BEYOND THE SM (I)

Kaustubh Agashe (University of Maryland)

 $\star \star \star \star$

* * * *

Outline

Lecture 1 Review of SM (see also Sullivan's lectures) Motivation to go beyond... SUSY Lecture 2 Extra dimensions

Review of SM

Particle content

- Spin-1/2 matter (LH Weyl fermions: e^c is anti-particle of RH positron)
- Spin-1 gauge bosons (force carriers)

(Sullivan's lectures: A instead of W)

 Spin-O Higgs (gives mass to others)

particle	$SU(3)_c$	$SU(2)_w$	$\mid U(1)_Y$
$\left(\begin{array}{c} u \\ d \end{array}\right)_i$	3	2	$\frac{1}{6}$
u_i^c	$\overline{3}$	1	$-\frac{2}{3}$
d_i^c	$\overline{3}$	1	$\frac{1}{3}$
$(\begin{array}{c} u \\ e \end{array})_i$	1	2	$-\frac{1}{2}$
e_i^c	1	1	1
W	1	3	0
G	8	1	0
В	1	1	0
$\left(\begin{array}{c}\phi^+\\\phi^0\end{array}\right)$	1	2	$\frac{1}{2}$

Electroweak symmetry breaking via Higgs VEV

W, Z masses (not for photon):

Quark, e.g., top, (and lepton) masses:

(return to these vertices for motivation to go beyond SM)

"Disclaimer" for beyond SM (I)

• numerous motivations, ideas...

focus on a couple (instead of overview of many)

"Experimental" motivations

 L_L

Dark Matter (20 %) of universe:
 only observed gravitationally so far;
 no reliable guiding principles for theory (cf. SM)
 (return during SUSY)

Neutrino mass (see Sullivan's lectures): absence of ν_R in SM just add it (" ν "SM): "wierd": no SM gauge couplings + why mass/Yukawa coupling so much smaller than charged fermions (return during extra dimensions)

"Theoretical/aesthetic" motivations

(no theoretical inconsistency)

Hierarchy problems

Planck-weak hierarchy problem: radiatively unstable

Flavor (hierarchy) puzzle: radiatively stable

SM: effective theory below M_{Pl}

Gravitational coupling ~ G_N × E₁E₂
…becomes strong at energy M_{Pl} ~ √hc⁵G_N⁻¹ ~ 10¹⁸ GeV
new physics at M_{Pl}, not a QFT (non-renormalizable)
cannot extrapolate rest of SM beyond M_{Pl}
Instead of Λ_{UV} → ∞in SM (QFT), use Λ_{UV} ~ M_{Pl}

"Revisit" renormalization

(finite) observed = (infinite) bare + (infinite) loop vs.

(finite) observed = ("finite") bare + finite (large) loop
 Is there tuning? ("meaningless" when $\Lambda_{UV} \to \infty$)

Quantum correction to Higgs mass term/vev (I)

same vertices which give mass to top and W, Z

quadratic divergence
 (dimensional analysis + no symmetry):

$$\delta \mu^2 \sim \frac{(g, \Gamma_t)^2}{16\pi^2} \Lambda_{UV}^2$$

(problem so severe that estimate suffices)

Quantum correction to Higgs mass term/vev (II)

Saturally:

$$\mu_{obs.}^2 = \mu_{bare}^2 + \delta \mu^2 \to \Lambda_{UV}^2 \sim M_{Pl}^2$$

In huge (~1 part in 10^{30})
tuning between μ_{bare}^2 and $\delta \mu^2$ to obtain observed Higgs
mass term/vev ~100 GeV

Aside...

Even if we ignore gravity, new particles at very high scales for GUT/neutrino mass: Higgs mass naturally up there...

("seesaw" for neutrino mass: see Sullivan's lecture)

(GUTs: strength of 3 forces of SM RG evolve to unify at $\sim 10^{15}\,{
m GeV}$)

cf. Quantum correction to fermion mass logarithmic divergence due to chiral symmetry

 $\mathcal{L} \ni M_e \overline{e_L} e_R \Rightarrow$

IF $M_e \to 0$, then $e_{L,R} \to e^{i\alpha_{L,R}} e_{L,R} \Rightarrow \delta M_e \propto M_{e \ bare}$ (both sides break symmetry) \Rightarrow cannot have $\Lambda_{UV}^{>0}$

 ${f o}$ Even if $\Lambda_{UV}\sim M_{Pl}$, log \sim O(40)

 \odot no tuning: $M_{e \ obs.} \sim M_{e \ bare} \sim \delta M_e$

(cf. $\delta \mu^2 \neq 0$ even if $\mu_{bare}^2 = 0$: no symmetry)

...really quantum correction to Yukawa coupling (to Higgs)

similar symmetry argument:

 $M_e = \Gamma_e v / \sqrt{2}$ with $\delta \Gamma_e \sim \Gamma_e \times \frac{g^2}{16\pi^2} \log \Lambda_{UV}...$

Flavor (hierarchy) "puzzle"

If M_e or Γ_e starts small, then stays small (radiatively stable)...

...but why starts small (vs. large for top quark)?

(return during extra dimensions)

Supersymmetry (theory)

"Disclaimer" for beyond SM (II)

- skip technical details (see references)
- focus on:

"principle" behind solution who are new particles interactions of/signals for new particles

SUSY: basic idea

symmetry relating fermions to bosons

SUSY solves Planck-weak hierarchy problem (Ia)

 (chiral) symmetry "protection" for fermion "extends" to scalar

That's the "one liner": more in a bit...

