"Experimental Results from CMS" **Fermilab** UIC University of Illinois at Chicago

Richard Cavanaugh Fermilab & University of Illinois - Chicago CTEQ Summer School, Madison Wisconsin 16 July, 2011

Production Cross Sections at the LHC

Fermilab

University of Illinois at Chicago

A Detector to Look for New Physics

- There are a variety of possible decay modes for the Standard Model Higgs, depending on its mass
- There are many candidates for new physics
 - Supersymmetry
 - New interactions, e.g. Technicolor
 - Extra dimensions
 - · Right-handed gauge bosons
 - · Many, many more
- A "discovery detector", also called a "general purpose detector" at LHC must be able to study all these states and separate the interesting events from a much larger background of uninteresting stuff that has the nasty habit of mimicking new physics and misleading us

- Heavy objects decay into lighter objects
 - The "lighter objects" are the particles of the Standard Model
 - Photons, electrons, muons, T leptons, jets (light quarks u,d, s and gluons)- especially "b-jets", "charm jets", "top", Ws, and Zs
 - Only a few particles are stable enough to be measured directly: e,μ,γ, plus some hadrons: pions, kaons, protons, neutrons
 - Partons, quarks and gluons, manifest themselves as jets of particles so identifying "jets" and measuring their angle and energy becomes important
 - It is a requirement for finding new physics to be able to measure all the known SM objects
- Particles may leave the detector without interacting
 - Neutrinos are known SM particles that do that all the time
 - There may be NEW massive weakly interacting particles that behave similarly
- These can be "detected" by observing missing transverse energy, "MET", so it is a requirement to be able to detect it

One possibility is using the old technology of Bubble Chambers... ...where one has a "picture" of individual particles,

> But data rate far far too low... ...not remotely enough rate to find new physics

CMS is radically different from detectors of the previous generations

High Interaction Rate

pp interaction rate 1 billion interactions/s Data can be recorded for only ~10² out of 40 million crossings/sec Level-1 trigger decision takes ~2-3 µs ⇒ electronics need to store data locally (pipelining)

Large Particle Multiplicity

 \sim <20> superposed events in each crossing ~ 1000 tracks stream into the detector every 25 ns need highly granular detectors with good time resolution for low occupancy ⇒ large number of channels (~ 100 M ch)

High Radiation Levels

Slide taken from J. Virdee

⇒ radiation hard (tolerant) detectors and electronics

Very good muon identification and momentum measurement

Trigger efficiently and measure sign of TeV muons dp/p < 10%

High energy resolution electromagnetic calorimetry $\sim 0.5\%$ @ $E_T \sim 50$ GeV

Powerful inner tracking systems

Momentum resolution a factor 10 better than at LEP

Hermetic calorimetry

Good missing E_T resolution

(Affordable detector)

Slide taken from J. Virdee

```
Transparency from
the early 90's
```


CMS Detector

The CMS Detector (Barrel)

- This is the way I was taught to do physics
 - Similar (in spirit) to Bubble Chamber pictures
- Method of choice at e+e- colliders
 - very clean environment
 - Low particle multiplicity compared to number of readout channels
- · Historically not used at hadron colliders
 - · very messy environment
 - high particle multiplicity compared to number of readout channels
- CMS uses Particle Flow Event Reconstruction

Goal of Particle-Flow

- Reconstruct and identify all particles
 - γ , e, μ , π^{\pm} , K_L° , pile-up π^{\pm} , converted $\gamma \notin$ nuclear interaction π^{\pm} ,...
 - Use best combination of all CMS sub-detectors for E, $\eta,\,\phi,\,\rho\text{ID}$
- Provide consistent & complete list of ID'd & calibrated particles for
 - Tau reconstruction & Jet reconstruction
 - Missing & total Visible Energy determination
 - Other, analysis specific, objects (event or jet shape vars, etc)
- Use of Redundant Information: Calorimeter & Tracking
 - · Good: Better Calibration (data driven) and Resolution possible
 - · Challenge: Must have accurate accounting
- · Very different from "Traditional" Tau, Jet, MET Reconstruction...

