BEYOND THE SM (II)

Kaustubh Agashe (University of Maryland)

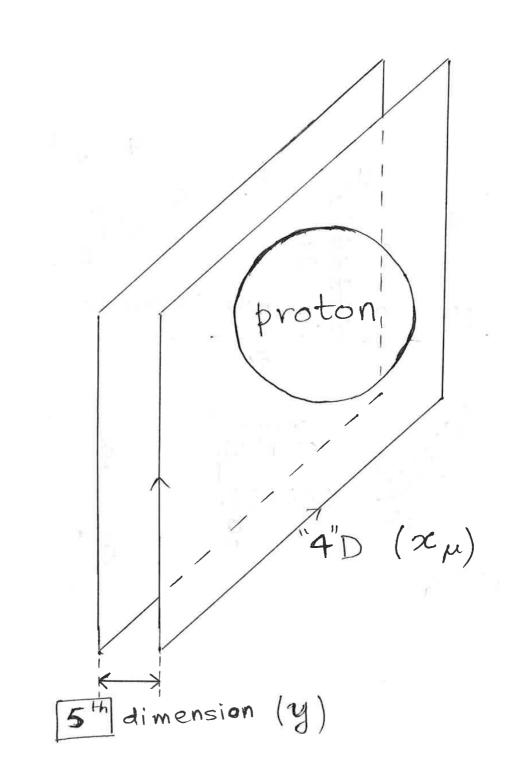
 $\star \star \star \star$

 $\star \star \star \star$

Hierarchy problems (from lecture 1)

Planck-weak hierarchy problem

Flavor (hierarchy) puzzle


... Extra dimensions can address both...

Extra dímensions: basic idea

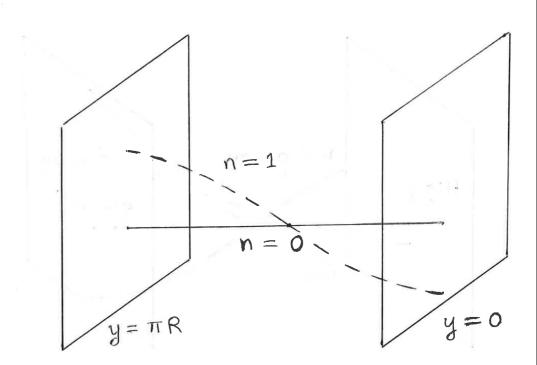
(reviews in hep-ph/0404096, hep-ph/0510275, hep-th/0508134, hep-ph/0605325,...)

Why haven't we "seen" it?

It's small!

Why should it be compact/"small"?

If 5th dimension was infinite, Newton's law $\propto 1/r^3$ (Gauss' law)

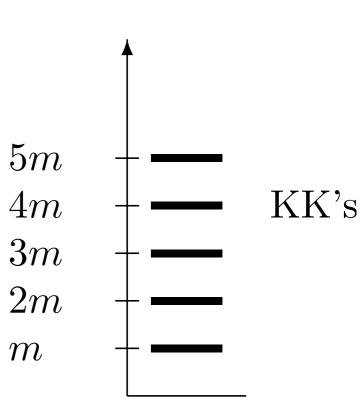

 ${old o}$ we have measured it to be $\propto 1/r^2$ down to 100 μ m

What can we see in future (I)?

SM field (x_{μ}, y) : Fourier expand (compact) y

From 4D viewpoint, dynamics in y similar to quantum mechanics of particle in 1D infinite potential well

Solution Kaluza-Klein (KK) modes (still function of x) with profile in y and quantized $p_5 \sim n/R$



What can we see in future (II)?

- Each mode like massive field (particle upon quantization) from 4D viewpoint: m_{4D}
- $E^{2} = |\bar{p}|^{2} + p_{5}^{2} + M_{5D}^{2} \Rightarrow$ $\bar{p} = 0 \mod (\text{at rest in 3D}): E \sim n/R \Rightarrow$ (rest) mass, $m_{4D} \sim n/R$

- lightest mode (n = 0) identified with observed/SM
- heavier (KK) modes (n ≠ 0):
 new particles (signals + solve problems)
- KK mass scale $> \sim$ I TeV, haven't seen it yet!