Minimal supersymmetric SM (MSSM)

see Martin's review:hep-ph/9709356)

2 Higgs doublets: anomaly cancellation ______ (See Sullivan's lectures)

particle	sparticle	$SU(3)_c$	$SU(2)_w$	$\mid U(1)_Y$
$\left(\begin{array}{c} u \\ d \end{array}\right)_i$	$\left(\begin{array}{c} \tilde{u}\\ \tilde{d}\end{array}\right)_i$	3	2	$\frac{1}{6}$
u_i^c	$ ilde{u}_i^c$	$\overline{3}$	1	$-\frac{2}{3}$
d_i^c	\widetilde{d}_i^c	3	1	$\frac{1}{3}$
$\left(egin{array}{c} u \\ e \end{array} ight)_i$	$\left(\begin{array}{c} \tilde{ u}\\ \tilde{e} \end{array} ight)_i$	1	2	$-\frac{1}{2}$
e_i^c	$ ilde{e}_i^c$	1	1	1
W	ilde W	1	3	0
G	\tilde{G}	8	1	0
В	$ ilde{B}$	1	1	0
$\left(\begin{array}{c}\phi_{u}^{+}\\\phi_{u}^{0}\end{array}\right)$	$\left(\begin{array}{c} \tilde{\phi}^+_u \\ \phi^0_u \end{array}\right)$	1	2	$\frac{1}{2}$
$\left(\begin{array}{c} \phi^0_d \\ \phi^{\underline{d}}_d \end{array}\right)$	$\left(\begin{array}{c} \tilde{\phi}^0_d \\ \tilde{\phi^d} \end{array}\right)$	1	2	$-\frac{1}{2}$

Sparticle/superpartner interactions

"Replace" particles (2 in order to conserve angular momentum) in SM interactions by sparticles

Gauge-related interactions: $g_s \bar{q} \tilde{q} \tilde{G} \quad \text{(as above)}$ $g_s \tilde{q}^{\dagger} G^{\mu} \partial_{\mu} \tilde{q} \dots \text{(a la scalar QED)}$

(Similarly, other gauge groups...)Vukawa-related interactions:

 $\Gamma_t \ \overline{Q_L^3} \ \tilde{t_R} \ \tilde{\phi}_u \ \text{(as above)}$ $(\Gamma_t)^2 \ \phi_u^{\dagger} \phi_u \ \tilde{Q_L^3}^{\dagger} \ \tilde{Q_L^3} \dots \text{(see review)}$

SUSY: solves Planck-weak hierarchy problem (Ib)

Cancellation in $\delta \mu^2$ (-1 for fermion loops vs. boson loops)

SUSY: solves Planck-weak hierarchy problem (IIa)

 Real world: SUSY broken (haven't seen selectron degenerate with electron)

 ${\color{black} \bullet}$ cancellation not exact: $\delta\mu^2 \sim \frac{\Gamma_t^2}{16\pi^2} M_{\tilde{t}}^2 \dots \overset{\rm SUSY\ breaking}{\max}$

Instill natural if SUSY breaking mass < \sim TeV

SUSY: solves Planckweak hierarchy problem (IIb)

- SUSY breaking scale $\ll M_{Pl}$?
- Solution: dynamical SUSY breaking (by gauge coupling becoming strong at scale naturally $\ll M_{Pl}$ a la QCD...)

Supersymmetry phenomenology

R-parity

- Minimal model:
 interactions have even number of superpartners
- lightest supersymmetric particle (LSP) stable
 (cannot decay into SM)
- R-parity: SM particles even, superpartners odd

R-parity \Longrightarrow (LSP) Dark matter

In the second second

Detour: (stable) particle pair annihilation into SM cannot catch up with expanding universe

thermal freeze-out: correct relic density for dark matter if WIMP...

candidates: \tilde{W}^3 , \tilde{B} , $\tilde{\phi}_{u,d}$ ($\tilde{\nu}$ disfavored by direct detection via Z exchange)
...mix (neutralinos): $\tilde{\chi}^0_{i=1...4}$ ($\tilde{\chi}^0_1$ is LSP)

(R-parity >) Collider signals (general)

(Must) pair produce superpartner

…each of which decays into LSP + SM

missing transverse momentum + leptons/jets/photons

Collider signals: example 1

Squark production

Solution Signals: limits 0 1106.4503 (based on jets + p/T): update at EPS in a few days!

(SM background: Z+jets... need accurate calculations: see Reina's lectures?)

Collider signals: example 2

cascade decay of squark to LSP (vs. direct decay earlier):

$$\begin{split} \tilde{q} &\to \tilde{\chi}_2^0 + q \\ \tilde{\chi}_2^0 &\to \tilde{\chi}_1^0 + l^+ l^- \end{split}$$

invariant mass of lepton pair, then adding jet...contains information about masses

Collider signal: future

 ...from chapter 20 of ATLAS Detector and Physics Performance Technical Design Report LHCC 99-14/15

Virtual effects of superpartners

No flavor problem in SM

Seview of SM box diagram for $K^0 - \overline{K^0}$ mixing

Glashow-Illiopoulos-Maini (GIM) mechanism:

suppression
$$\propto \frac{m_c^2 - m_u^2}{M_W^2}$$

SUSY flavor problem loop due to R-parity (each interaction has 2 sparicles)

Generic SUSY breaking (\tilde{d}, \tilde{s} mix) \longrightarrow too large effect

Solution to SUSY flavor problem

SUSY-GIM": squarks degenerate/don't mix

Realization: gauge (flavor-blind) mediation of SUSY breaking

Image: squarks heavier than sleptons