University of Illinois at Chicago

Required Ingredients for PF

- Large Volume Tracker
 - · high precision, high efficiency tracking is critical
- High Magnetic Field
 - · needed for good pT resolution
 - · needed to separate charged from neutral particles
- Highly Granular Calorimeter
 - · needed to separate charged from neutral particles
- Good Calorimeter Energy Resolution is :
 - · needed for good photon, electron E resolution
 - not so critical for Hadrons

University of Illinois

Key CMS Components for PF

- Tracker:
 - Large Volume, High Accept: R > 1m, 3+10 layers, $|\eta| < 2.6$ Eff. \approx 95%(99%) π 's(μ 's); fake rate \approx 1%; $p_T < 150$ MeV
- solenoid:
 - High B-Field = 3.8 T
- ECAL:
 - Fine Granularity, High Accept: $\Delta\eta x \Delta \phi = (0.0187)^2$; $|\eta| < 3.0$
 - High Resolution: $\sigma \approx 3\%/\sqrt{E_T}$

🚰 Fermilab

University of Illinois 🥒 at Chicago

ATLAS VS. CMS

		CMS	
Ecal+Hcal pion resolution	$\frac{\sigma}{E_T} \approx \frac{40\%}{\sqrt{E_T}}$	$\frac{\sigma}{E_T} \approx \frac{100\%}{\sqrt{E_T}} \oplus 7\%$	
MET resolution (TDR)	$\frac{\sigma(\not\!\!\!E_T)}{\Sigma E_T} \approx \frac{50\%}{\sqrt{\Sigma E_T}}$	$\frac{\sigma(\not\!\!\!E_T)}{\Sigma E_T} \approx \frac{120\%}{\sqrt{\Sigma E_T}} \oplus 2\%$	
Inner tracker resolution (TDR)	$\frac{\sigma(p_T)}{p_T} \approx 1.8\% \oplus 60\% \ p_T$	$\frac{\sigma(p_T)}{p_T} \approx 0.5\% \oplus 15\% \ p_T$	
B field inner	$(p_t \text{ in 'IeV})$	$(p_t \text{ in TeV})$	
region	2 Tesla : p _T swept < 350 MeV	4 Tesla : p _T swept < 700 MeV	

ATLAS has better calorimetry; CMS has better tracking

Improve CMS MET resolution using full detector

R. Cavanaugh, FNAL/UIC

by using the Detailed Full Detector...

...and also Jets & MET ?

R. Cavanaugh, FNAL/UIC

Calorimeter transverse energy uncertainty for charged hadrons:

$$\sigma(E_T) \approx 100\% \ \sqrt{E_T}$$

Tracker transverse momentum uncertainty for charged hadrons:

$$\sigma(p_T) \approx 0.01\% \ (p_T)^2$$

The point at which the calorimeter resolution overcomes the tracker resolution is (very roughly):

$$\frac{\sigma(p_T)}{p_T} \approx \frac{\sigma(E_T)}{E_T} \quad \to \quad p_T \approx 10^{\frac{8}{3}} \approx 464 \text{ GeV}$$

improve Jet performance

Calorimeter Tower

0 1 HCAL Cell

25 ECAL Crystals underneath
 (loss of granularity)

Calorimeter Jets

- · Large Jet E Corr.
- Resolution HCAL
 - σ 100%
 - $\frac{1}{E} \approx \frac{1}{\sqrt{E}}$

Calorimeter Tower

• 1 HCAL Cell

25 ECAL Crystals underneath
 (loss of granularity)

Charged hadrons • spread by high B-field • degrades angular resolution

Calorimeter Jets

- Large Jet E Corr.
- Resolution HCAL
 - $\sigma \sim 100\%$
 - $\overline{E} \approx \overline{\sqrt{E}}$

Charged hadrons

- · 65% of jet E
- o direction at vertex
- resolution tracker

Use B-field and hi-res tracker to our advantage!

