remove beam gas
• Upper: Remove DIS events

•FLT
• Total CAL energy > 14 GeV
• Good Track

•SLT
• E-pz > 8.0 GeV

• Eliminates beam gas events
• ET

Box > 8.0 GeV
• Sum of ET in all CAL cells 

excluding 1st ring around FCAL 
beam pipe

• Ensure energy is not from 
proton remnant

• At least one CAL SLT EMC 
cluster

• Vert. Tracks/Tot. Tracks > 0.15 
•TLT

• >2 jets with ET ≥ 4 GeV, |η| < 2.5
• pz/E < 1.0

Trigger Cuts Offline Cuts



Rapidity Gaps. Patrick Ryan. Univ. of Wisconsin Preliminary Exam, Dec. 17, 2002 - 31

Jet FindingJet FindingJet Finding

• Jets built using calorimeter cells
• kT Algorithm 
• Jets ordered in decreasing ET
• Cuts on Jets:

• ET
Jet 1 > 6 GeV

• ET
Jet 2 > 5 GeV

• |ηJet 1,2| < 2.4
• |∆η| > 2.0 Jets Separated 

by a large 
rapidity gap
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Simulation of Event VertexSimulation of Event VertexSimulation of Event Vertex

Position of 
interaction 
vertex well 
simulated.  

Important as 
anchor of 
tracking 
reconscruction
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Simulation of yJBSimulation of Simulation of yyJBJB
yJB = (E-pz)/55 GeV

Reweighting
PYTHIA in yJB
may be 
necessary

Upper yJB cut 

Lower yJB cut
PYTHIA 
Direct

PYTHIA 
Total
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Jet Distributions: Highest ET JetJet Distributions: Highest EJet Distributions: Highest ETT JetJet

Jet 
kinematics 
and detector 
effects well 
understood 
and simulated

First Jet Ordered in E_t

0

2000

4000

6000

8000

0 2 4 6 8 10 12 14 16 18 20

ET First JetET First JetET First Jet
ET

E
ve

nt
s

ET First Jet

0

2000

4000

6000

-3 -2 -1 0 1 2 3

η First Jetη First Jetη First Jet
η

E
ve

nt
s

0

500

1000

1500

0 1 2 3 4 5 6

φ First Jetφ First Jetφ First Jet
φ

E
ve

nt
s

η

φ

ET
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Direction 
and energy 
of produced 
partons
understood
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Jet Distributions: 2nd Highest ET
Jet

Jet Distributions: 2Jet Distributions: 2ndnd Highest EHighest ETT
JetJet

Second Jet Ordered in E_t
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Jet 
kinematics 
and detector 
effects well 
understood 
and 
simulated

ET

η

φ

ZEUS Data 
vs. PYTHIA

2nd Jet 
allows test 
of jet 
finding 
algorithms
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Simulation of ∆ηSimulation of Simulation of ∆η∆η

10

10 2

10 3

10 4

1.5 2 2.5 3 3.5 4 4.5 5

|∆η|

E
ve

nt
s •Validates

• Jet finding
• Hadron models
• Detector 

simulation

•Distance in η
between jets well 
simulated

• Important for 
study of Rapidity 
Gaps

∆η
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Direct and Resolved Contributions Direct and Resolved Contributions Direct and Resolved Contributions 
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Fit of MC to Data 
yields:

43% Direct

57% Resolved

DirectResolved

xγ
OBS used to 

distinguish 
direct and 
resolved
Below 0.75 is 
resolved 
enhanced
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SummarySummarySummary
• Conclusions

• Compare diffractive photoproduction events to pQCD predictions
• First look at rapidity gaps in ZEUS 1996 Data
• Jet kinematics are well understood and simulated and detector 

effects accounted for
• Hard Scale in Soft Process pQCD applicable for a soft process

• Plans
• First add 1997 Data and then 1999-2000 Data
• Measure jet cross-sections and gap fraction
• Understand systematic uncertainties

• Cuts on kinematic variables
• Mixing of direct and resolved PYTHIA contributions
• Calorimeter energy scale
• Use of HERWIG instead of PYTHIA for acceptance corrections


