Dimensional Regularization

meets

Freshman E&M

References:

Fredrick Olness, arXiv:0812.3578

M. Hans, Am.J.Phys. 51 (8) August (1983). p.694

C. Kaufman, Am.J.Phys. 37 (5), May (1969) p.560

B. Delamotte, Am.J.Phys. 72 (2) February (2004) p.170

Fred Olness CTEQ Summer School

Pythagorean Theorem

GOAL:

Pythagorean Theorem

METHOD:

Dimensional Analysis

$$A_c = c^2 f(\theta, \phi)$$

$$A_a + A_b =$$

$$a^2 f(\theta, \phi) + b^2 f(\theta, \phi)$$

$$A_a + A_b = A_c$$

$$a^2+b^2=c^2$$

Infinite Line of Charge

$$dV = \frac{1}{4\pi\epsilon_0} \frac{dQ}{r} \qquad \lambda = Q/y$$

$$V = \frac{\lambda}{4\pi\epsilon_0} \int_{-\infty}^{+\infty} dy \frac{1}{\sqrt{x^2 + y^2}} = \infty$$

Note: ∞ can be very useful

Scale Invariance

$$V(kx) = \frac{\lambda}{4\pi \epsilon_0} \int_{-\infty}^{+\infty} dy \frac{1}{\sqrt{(kx)^2 + y^2}}$$

$$= \frac{\lambda}{4\pi \epsilon_0} \int_{-\infty}^{+\infty} d\left(\frac{y}{k}\right) \frac{1}{\sqrt{x^2 + (y/k)^2}}$$

$$= \frac{\lambda}{4\pi \epsilon_0} \int_{-\infty}^{+\infty} dz \frac{1}{\sqrt{x^2 + z^2}}$$

$$= V(x)$$

$$V(kx) = V(x)$$

Note:
$$\infty + c = \infty$$

 $\infty - \infty = c$

Cutoff Method

$$V = \frac{\lambda}{4\pi\epsilon_0} \int_{-L}^{+L} dy \frac{1}{\sqrt{x^2 + y^2}}$$

$$V = \frac{\lambda}{4\pi\epsilon_0} \log \left[\frac{+L + \sqrt{L^2 + x^2}}{-L + \sqrt{L^2 + x^2}} \right]$$

- •V(x) depends on artificial regulator L
- •We cannot remove the regulator L

All physical quantities are independent of the regulator:

Electric Field
$$E(x) = \frac{-dV}{dx} = \frac{\lambda}{2\pi\epsilon_0 x} \frac{L}{\sqrt{L^2 + x^2}} \rightarrow \frac{\lambda}{2\pi\epsilon_0 x}$$

Energy
$$\delta V = V(x_1) - V(x_2) \xrightarrow{} \frac{\lambda}{4 \pi \epsilon_0} \log \left| \frac{x_2^2}{x_1^2} \right|$$

Problem solved at the expense of an extra scale L AND we have a broken symmetry: translation invariance

Broken Translational Symmetry

Shift:
$$y \rightarrow y' = y - c$$

$$y=[+L+c, -L+c]$$

$$V = \frac{\lambda}{4\pi\epsilon_0} \int_{-L+c}^{+L+c} dy \frac{1}{\sqrt{x^2 + y^2}}$$

$$V = \frac{\lambda}{4\pi\epsilon_0} \log \left[\frac{+(L+c) + \sqrt{(L+c)^2 + x^2}}{-(L-c) + \sqrt{(L-c)^2 + x^2}} \right]$$

V(r) depends on y coordinate!!!

Dimensional Regularization

Compute in n-dimensions

$$dy \to d^n y = \frac{d\Omega_n}{2} y^{n-1} dy$$

$$\Omega_n = \int d\Omega_n = \frac{2\pi^{n/2}}{\Gamma(n/2)}$$

$$\Omega_{1,2,3,4} = \{2,2\pi,4\pi,2\pi^2\}$$

$$V = \frac{\lambda}{4\pi\epsilon_0} \int_0^{+\infty} d\Omega_n \frac{y^{n-1}}{\mu^{n-1}} \frac{dy}{\sqrt{x^2 + y^2}}$$

$$V = \frac{\lambda}{4\pi\epsilon_0} \left(\frac{\mu^{2\epsilon}}{x^{2\epsilon}} \frac{\Gamma[\epsilon]}{\pi^{\epsilon}} \right)$$