Technically: (real) scalar field on circle $S_{5D} = \int d^4x \int dy \left[\left(\partial^M \Phi \right) \left(\partial_M \Phi \right) - M_{5D}^2 \Phi \Phi \right]$

• Compactify on a circle (S^1) : $-\infty < y < \infty$ with $y \equiv y + 2\pi R$

Periodic boundary condition: $\Phi(y = 2\pi R) = \Phi(y) \Rightarrow$

$$\Phi = \frac{1}{\sqrt{2\pi R}} \sum_{n=-\infty}^{n=+\infty} \phi^{(n)}(x) e^{iny/R}$$

Substitute into S_{5D} , use orthogonality of profiles:

$$S_{4D} = \int d^4x \sum_{n} \left[\left(\partial_\mu \phi^{(n)} \right) \left(\partial^\mu \phi^{(n)} \right) - \left(M^2 + \frac{n^2}{R^2} \right) \phi^{(n)} \phi^{(n)} \right]$$

• 4D viewpoint: Tower of 4D fields (KK modes), $\phi^{(n)}$ with mass²: $m_{4D n}^2 = M_{5D}^2 + n^2/R^2 (n^2/R^2 \text{ from } \partial_5 \text{ acting on profile})$

Technically: Fermion field on orbifold

on circle: fermion zero-modes not chiral (both LH and RH) (unlike SM: LH doublet, RH singlet)

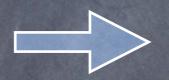
Solution of a state of the second state of

• exponential profile for fermion zero-modes (cf. flat for scalar earlier) due to 5D mass term: $\sim e^{-M_{5D \ L}y}, \ e^{+M_{5D \ R}y}$

(Solve more general wave equation to obtain modes: can get exponential profile for zero-mode even for scalar)

Technically: gauge field...

$$\mathcal{A}_M = \mathcal{A}_{\mu=0,1,2,3} + \mathcal{A}_5$$


A_μ modes behaves as vectors (spin-1) from 4D viewpoint
 A₅ modes behaves as scalars from 4D viewpoint (Higgs?...see later)

Zero-mode flat; KK sin/cos...

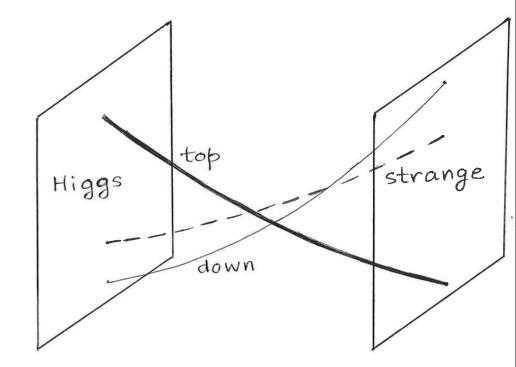
Interactions...

5D Dirac matrices

 $\int d^4x \, dy \, g_{5D} \bar{\Psi} \Gamma^M \mathcal{A}_M \Psi \Rightarrow$ $\int d^4x \, g_{4D \ mnp} \overline{\psi_L^{(m)}} A^{(n)}_\mu \gamma^\mu \psi_L^{(p)}:$ $g_{4D \ mnp} \sim g_{5D} \int dy \ (m^{th} \text{profile}) \times (n^{th} \text{profile}) \times (p^{th}..)$

