

Presentation to HEPAP Subpanel

U. Chicago, August 11, 1997

Wesley Smith, U. Wisconsin, Chair, U.S. Institutes on Zeus

ZEUS Collaboration

Manitoba, McGill, Toronto, York CANADA Bonn, DESY, DESY-Zeuthen, Freiburg, Hamburg I, Hamburg II, Julich, Siegen **GERMANY Tel Aviv, Weizmann** ISRAEL Bologna, Cosenza, Florence, Frascati-Rome, Padua, La Sapienza-Rome, Turin ITALY Tokyo-INS, Tokyo-Metropolitan **JAPAN** Seoul **KOREA NIKHEF-Amsterdam The NETHERLANDS Cracow**, Warsaw POLAND Moscow **RUSSIA** Madrid **SPAIN** Bristol, London(I.C.), London(U.C.), **Oxford, Rutherford UNITED KINGDOM** Andrews, Argonne, Brookhaven, Columbia, Iowa, Louisiana*, Ohio State, Pennsylvania State, U.C. Santa Cruz, Virginia Tech*, Wisconsin, Yale+ (DoE & NSF) U.S.A. (50 Scientists & 20 Students) **50 Total Institutions 420 Total Physicists**

*recently left

+recently joined

US ZEUS History

TASK: Depleted Uranium Barrel Calorimeter

Responsibilities: (a sample)
Argonne
Processor, Project Management
ColumbiaReadout Electronics
(6K ch.Pipelined Switched Capacitor Array
S/N ~ 40,000:1, 96 nsec sampling)
U. IowaAnalysis Software
LouisianaScintillator & Waveshifter
Ohio StateScintillator & Waveshifter, Trigger Fast
Clear, Source Test
Penn StateLaser Calibration System
Virginia PolytechCockroft-Walton Bases
(Invention of new type of PMT base)
WisconsinPMT Testing, DU Manufacture, Slow
Control, Cooling, Calorimeter Trigger
(Deadtimeless pipelined isolated electron-
finding and energy sums at 96ns (80 MHz))
Organization:
Executive Board1 per institute & elected rotating chair
Project Managerlocated at Argonne
(B. Musgrave)
History:
Formed in 1984-85
Received ~ \$ 20M from DoE and ~ \$ 2M from NSF
Test Beam at FNAL (E790) 1990 - 1991
Data-taking began in June, 1992 w/ fully operating calorimeter.
More than 50 journal physics publications.
More than 20 U.S. Ph.D. Theses

Detector Operation/Upgrade

- •BCAL Maintenance & Calibration -- All
- BCAL Presampler -- ANL, Iowa, Penn
- Beampipe Cal -- Columbia, Iowa & Wisc.
- CAL First Level Trigger -- Argonne & Wisc.
- CAL Trigger Fast Clear -- Ohio St.
- Forward/Rear CAL Presampler -- Iowa
- Leading Proton Spect. -- UC Santa Cruz
- Small Rear Tracking Det. -- ANL & Penn St.

Common Tasks by US Zeus members

- Zeus CPU cluster Coordination
- Monte Carlo Generation
- Run Control Maintenance
- Analysis File Production & Maintenance
- Graphics Software
- Calorimeter Data Quality Monitoring

US Experimental Leadership

- Spokesman: Allen Caldwell '97-'99
- Deputy Spokesmen:
 - J. Whitmore, Penn St., '93-'95
 - A. Caldwell, Columbia, '95-'97
- Physics Group Leaders:
 - Physics Chairman:
 - J. Whitmore, Penn St., '93-'94
 - Hard Photoproduction:
 - •C. Foudas, Wisc. '95-'97
 - J. Butterworth, Deputy, Penn St., '95-'96
 - J. Whitmore, Penn St. '94-'95
 - Exotics & High Q²
 - B. Straub, Columbia, '96-'97, Deputy '93-'96
 - D. Krakauer, Argonne, '94-'95
 - •K. Honscheid, Ohio St., '93-94
 - Structure Functions:
 - Q. Zhu, Columbia, '96-97
 - D. Krakauer, Argonne, '93-'94
- Run Coordinators:
 - R. Talaga, Argonne, '93
 - S. Kartik, Louisiana, '95
- Trigger:
 - Coordinator: W. Badgett, Wisconsin, '96-'97
 - Co-convenor: W. Smith, Wisconsin
- •76 Talks at Major International Conferences

Lessons from Construction

- Lab & University Synergism
 - National Lab Role Argonne
 - Construction of DU Calorimeter
 - Could not be done at University
 - Project Management
 - University Role
 - Electronics
 - •Most technically advanced in pre-LHC era
 - Scintillator, Wave Shifters, High Voltage
 - Testing & Commissioning

Lessons From Operation

- University groups take leading roles
 - Physics & experimental leadership
- Long term responsibilities
 - Major construction responsibilities mean major maintenance responsibilities for the duration of the experiment
 - Need to plan for support