> Momentum Resolution 0 1% for 100 GeV

Photons · 25% of jet E · resolution ECAL

Use granularity & resolution of ECAL to our advantage!

Separate charged particles
neutral particles Granularity \circ 0.02 ($\Delta\eta x \Delta \phi$) Energy Resolution $\circ \approx 2\%/\sqrt{E}$

First Associate Hits within Each Detector

Then Link Across Detectors

Very Basic View of Particle Flow

- Find and "remove" muons (σ_{track})
- Find and "remove" electrons ($min[\sigma_{track}, \sigma_{ECAL}]$)
- Find and "remove" converted photons ($\min[\sigma_{track}, \sigma_{ECAL}]$)
- Find and "remove" charged hadrons (σ_{track})
- Find and "remove" Vo's (σ_{track})
- Find and "remove" photons (σ_{ECAL})
- Left with neutral hadrons (10%) (σ_{HCAL} + fake)

Use above list of Reconstructed Particles to describe the entire event!

💕 Let'

Particle Identification

ECAL

List of reconstructed particles: {}

Particle Identification

List of reconstructed particles: $\{\gamma, \gamma, \gamma, \pi^+, \pi^-\}$

Single T's in Data

Event scanning: Link algo performing as expected in data

Fermilab

University of Illinois at Chicago That was a simple

example, nevertheless...

...The Particle Flow algorithm scales to large particle multiplicities!

Analysis of the leading jet from all hadronic ttbar simulated event at the right:

cles	#0	PDG code:130,	p/pt/eta/phi: 20.3845	16.7688 -0.645422	1.49343 🔨
	#1	PDG code:211,	p/pt/eta/phi: 17.2954	15.0452 -0.540329	1.45624
	#2	PDG code:211,	p/pt/eta/phi: 11.453	9.82512 -0.567975	1.4245
5	#3	PDG code:22,	p/pt/eta/phi: 7.75683	6.52999 -0.603777	1.46632
G	[.] #4	PDG code:22,	p/pt/eta/phi: 7.26097	6.17551 -0.584549	1.42736
ų v	#5	PDG code:22,	p/pt/eta/phi: 6.56173	5.52903 -0.602059	1.39252
<	#6	PDG code:2212,	p/pt/eta/phi: 5.69095	5.14257 -0.457804	1.12381
ď					
0	#0	PFCandidate type: 5	E/pT/eta/phi 31.929	26.176 -0.651	1.493,
	#1	PFCandidate type: 1	E/pT/eta/phi 17.237	14.994 -0.540	1.456,
5	#2	PFCandidate type: 1	E/pT/eta/phi 11.540	9.900 -0.568	1.425,
Q.	#3	PFCandidate type: 4	E/pT/eta/phi 9.684	8.195 -0.594	1.420,
ç	#4	PFCandidate type: 4	E/pT/eta/phi 6.663	5.602 -0.606	1.388,
0	#5	PFCandidate type: 1	E/pT/eta/phi 5.720	5.170 -0.457	1.124,
0					

Tracker Performance

🗲 Fermilab

University of Illinois at Chicago

- 75 million channels, 200 m² of silicon > 98% operational
- Remarkable agreement between data and simulation

Tracker Material: Important!

R. Cavanaugh, FNAL/UIC

🚰 Fermilab

University of Illinois at Chicago

Reconstruct π -Nuclear Interaction; but 100% efficiency not critical

ECAL Performance

HCAL Performance

Fermilab

University of Illinois at Chicago

- · Very good performance of noise cleaning
- Excellent agreement with simulation