 ${\it o}$ coupling between modes \propto overlap of profiles

Summary

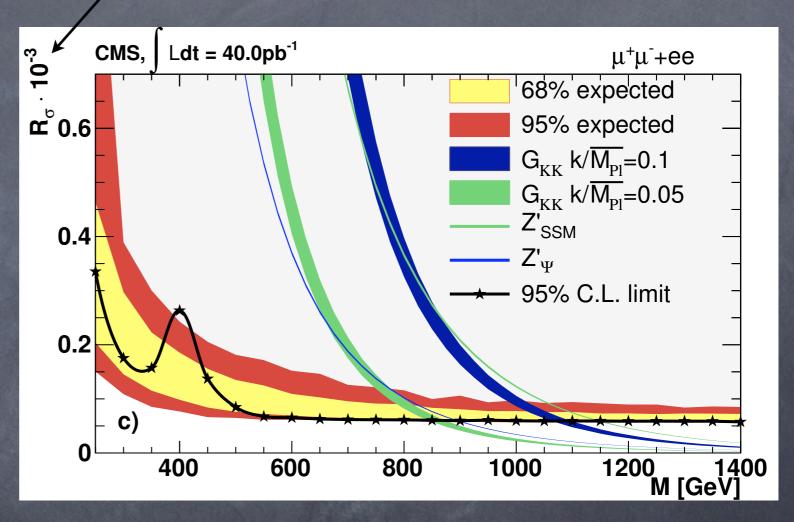

- 5D field tower of (massive) KK modes (from 4D viewpoint)
- profiles from (generalized) wave equation in 5D space-time
- Coupling of particles \propto overlap of profiles

Extra dímensions: "application"

Solution to flavor (hierarchy) puzzle Yukawa coupling: $\Gamma_{4D} \sim \Gamma_{5D} \times \int dy \ e^{(-M_{5D}\ L + M_{5D}\ R + M_{5D}\ \phi)y}$

Choose M's so that overlap near Higgs brane dominates

• $m_d \ll m_s$ due to hierarchical fermion profiles at Higgs brane: $\Gamma_{4D} \sim \Gamma_{5D} e^{(-M_{5D} L + M_{5D} R)\pi R}$ (do not need hierarchies in 5D Yukawa or M_{5D} for fermions) • 1-2 (Cabbibo) mixing also small: $\Gamma_d^{22} \gg \Gamma_d^{12} \gg \Gamma_d^{11}$

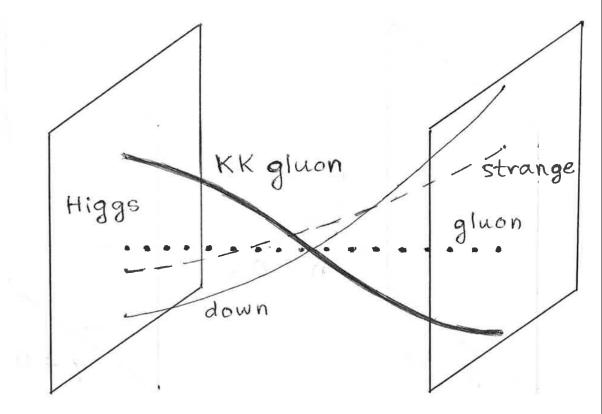

What about neutrino mass? Add ν_R with profile...similar to quarks? Indication of the second se If the choose $M_{5D \nu_R}$ so that overlap near other brane dominates: $\Gamma_{4D} \sim \Gamma_{5D} e^{(-M_{5D\phi})\pi R}$ very small neutrino mass due to Higgs tail: NOT due to smallness of ν profiles at Higgs brane: cf. quarks and charged leptons mixing large since all 3 profiles similar near other brane:
 $\Gamma_{\nu}^{33} \sim \Gamma_{\nu}^{23} \sim \Gamma_{\nu}^{22}$

Signals for KK modes (I)

The resonant production of single KK gauge mode a la SM Z: $q\bar{q} \rightarrow \text{KK } Z \rightarrow l^+ l^-$

peak in dilepton invariant mass...

 adapt LHC Z' search (include appropriate couplings) ratio of Z' and SM Z cross-section x BR


(from 1103.0981)

Signals for KK modes (II)

 Coupling to KK gauge mode is flavor-dependent: in overlap, KK common, but fermion varies

cf. coupling to gauge zero mode (flat) is universal

(see later: flavor problem; KK gluon decays mostly to top quarks)

Summary

- solution to flavor (hierarchy) puzzle based on fermion profiles in extra dimension...
- KK/massive gluon, Z... resonances
- LHC sensitive only if KK mass scale $\sim \text{TeV}...$
- ...but (so far) can be (much) heavier (smaller ruled out by current limits)
- ...it IS TeV if use extra dimension to also solve Planck-weak hierarchy problem...

