

ZEUS New Results

Wesley H. Smith, *University of Wisconsin* on behalf of the ZEUS Collaboration DIS 2004, Strbské Pleso, Slovakia, April 14, 2004

HERA I:

Structure Functions & QCD fits Hadronic Final States & α_s Heavy Flavors Diffraction Searches <u>HERA II:</u> Polarized Charged Currents Tagged Charm

This talk is available on:

http://www.hep.wisc.edu/wsmith/zeus/wsmith-ZEUS-DIS04.pdf

Electroweak Unification

Structure Functions

New QCD Fits

Add jets to QCD fits

Include inclusive DIS jet data & high-E_T dijet photoproduction data

Rigorous & consistent method of treating jets in QCD fits

Compare ZEUS-only gluon fit with and without jet data included in the fit

Jets constrain medium x gluon distribution

Improved precision on the gluon at higher x

α_{s} from mean integrated jet shape

 $pQCD: \langle 1 - \psi(r) \rangle = \text{fraction of jet } E_{T}, \text{ due to parton emission, in the cone segment btw. r and } R=1.$ $\langle 1 - \psi(r) \rangle = \frac{\int dE_{T} \left(E_{T} / E_{T}^{jet} \right) \left[d\sigma(ep \rightarrow 2 \text{ partons}) / dE_{T} \right]}{\sigma_{jet} \left(E_{T}^{jet} \right)}, \text{ where } \sigma_{jet} \left(E_{T}^{jet} \right) \text{ for inclusive jet production.}$

From measured $\langle 1 - \psi(r) \rangle$ for $E_T^{jet} > 21$ GeV in each E_T^{jet} region a value of $\alpha_s(M_z)$ was extracted:

α_s from DIS event shapes

W.Smith, U. Wisconsin, ZEUS Results, DIS'04, Strbské Pleso, Slovakia

April 14, 2004 - 7

Ratio of DIS trijets to dijets

Comparison to NLO gives good description Large renormalization scale error at low x New method should yield another α_s measurement

Forward Jets & BFKL

Azimuthal asymmetry

QCD prediction due to longitudinal & transverse photon evolves in η as Boson-Gluon-Fusion takes over from QCD-Compton events

Use energy flow objects in hadronic c.o.m. frame

- include charged and neutral hadrons (previously just charged tracks)
- enhance hard partons by weighting with energy, i.e. energy flow

NLO effects are not negligible and provide better agreement with experimental data

Evidence for strange pentaquarks I

- •Select p/\overline{p} and K_{s}^{0} in inclusive DIS (Q² > 20 GeV²)
- •Plot m(pK⁰_s) + m(p¯K⁰_s)
- •Fit bg + single Gaussian
- •Peak at 1522 \pm 2 MeV
- •Width consistent with resolution
- •Statistical significance ~ 3.9 σ
- •Note that observation is in fragmentation region - no influence of original baryon in the beam

Evidence for strange pentaquarks II

•fit bg + two Gaussians (2nd Gaussian parametrizes potential resonance or empirical shoulder in background shape)

 $m = 1521.5 \pm 1.5 (stat) + 2.8 (sys) MeV$

•Gaussian width 6.1 \pm 1.5 MeV still compatible with experimental resolution of ~2 MeV

(Breit-Wigner fit: $\Gamma = 8 \pm 4 \text{ MeV}$)

•significance ~ 4.6 σ

- signal seen in both charges (inset)
- •if interpreted as $\theta^+ + \theta^$ antipentaquark!

NA49 signal(pentaquark)/signal(Ξ(1530)) ~ 6-8
Ξ(1530) seen more clearly in ZEUS than in NA49
· ZEUS has higher statistics & smaller background
ZEUS should see NA49 signal but does not

Search for charmed pentaquark I

DIS D* sample 1995-2000, Q²>1 GeV²: ~9700 D*

$p_T(D^*) > 1.35$ GeV, $l\eta(D^*)l < 1.6$, p (dE/dx) and D*p cuts similar to H1

low momentum p

high momentum p

no evidence for signal at 3.1 GeV

Search for charmed pentaquark II

ZEUS inclusive (γp & DIS) D* sample 1995-2000: ~43000 D* same D*, p and D*p cuts as for DIS selection

low momentum p

high momentum p

no evidence for signal at 3.1 GeV

Charm in DIS: $F_2^{c\bar{c}}/F_2$

W.Smith, U. Wisconsin, ZEUS Results, DIS'04, Strbské Pleso, Slovakia

Precise measurements of charm in DIS

Good description of the data by NLO QCD using a modern PDF

Double differential cross sections can be used to further constrain the gluon in the proton