US Groups treated well by DESY

- Offices
- Network and Computing Support
- Voice in Laboratory decisions
- Video Conference Facilities
- Visa/Housing Assistance

Additional Expenses

- Shipping
- Cost of Living DIfferential
- •Travel
- Computing Facilities

Communications

- Network Performance is Critical
 - Present connections are good
 - If have a good connection to ESNet
 - •Will this continue in the future?
- Video Conference facilties
 - •Weekly group meetings important

HERA Data Runs

ZEUS Data Samples:

- •1 pb⁻¹ e⁻p (1993-1994)
- •22 pb⁻¹ e⁺p (1994-1996)
- •1997: 17.1 pb⁻¹ e⁺p (thru Aug. 3)

Kinematic Range

HERA: x below 10⁻⁵ and Q² above 10⁴ GeV²

Natural extension of FT experiments into unexplored kinematic regions

 $egin{array}{rcl} \gamma &=& 38.6^{\circ} \ heta &=& 15.4^{\circ} \end{array}$ $E-p_Z~=~50.2~GeV$ $380 \ GeV$ \mathbf{E}_{e}^{\prime} $E_t = 204 \; GeV$ 2.2~GeV $p_t =$

 $= 41000 \pm 3000 \ GeV^2$ $= 0.605 \pm 0.060$ $= 0.752 \pm 0.021$ \mathbf{Q}_e^2 x_e $oldsymbol{y}_e$ $= 46100 \pm 1600 \ GeV^2$ $= 0.709 \pm 0.034$ $= 0.721 \pm 0.008$ ${y_{DA} \over Q_{DA}^2}$ x_{DA}

(from B. Straub, 1997 Lepton-Photon)

Preliminary H1 and ZEUS results on high $Q^2 ep \rightarrow eX$ and $ep \rightarrow \nu X$ scattering for 1994-1997 data sample.

Charged Current (ep $\rightarrow \bar{\nu_e} X$):

• Tendency for the data to be above Standard Model DIS expectations at large Q². For Q² > 10⁴ GeV², H1 and ZEUS observe 28 events where 17.7±4.3 are expected.

Neutral Current (ep \rightarrow eX):

- H1 observes 8 events with y > 0.4 and mass between 187.5 GeV and 212.5 GeV, where 1.5 ± 0.3 events are expected. In this region, ZEUS observes 3 events and expects 2.9 ± 0.24 .
- ZEUS observes 5 events with x > 0.55 and y > 0.25, where 1.51 ± 0.13 are expected. In this region, H1 observes 1 event and expects 0.75 ± 0.30 .
- The excess events observed at high x (M) are unlikely to be due to a single narrow resonance.
- Combined H1 and ZEUS cross sections for Q² cuts between 5000 and 30000 GeV² have been presented.

Q_{\min}^2	$\sigma_{ m comb}$	$\sigma_{ m SM}$
$15000 \mathrm{GeV}^2$	$0.71^{+0.14}_{-0.12} \text{ pb}$	0.49 pb
30000 GeV^2	$0.098^{+0.059}_{-0.042} \text{ pb}$	0.023 pb

Structure Functions

- Dramatic rise w/ decreasing x at low-x
- Extraction of Gluon Distribution
- Low-Q² transition to pert. QCD

Photoproduction

- Structure of Photon
- Separation of quark & gluon exch.

Diffraction

- Striking signal -- clear identification
- Structure of Pomeron

Vector Mesons

- Elastic & Deep Inelastic
- QCD Laboratory

10-410-810-810-1

Pert. QCD - Non-Pert. QCD

August, 1997

• E665

1997:

- Take data until October (e⁺p)
- Expect to double 1994-96 e⁺p statistics 1998-1999:
 - Modifications to HERA
 - e⁻p running
 - Expect similar luminosity as e⁺p

2000-2005:

- Major HERA upgrade
- Factor of 7 increase in luminosity
 - •1 x 10³¹ to 7 x 10³¹
- Possibility to run with polarized e+/-
- Goal of 1 fb⁻¹ by 2005

Physics expectations by 2005:

- • $\alpha_{s}(M_{z})$ measured to .001
- xg(x) measured to 1%
- Does the rise at low-x continue?
- Quark couplings from NC, CC polarized e^{+/-}
- WWγ couplings
- Leptoquarks?

HERA Physics

- Phenomena at low & high Q²
- Perturbative & Non-Perturbative QCD
- Comparison of NC & CC

US Institutions

- Play a leading role in physics analysis
- Continue to harvest good physics from initial DoE/NSF investment

Future Program

- Major investment by DESY & experiments
- •US groups have played an important role in shaping the future HERA program
- US program will benefit from new physics with little additional investment
- •US participation is critical for continued Zeus operation
- Exciting long-term future until 2005