Extra dímensions: "complete" model

Extra dimension solves Planckweak hierarchy problem (I)

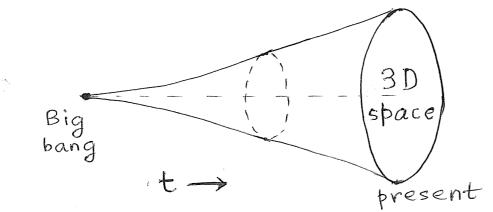
KK particles cut-off Higgs mass divergence...like superpartners, KK's must be <~TeV</p>

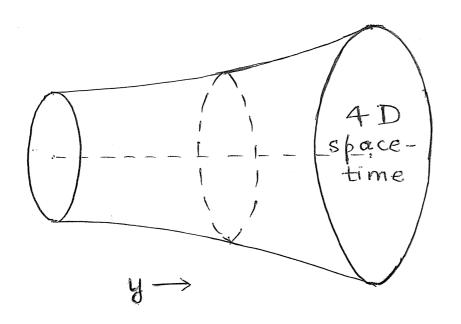
Principle is: Higgs is A₅ mode ("extra" component of 5D gauge field)

no quadratic divergence from E ~ KK mass scale (5D regime):
 (5D) gauge invariance protection "extended" from spin-1 to
 0 (the two 4D spins are related via 5th dimension)

...cf. SUSY...

- (chiral) symmetry protection for fermion...
 extended to scalar...
- ...the two spins (differing by 1/2) related by SUSY


Extra dimension solves Planckweak hierarchy problem (II)


SUSY, "new" hierarchy problem:
KK mass scale $\ll M_{Pl}$?

Solution: warped extra dimension...

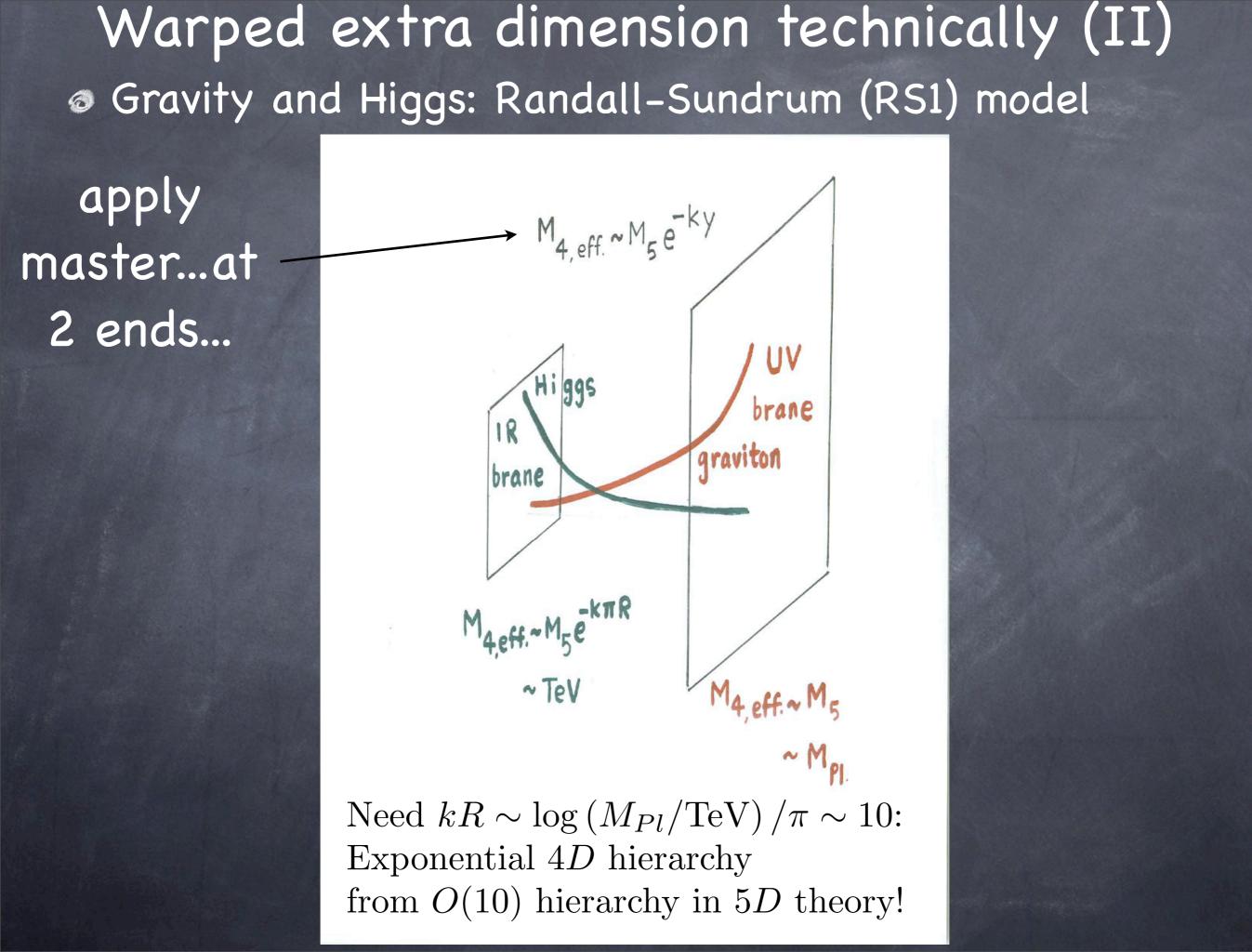
Warped extra dimension intuitively Analogy with expanding universe

