Prologue to Lecture 2

D1

D1

D. Uncertainties of Parton Distribution Functions

- 1. "Errors" and Uncertainties
- 2. Propagation of Experimental "Errors"
- 3. PDF Uncertainties
- 4. The role of α_{S} in Global Analysis
- 5. Implications for LHC Physics

Lecture 2: Errors and Uncertainties in the Global Analysis of QCD

Mark Twain

... from "Chapters from My Autobiography", published in 1906 ...

"Figures often beguile me, particularly when I have the arranging of them myself; in which case the remark attributed to Disraeli would often apply with justice and force: *There are three kinds of lies: lies, damned lies, and statistics."*

"Errors" and Uncertainties

 $\sigma_{ep} = PDF \otimes C$ Data ; We're trying to determine this ; Calculation

How accurately can we determine the PDFs?

The accuracy is limited by ... {statistical;
Experimental "errors"
systematic

- Theory "errors"
- Parametrization errors

LO, NLO, NNLO; choice of momentum scale; value of α_{S}

Parametrization

In the CTEQ Global Analysis, we parametrize the PDFs $f_i(x,Q^2)$ at a low Q scale, $Q_0 = 1.3$ GeV. For example,

$$q_{v}(x,Q_{0}) = a_{0}x^{a_{1}}(1-x)^{a_{2}} \exp\{a_{3}x + a_{4}x^{2} + a_{5}\sqrt{x}\}$$

$$(q = u \text{ or } d; q_{v} = q - \overline{q})$$

$$\{\text{The } a_{i}\text{'s are different flavors}\}$$

Potentially, 6 x (2+2+1+1)=36 parameters. (CT10 uses 26 parameters.) Then $f_i(x,Q^2)$ is DETERMINED for Q > Q₀ by the RG evolution equations.

Find the parameter values $\{a_{i0} \dots a_{i5}\}$ such that theory and data agree most closely.

Propagation of Experimental "Errors"

Consider the measurement of an observable. In the simplest statistical analysis we have $\mathcal{D}_{i} = \mathcal{T}_{i}(a) + \varepsilon_{i} \quad (i = 1 \dots N_{d_{p}})$ and $\langle \xi_{2}^{2} \rangle = \sigma_{2}^{2}$ Data point; Theory with unknown constants to be determined; experimental error. The experimental collaboration would publish $\{ D_i, \sigma_j, j \in [1, \dots, N_d] \}$ Define a "measure of agreement" $\chi^{2}(a) = \sum_{i=1}^{N_{dr}} \left(\frac{D_{i} - T_{i}(a)}{\overline{D_{i}}} \right)^{2}$ Minimise X2 => central fit Eaof The variation of X' around the minimum the uncertainty

Propagation of Experimental "Errors" In a small neighborhood of Eqo} $\chi^{2}(a) = \chi^{2}(a_{0}) + \sum_{k,l=1}^{D} \frac{1}{2} \frac{\partial^{2} \chi^{2}}{\partial a_{k} \partial a_{l}} (a_{k} - a_{0k})(a_{l} - a_{0l})$ the Hessian matrix Now, make a prediction based in the theory, for some ofter observable Q $(Q(\alpha) = Q(\alpha_0) + \sum_{k=1}^{D} \frac{\partial Q}{\partial a_k} (\alpha_k - \alpha_{k0}) + \dots$ Ludwig Otto Hesse aprediction = Q(ao) ± SQ (SQ)² = $\sum_{k,k} (a_k - a_{ok})(a_k - a_{ok}) \frac{\partial \omega}{\partial a_k} \frac{\partial \omega}{\partial a_k}$ allowed variations of the parameters D1 cteqss 11 10

Propagation of Experimental "Errors" Parameter Variations in the Eigenbech Basis **テ**(コ) $\sum_{n=1}^{D} H_{kR} \mathcal{V}_{e} = \mathcal{X} \mathcal{V}_{k}^{(m)}$ m = 127... D >ak The distance along the eigenrector $\overline{G}^{(k)}$ is allowed to vary by an amount of order 1/ Uzck). From the CTIO Global Analysis, we have 26x2 = 52 alternative sets of PDF's, and one central set.

Propagation of Experimental "Errors" Results of the Stobal Analysis $\begin{cases} f_1^{(0)}(x, \omega^2) \end{cases} \leftarrow Centrel fit$ { fi (x, Q2) } < atter number fits, ~ PDF varieties K=123.....52 K=1,2 Eigenredm1 { + direction - direction K=3.4 Eigenvecher 2 { + driection i = aircotion K = 21-1,22 Eigenvertor & 5+ direction Accessible at the CTIOWeb site, w the Durham Parton Distributor Generatur

Propagation of Experimental "Errors" Uncertainties $Ideally, (\delta Q)^2 = \sum_{n=1}^{26} \left[Q(a_{2R-1}) - Q(q_3) \right]^2$ cand $(\delta Q)^2 = \sum_{n=1}^{26} \left[Q(a_{2R}) - Q(a_0) \right]^2$ and $(\delta Q)^2 = \sum_{p=1}^{26} \int Q(a_{2k}) - Q(a_{2k-1}) \int Q^2$ This is the "Master Formula" for symmetric errors. But the behavior in the neighborhood of the asymmetric hümum is not quadratic. So, instead, $(S^{\dagger}Q)^{2} = \sum_{k=1}^{26} \left[\max\left(G_{k}^{(4)} - G_{0}, Q_{k}^{(-)} - Q_{0}, 6\right)\right]^{2}$ errors $(\delta^{-}Q)^{2} = \sum_{n=1}^{2C} \left[\max(Q_{0} - Q_{k}^{(+)}, Q_{0} - Q_{k}^{(-)}, 0) \right]^{2}$ $// Q_0 = best fit; Q_2^{(1)} = Q[Q_{2R-1}], Q_2^{(-)} = Q[Q_{2R}]/$ D1 cteqss 11 13

Propagation of Experimental "Errors"

Democracy among Experiments

P is a penalty that prevents *its* experiment from deviating too much (90% C.L.) from the theory.