Dimensional Regularization

All physical quantities are independent of the regulators:

Electric Field
$$E(x) = \frac{-dV}{dx} = \frac{\lambda}{4\pi\epsilon_0} \left[\frac{2\epsilon \mu^{2\epsilon} \Gamma[\epsilon]}{\pi^{\epsilon} x^{1+2\epsilon}} \right] \xrightarrow{\epsilon \to \infty} \frac{\lambda}{2\pi\epsilon_0} \frac{1}{x}$$

Energy
$$\delta V = V(x_1) - V(x_2) \xrightarrow{\epsilon \to \infty} \frac{\lambda}{4\pi \epsilon_0} \log \left| \frac{x_2^2}{x_1^2} \right|$$

Problem solved at the expense of an extra scale μ and regulator ϵ

Translation invariance is preserved!!!

Dimensional Regularization respects symmetries

Renormalization

$$V \rightarrow \frac{\lambda}{4\pi\epsilon_0} \left[\frac{1}{\epsilon} + \ln\left[\frac{e^{-\gamma_E}}{\pi}\right] + \left[\frac{\mu^2}{x^2}\right] \right]$$
 Original

$$V \to \frac{\lambda}{4\pi\epsilon_0} \left[\frac{1}{\epsilon} + \ln\left[\frac{e^{-\gamma_E}}{\pi}\right] + \left[\frac{\mu^2}{x^2}\right] \right]$$
 MS

$$V \rightarrow \frac{\lambda}{4\pi\epsilon_0} \left[\frac{1}{\epsilon} + \ln\left[\frac{e^{-\gamma_E}}{\pi}\right] + \left[\frac{\mu^2}{x^2}\right] \right]$$
 MS-Bar

$$V_{\overline{MS}}(x_1) - V_{\overline{MS}}(x_2) = \delta V = V_{MS}(x_1) - V_{MS}(x_2)$$

$$V_{\overline{MS}}(x_1) - V_{\overline{MS}}(x_2) \neq \delta V \neq V_{\overline{MS}}(x_1) - V_{\overline{MS}}(x_2)$$

Connection to QFT

$$V \to \frac{\lambda}{4\pi \epsilon_0} \left[\frac{1}{\epsilon} + \ln \left[\frac{e^{-\gamma_E}}{\pi} \right] + \left[\frac{\mu^2}{x^2} \right] \right]$$

$$\frac{D(\epsilon)}{\epsilon} = \left(\frac{4\pi\mu^2}{Q^2}\right) \frac{\Gamma(1-\epsilon)}{\Gamma(1-2\epsilon)} \rightarrow \frac{1}{\epsilon} + \ln\left[\frac{e^{-\gamma_E}}{4\pi}\right] + \left[\frac{\mu^2}{Q^2}\right]$$

Dimensional Transmutation

$$V(r) \sim \frac{1}{r^{D-2}}$$

$$E(r) \sim \frac{1}{r^{D-1}}$$

Renormalization Group Equation

$$\sigma = f \otimes \omega$$

$$\frac{d\sigma}{d\mu} = 0 = \frac{df}{d\mu} \ \omega + f \ \frac{d\omega}{d\mu}$$

$$\frac{1}{\tilde{f}} \frac{d\tilde{f}}{d\ln[\mu]} = -\gamma = -\frac{1}{\tilde{\omega}} \frac{d\tilde{\omega}}{d\ln[\mu]}$$

$$\frac{d\tilde{f}}{d\ln[\mu]} = -\gamma \ \tilde{f} \qquad \frac{df}{d\ln[\mu]} = P \otimes f$$

$$\tilde{f} \sim \mu^{-\gamma}$$

Recap

Regulator provides unique definition of V, f, ω

```
Cutoff regulator L: simple, but does NOT respect symmetries
```

Dimensional regulator ε:

respects symmetries: translation, Lorentz, Gauge invariance introduces new scale μ

All physical quantities (E, dV, σ) are independent of the regulator Renormalization group equation: $d\sigma/d\mu=0$

We can define renormalized quantities (V,f,ω)

Renormalized (V,f,ω) are scheme dependent and arbitrary Physical quantities (E,dV,σ) are unique and scheme independent if we apply the scheme consistently