gravitational red-shift generates hierarchies in mass scale between different positions in 5th dimension

3D space expands with time

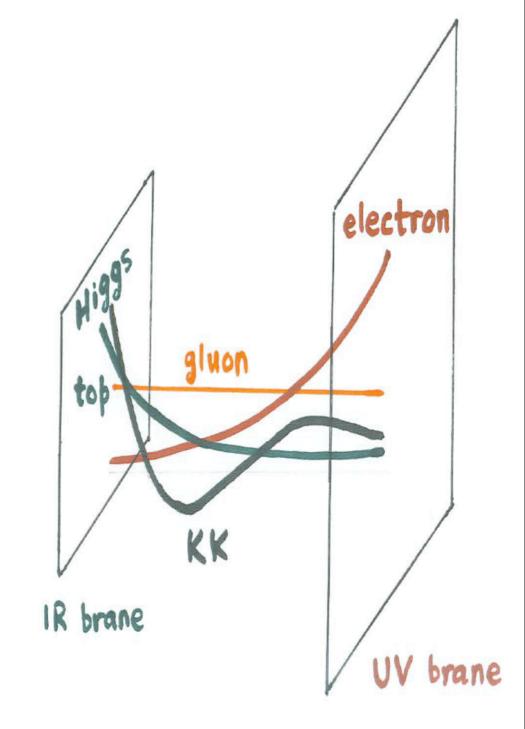
4D space-time expands with moving along 5th dimension

Warped extra dimension technically (I)

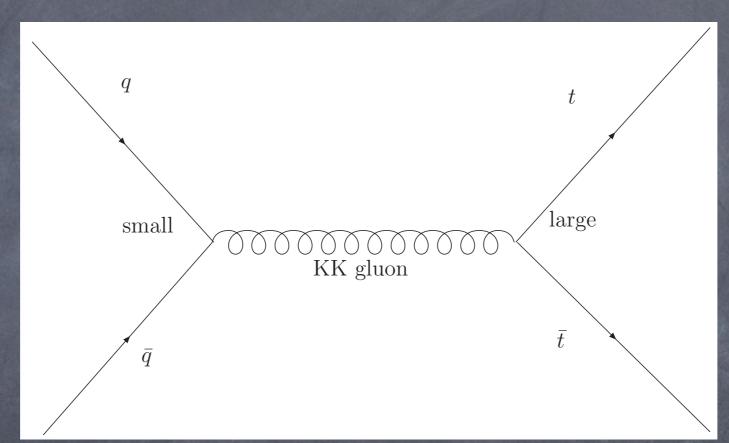

• Bulk + brane cosmological constants \Rightarrow

 $(ds)^2 = e^{-2ky} \eta_{\mu\nu} (dx)^{\mu} (dx)^{\nu} + (dy)^2$

flat 4D


• Master equation:

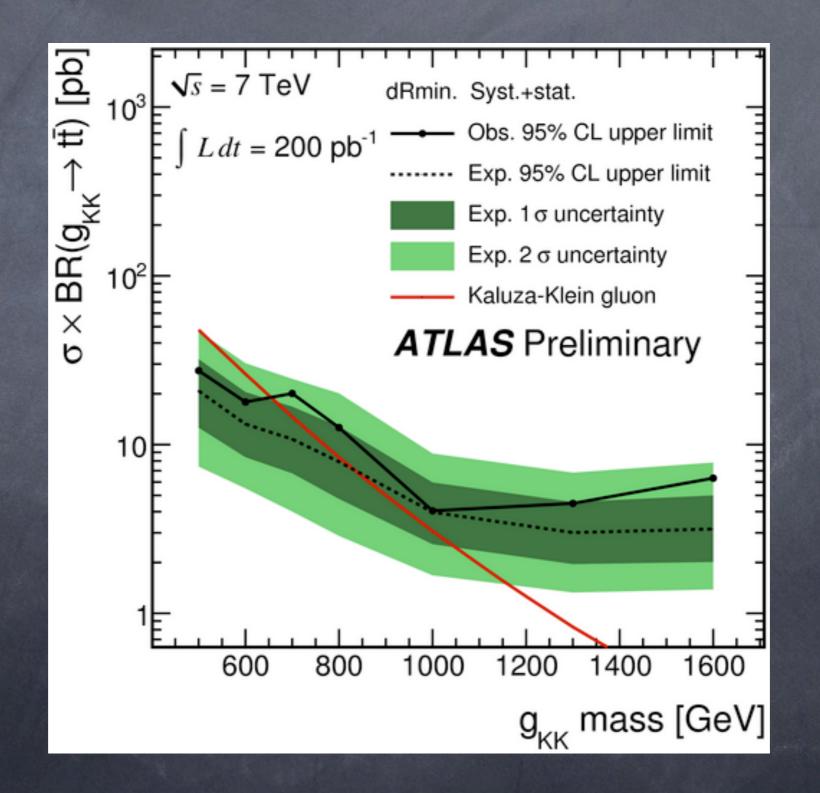
 $M_{4D, \text{eff.}}(y) \sim M_{5D, \text{fund.}} \times e^{-ky} \text{ (warp factor)}$



KK's localized near Higgs/TeV brane

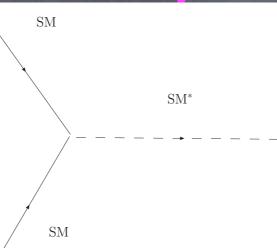
- ...due to curvature (cf. flat extra dimension earlier)
- KK's couple strongly to Higgs, top (weakly to light fermions): based on overlap of profiles

KK gluon signal: decays to top
production suppressed due to small coupling to proton
decay dominated by top quark with stronger coupling


mass >~3 TeV due to constraints from virtual effects (see later)

KK gluon signal: decays to boosted top

E of each top quark is 1.5 TeV
top decay products (bW; W->...) collimated
looks like QCD jet at 0th order
jet substructure (see Soper's lectures)to distinguish the two


...not there yet...

from ATLAS-CONF-2011-087

Virtual effects of KK modes

Summary (rough)

no parity

Tree-level contributions to flavor and EVV precision tests

Iimit on KK scale: ~O(10) TeV [built-in mechanism: cf.
 O(1000) TeV in SUSY] → O(3) TeV model-building/mild
 tuning

AdS/CFT "duality"

- tower of KK's like tower of hadrons from (purely) 4D strong dynamics
- warped extra dimension solution dual to Higgs compositeness at TeV scale