R. Cavanaugh, FNAL/UIC

Muon Performance

🛠 Fermilab

C University of Illinois at Chicago

Traditional Calorimeter Jets

- · Hard Scatter of coloured partons
 - not observable
- Fragmentation of coloured partons into colourless particles
 - not observable
- Propagation of particles to calorimeter
 - · observable
- Deposition of energy in calorimeter cells
 - · observable
- Calorimeter provides a consistent view of the entire event:
 - traditional reconstruction method
 - no worry of overlapping tracks on coarsely granular calorimeter
 - So called "simple" Objects

University of Illinois at Chicago

Correcting Traditional Jets

simpler objects not necessarily easier to understand

- $k = E_{T_{rec}}/E_{T_{\gamma}}$: Correction 1/k a function of $E_T \notin \eta$
 - depends on flavour, jet algos (+params), noise, PU, etc.
 - · does not generalise!

- Detector effects corrected by comparing reconstructed jet to parton probe (e.g. photon)
 - true-jets contain particles swept away from B field: pT < 0.7 GeV

Approaching Self-calibration

- much smaller residual corrections
 5% compared with 65% at 100 GeV
- Nearly independent of Jet Flavour
- Better Energy Resolution
 - Factor 3 at 15 GeV (tracker dominates)
 - Converges to Calorimeter at high pT
- Better Angular Resolution
 - Especially in azimuth (B-Field)
 - Especially at low pT, but also at high pT
- Enables Better Jet Definitions
 - Clustering Algorithms:
 - smaller cone sizes possible
 - · lower pT thresholds possible
 - Reduces isolated e/y faking a jet
 - can be excluded from jet clustering
 - Particle Multiplicity and Content:
 - neutral hadronic, charged hadronic, photonic, leptonic, etc

CMS

PF Jet Reconstruction

Approaching Self-calibration

- much smaller residual corrections
 5% compared with 65% at 100 GeV
- Nearly independent of Jet Flavour
- Better Energy Resolution
 - Factor 3 at 15 GeV (tracker dominates)
 - Converges to Calorimeter at high pT
- Better Angular Resolution
 - Especially in azimuth (B-Field)
 - Especially at low pT, but also at high pT
- Enables Better Jet Definitions
 - Clustering Algorithms:
 - smaller cone sizes possible
 - · lower pT thresholds possible
 - Reduces isolated e/y faking a jet
 - can be excluded from jet clustering
 - Particle Multiplicity and Content:
 - neutral hadronic, charged hadronic, photonic, leptonic, etc

Approaching Self-calibration much smaller residual corrections 5% compared with 65% at 100 GeV Nearly independent of Jet Flavour Better Energy Resolution Factor 3 at 15 GeV (tracker dominates) Converges to Calorimeter at high pT Better Angular Resolution Especially in azimuth (B-Field) Especially at low pT, but also at high pT Enables Better Jet Definitions

- Clustering Algorithms:
 - smaller cone sizes possible
 - · lower pT thresholds possible
- Reduces isolated e/y faking a jet
 - can be excluded from jet clustering
- Particle Multiplicity and Content:
 - neutral hadronic, charged hadronic, photonic, leptonic, etc

CMS Preliminary Approaching Self-calibration 0.16 esolution Simulation much smaller residual corrections 0.14 Calo-Jets 5% compared with 65% at 100 GeV 0.12 Particle-Flow Jets Nearly independent of Jet Flavour 0.1 0 < [n] < 1.5 0.08 Better Energy Resolution 0.06 Factor 3 at 15 GeV (tracker dominates) 0.04 Converges to Calorimeter at high pT 0.02 Better Angular Resolution 10² Especially in azimuth (B-Field) p_ (GeV/c) Especially at low pT, but also at high pT 0.16 Resolution Simulation Enables Better Jet Definitions 0.14 Calo-Jets Clustering Algorithms: 0.12 Particle-Flow Jets smaller cone sizes possible 0.1 • 0 < [n] < 1.5 · lower pT thresholds possible 0.08 Reduces isolated e/y faking a jet 0.06 can be excluded from jet clustering 0.04 Particle Multiplicity and Content: 0.02 0 neutral hadronic, charged hadronic, 10² photonic, leptonic, etc p_ (GeV/c)