 At lowest Q², data and theory uncertainty comparable

Beauty Photoproduction

Good agreement with previous ZEUS publications

Beauty yp & DIS cross sections

ZEUS b Cross Sections at HERA

Various measurements in different kinematic regions

NLO QCD in general agreement with some small discrepancies:

- γp: NLO QCD good for all regions, while LO+PS low for high η & p_T
- •DIS:NLO QCD low for high E_{tjet} & η, low Q² & p_T, same for LO+PS

Diffractive J/w production

W.Smith, U. Wisconsin, ZEUS Results, DIS'04, Strbské Pleso, Slovakia

- •No change of W dependence with Q²
- •Mass of J/ ψ sets the scale already in photoproduction
- •Consistent with pQCD expectation over Q² range
- •Sensitive to gluon² in proton
 - •Same as extracted from F₂

•Need NLO corrections

Diffractive production

Fit to $\sigma \sim W^{\delta} - \delta$ is a function of Q² - consistent with QCD Data agree well with results from other Vector Mesons Rise of δ with Q²+M_V² observed in global VM picture

- + ρ , ϕ : transition from soft to hard regime
- J/ψ : hard already in photo-production

W.Smith, U. Wisconsin, ZEUS Results, DIS'04, Strbské Pleso, Slovakia

NLO QCD fit to $F_2^{D(3)}$ + diff. charm

Hard Diffractive Factorization

W.Smith, U. Wisconsin, ZEUS Results, DIS'04, Strbské Pleso, Slovakia

High-Q² CC w/Large Rapidity Gap

W.Smith, U. Wisconsin, ZEUS Results, DIS'04, Strbské Pleso, Slovakia

'FUS

Contact int., extra-dimensions

ZEUS

Other Searches for Physics Beyond Standard Model

HERA-I Isolated τ 's & missing P_T - tantalizing (only!)

Excess > SM expectation -- resolve with HERA - II

ZEUS HERA-II Upgrades

HERA - II Events

2 Zeus Run 47440 Event 27854			date:	25-01-2004 time: 23:50:18
E=129 GeV	E _t =80.7 GeV	E-p _z =55.5 GeV	E ₁ =47.8 GeV	E _b =81.1 GeV
E _r =0 GeV	p,=10.8 GeV	p _x =5.7 GeV	p ₂ =9.14 GeV	p _z =73.4 GeV
phi=1.01	t,=-1.53 ns	$t_b = -1.82 \text{ ns}$	t,=-100 ns	t _g =-1.69 ns
x _{e.DA} =0.08	y _{e.04} =0.27	$Q_{0,DA}^2 = 2329 \text{ GeV}^2$	empty	empty
empty				

Neutral Current DIS $e^{\pm}p \rightarrow e^{\pm}X (\gamma, Z^0 \text{ exchange})$ $Q^2 = 2325 \text{ GeV}^2$ x = 0.08

XY View

Charged Current DIS $e^{\pm}p \rightarrow v X (W^{\pm} exchange)$ $Q^2 = 2800 \text{ GeV}^2$ $p_T = 38$

New Zeus Tracking for HERA - II

W.Smith, U. Wisconsin, ZEUS Results, DIS'04, Strbské Pleso, Slovakia

April 14, 2004 - 30

HERA II CC polarized cross section

Luminosity = 6.6 pb⁻¹ (~ 170 events) Polarization = 33% Q² > 400 GeV² Systematics ~ 2% • Cal. Energy Scale • Selection, PDF &Trigger uncertainty

HERA II e⁺ point is 2.8 σ above unpolarized HERA I point

Consistent with SM

 σ_{cc} = 38.1 ± 2.9 (stat.) ± 0.8 (sys.) ± 2.0 (lumi.) ± 0.8 (pol) pb

ZEUS Conclusions & Outlook

New results completing the picture from HERA I:

- •Full complement of structure function & cross section measurements
- •Precise jet measurements determine α_{s} within 2% and constrain the structure function QCD fits
- •A new era in spectroscopy has begun with the pentaquark
- •Charm physics providing new constraints on the gluon
- $\cdot \gamma p$ & DIS b cross-sections are now in general agreement with NLO QCD calculations
- Understand diffraction in terms of QCD & diffr. PDFs
- First results from HERA II show great promise
 - New charm data with Zeus microvertex detector
 - Polarized Charge Currents