- Minimize χ^2 .
- Diagonalize the Hessian Matrix.
- Final Result: $f_i^{(0)}(x,Q^2)$ and 52 variations $\{f_i^{(k)}(x,Q^2)\}$ the *eigenvector-basis PDF variations*.

code#	ЕХРТ	Chi2/N	ЕХРТ	Democracy among Experiments
159	Hera-I	1.18	Combined HERA1 NC+CC DIS (2009)	
101	BcdF2pCor	1.12	BCDMS F2 proton (CERN-EP 89-06)	
102	BcdF2dCor	1.05	BCDMS F2 deuteron (CERN-EP 89-170)	
103	Nmcf2pCor	1.7	NMC F2 (Nucl Phys B483, 3, (1997)	
104	NmcRatCor	1.01	NMC F2d/F2p (Nucl Phys B483, 3, (1997)	
108	cdhswf2	0.73	P Berge et al Z Phys C49 187 (1991)	
109	cdhswf3	0.69	P Berge et al Z Phys C49 187 (1991)	
110	ccfrf2.mi	1.04	CCFR F2 (PMI): Phys.Rev.Lett.86:2742-2745 (2001) Yangł	
111	ccfrf3.md	0.37	CCFR xF3: Phys. Rev. Lett. 79: 1213 (1997) Shaevitz&Seli	
201	e605	0.78	E605 dimuon yield PRD, s*dsig/drtaudy (nbarnGeV**2/r	
203	e866f	0.45	E866 final: hep-ex/0103030 -> pd / 2pp	
225	cdfLasy	0.79	W production: decay lepton asymmetry CDF Run-1	
505	cdf1jtCorB	1.64	Run 1b 1800 GEV central jet xsecs to be used with the Cl	
515	d0jetR1B	0.74	D0 inclusive jet xsecs (nb/GeV); Run IB; PRL86,1707(200)	
140	HN+67F2c	1.28	H1 96/97 data on F2c - e+p; hep-ex/0108039 Ref: Phys.	
143	HN+90X0c	1.55	H1 99/00 rsigmac for c-cbar, e+p; hep-ex/0507081,0411	
145	HN+90X0b	0.78	H1 99/00 NC rsigmab for b-bbar, e+p; hep-ex/0507081,0	
156	ZN+67F2c	0.9	ZEUS 96/97 data on F2c - e+p; hep-ex/9908012	
157	ZN+80F2c	0.77	ZEUS 98/00 F2c from e+ p ; hep-ex/0308068	
124	NuTvNuChXN	0.89	NuTev Neutrino Dimuon Reduced xSeccorrected for NI	
125	NuTvNbChXN	0.83	NuTev Neutrino Dimuon Reduced xSeccorrected for NI	
126	CcfrNuChXN	1.25	Ccfr Neutrino Dimuon Reduced xSeccorrected for NLO	
127	CcfrNbChXN	0.77	Ccfr Neutrino Dimuon Reduced xSeccorrected for NLO	
504	cdf2jtCor2	1.56	(run II: cor.err; ptmin & ptmax)	
514	d02jtCor2	1.14	(run II: cor.err; ptmin & ptmax)	
204	e866ppxf	1.24	DY pp: Q^3 dSig/dQ dxf	
260	ZyD02a	0.57	Z rapidity dist. (D0 TeV II-a)	
261	ZyTeV2	1.74	Z rapidity dist. (CDF TeV II)	
227	cdfLasy2	1.45	W production: decay lepton asymmet cteqss 11	try CDF Run-2 16

D1

next

Next ...

Uncertainties of Parton Distribution Functions

• PDFs u, \overline{u} and $u_{valence}$ versus **x** at **Q**² = 10 GeV²

• PDFs u and g , versus x at $Q^2 = 10 \text{ GeV}^2$

The u quark is well constrained by the HERA data; The gluon is not so well known, so it has a wider band.

53 alternate sets of PDFs

• PDFs $u_{valence}$, $d_{valence}$, .05*sea and .05*gluon versus **x** at **Q**² = 10 GeV²

The u quark is better constrained than the d quark.

cteqss 11

53 alternate sets of PDFs

PDF Bounds – u-quark, symmetric

Red curves: Upper and lower boundaries of the uncertainly band, according to the symmetric Master Formula

RATIO PLOT

PDF Bounds – u-quark, asymmetric

Red curves: Upper and lower boundaries of the uncertainly band, according to the Asymmetric Version Master Formula

RATIO PLOT

PDF Bounds – gluon, symmetric

Red curves: Upper and lower boundaries of the uncertainly band, according to the symmetric Master Formula

RATIO PLOT

PDF Bounds – gluon, asymmetric

band, according to the Asymmetric Version Master Formula

Implications for LHC predictions

The search for New Physics will probably require high precision comparisons between standard model predictions and experimental measurements.

We seek discrepancies between standard model theory and data.

The CT10 PDFs – central fit and eigenvector basis variations – will be used in the theory predictions.

Please understand the importance of the Master Formula!

 $(\delta Q)^2 = SUM 0.25 [Q^{(+)} - Q^{(-)}]^2$ summed over the 26 eigenvector directions

cteqss 11

D2