- much smaller residual corrections 5% compared with 65% at 100 GeV
- Nearly independent of Jet Flavour
- Better Energy Resolution
 - Factor 3 at 15 GeV (tracker dominates)
 - Converges to Calorimeter at high pT
- Better Angular Resolution
 - Especially in azimuth (B-Field)
 - Especially at low pT, but also at high pT
- Enables Better Jet Definitions
 - Clustering Algorithms:
 - smaller cone sizes possible
 - · lower pT thresholds possible
 - Reduces isolated e/y faking a jet
 - can be excluded from jet clustering
 - Particle Multiplicity and Content:
 - neutral hadronic, charged hadronic, photonic, leptonic, etc

ermilab

at Chicago

University of Illinois

Jet Energy Scale

🚰 Fermilab

University of Illinois at Chicago

Missing ET using Particle Flow Jic

• MET is the transverse momentum vector sum over all reconstructed particles:

$$\vec{E}_T = -\sum_{\text{particles}} (p_x \hat{\mathbf{i}} + p_y \hat{\mathbf{j}})$$

- The list of reconstructed particles form a global event description, provided by the PF Algorithm:
 - { μ^{\pm} , e^{\pm} , γ , π^{\pm} , K_{L}° , pile-up particles, etc }
- The PF Algorithm exploits full ensemble & redundancy of all CMS detectors
 - { tracker, ECAL, HCAL, muon system }
 - · Does not depend on the Monte Carlo Simulation
 - Depends only minimally on any response/calibration maps
 - Robust against large calorimeter calib changes in tracker acceptance

What does MET depend on?

- · Depends on particle multiplicity in the event
 - · inefficient particles create fake MET
 - · fake particles create fake MET
- · Depends on particle momenta in the event
 - · poorly measured particles create fake MET
- A good (combined) measure of this is:
 - summed transverse momenta of event "ΣΕτ":
 - more particles → more ΣΕΤ
 - more momenta → more ΣET
- · Study performance of MET vs ZET

University of Illinois

MET Performance

Fermilab UIC University of Illinois at Chicago

MET Performance

600

- CMS Preliminary 2010 MET is the very last step Simulation, PF 2500 Benefits from all progress in the jets! 7-TeV data, 7.5 nb⁻¹, PF Simulation, calo 7-TeV data, 7.5 nb⁻¹, calo 2000 Will continue to benefit from further generated sum E progress! 1500 Di-jet events Better able to measure zero-MET 1000 (e.g as in QCD) 500 Improved estimate of event visible energy 100 200 300 400 500 better measure of "zero" imbalance ΣE_T [GeV] 60% better at 500 GeV of Sum ET Better able to measure real-MET CMS Preliminary 2010 (e.g. as in ttbar) o(MEX,MEY) Improved Energy Response · Calibrated within 5% above 20 GeV
 - Improved Energy Resolution
 - Nearly factor 2 near 100 GeV
 - About 60% better at 20 GeV
 - Improved Angular Resolution
 - Factor 2 up to (even >) 200 GeV

Missing ET Significance

Fermilab

University of Illinois at Chicago

Missing Er Significance

• Real true MET events (\notin badly reconstructed events) peak at zero $P(\chi^2)$

R. Cavanaugh, FNAL/UIC

Missing Er Significance

- OK...I'll stop here for today...
 - · tomorrow, physics from CMS
- The CMS Detector is in excellent condition
- · Particle Flow in CMS works extraordinarily well!
 - individual particles: leptons, hadrons, photons
 - Jets (light quark, heavy quark, hadronic tau)
 - Missing (transverse) energy (momentum)
- CMS is pursuing a rich menu of LHC Physics
 - Standard Model Benchmarks⁻
 - · QCD, W, Z, Lop
 - · Searches for new Physics
 - Higgs
 - · Supersymmetry
 - Extra Dimensions, etc

Tomorrow

Stay tuned for EPS results this coming week.