\int^{∞} tandard Model of Elementary Particles

June 2008
Masses are in MeV

0
0
$-91,188$
± 1
$+$

81,400

In these lectures

\square Use an example, Z production at DO to show how a data analysis is actually done.
\square Theory has been covered by Pavel Nadolsky
\square Lecture by W. Smith next week will say more about triggers/measurements at the LHC
\square Neutrinos and DIS in the discussion

Warning!

\square Plots are mixed and matched between
$\square Z \rightarrow \mu \mu$ Gavin Hesketh and Andrew Kobach
$\square Z \rightarrow$ ee - Lei Wang, Hang Yin and Junjie Zhu
\square Jets - Levan Babukhadia and Mikko Voutilainen

HEP Units

Energy is measured in eV, the energy picked up by an electron in going through IV potential.

1 GeV is 10^{9} electron volts or
$1 \mathrm{GeV}=1.602 \times 10^{-10}$ Joules

Momentum is measured in $\mathrm{GeV} / \mathrm{c}$
Mass is measured in $\mathrm{GeV} / \mathrm{c}^{2}$
so $M^{2} c^{4}=E^{2}-c^{2} p^{2}$ can be calculated with ' $\mathrm{c}=1$ '
$M($ proton $)=938 \mathrm{MeV} / \mathrm{c}^{2}$
M (electron) $=0.511 \mathrm{MeV} / \mathrm{c}^{2}$
$\gamma=959$ for a 900 GeV Proton
$\beta=0.9999994$

Example: The proton energy in the Tevatron is 960 GeV

There are 10^{12} protons in the machine. $\mathrm{E}_{\text {beam }}=960 \mathrm{GeV}^{*} 10^{12}=1.7 \times 10^{5} \mathrm{~J}$

More on Units

The speed of light is
$3 \times 10^{8} \mathrm{~m} / \mathrm{sec}$

For a particle travelling at ' c ' 1 nsec ~ 1 foot.

SVX Display
CDF

Jet 3

Jet 1
$l_{1}=4.5 \mathrm{~mm}$
$t_{2}=2.2 \mathrm{~mm}$
Jet 4
24 September, 1992
run \#4075s. avent 44414

Example:

B meson as a lifetime in rest frame of τ

$$
=1.5 \times 10^{-12} \mathrm{sec}
$$

and mass of $\sim 5 \mathrm{GeV} / \mathrm{c}^{2}$
$N(t)=N_{0} e^{-t / \tau}$ in rest frame
a 50 GeV B meson has $\gamma=10$
and time-dilated lifetime of
$t=\gamma \tau \sim 1.5 \times 10^{-11} \mathrm{sec}$

It will travel $\sim 4.5 \mathrm{~mm}$ on average.

Even more on Units

Quantum mechanics gives particles
wavelengths related to their energy
$\lambda=\mathrm{hc} / \mathrm{E}$

A particle needs $E>h c / r$ to probe size scale r.
hbar $=197 \mathrm{MeV}-\mathrm{fm}$
$\square \quad 1 \mathrm{fm}=10^{-15} \mathrm{~m}$
\square Nucleii are 1-10 fm in size. This is the range of the strong force.
\square Particles of E > 200 MeV can probe nuclear scales
$\square 900 \mathrm{GeV}$ proton can probe
$r \cong 197 \mathrm{MeV}-\mathrm{fm} / 900 \mathrm{GeV}$
$\sim 2 \times 10^{-19} \mathrm{~m}$

Protons and Anti-protons

\square All physics at hadron colliders starts with the collision of a proton with an antiproton (at the Tevatron) or another proton at the LHC.
\square Protons are made up of quarks, anti-quarks and gluons collectively called Partons

7/12/11

Proton-AntiProton Collisions

But the partons that collide only carry part of the proton momentum

7/12/11

Proton Anti-Proton Collisions

\square When a proton and anti-proton collide, the hard part of the collision is actually two partons, which carry fractions x_{1} and x_{2} of the proton/ antiproton momenta

$$
\begin{gathered}
E_{\text {hard }}=x_{1} E_{p}+x_{2} E_{\bar{p}}=\left(x_{1}+x_{2}\right) E_{\text {beam }} \\
\vec{P}_{\text {hard }}=\vec{P}_{p}+\vec{P}_{\bar{p}}=\left(0,0, x_{1}-x_{2}\right) E_{\text {beam }} \\
M_{\text {hard }}^{2}=E_{\text {hard }}^{2}-\left|\vec{P}_{\text {hard }}\right|^{2}=4 x_{1} x_{2} E_{\text {beam }}^{2}
\end{gathered}
$$

Can get anything between $0-1800 \mathrm{GeV} / \mathrm{c}^{2}$

W and Z production

10/30/2009 - Louisville

Parts of a cross section measurement

Cross Section

 Detector

 Detector
 $N_{\text {observed }}=\Delta t \times L \times \varepsilon \times \mathrm{A} \times \sigma+\mathrm{B}$

Background

L is the Luminosity
$\varepsilon \times A$ is the efficiency X acceptance
B is the Background
σ is the cross section

Physical
Cross Section

The Cross Section will be the same for any experiment with the same physical conditions

Unit of Cross Section is area essentially the effective scattering size for the process

First find you signal

\square Easiest way to find a Z boson is to look for:
\square Two leptons opposite sign leptons.
\square Tau's are hard
\square Neutrinos are harder
\square B mesons are harder
\square Light quarks are really

positron

7/12/11

First build a detector

DØ Detector

10/30/2009 - Louisville

Side view of the DO tracker/calorimeter

How do we detect particles?

\square Single charged particles
\square Electrons and Photons
\square Quarks and Gluons
\square Neutrinos

Particle parameters

\square A trajectory has 6 parameters
$\square x, y, z$ of starting position
\square Polar angle θ
\square Azimuthal angle ϕ
\square Particle momentum p

7/12/11

Charged particle detection

Detection of charged particles

When a relativistic charged particle passes through matter, it knocks electron out of atoms as it passes by. This is what we call 'Energy Loss' and it is reasonably independent of the particle or material type.

$\mathrm{dE} / \mathrm{dx} \sim 2 \mathrm{MeV} / \mathrm{cm} \mathrm{x} \rho\left[\mathrm{gr} / \mathrm{cm}^{3}\right]$

this energy shows up as low energy electrons and photons and can be detected optically or electronically.

Silicon detectors find (x, y, z)

$$
\longleftarrow \sim 64 \mathrm{~cm}-
$$

Silicon detectors - CDF SVXIIb
$\sim 1 \mathrm{M}$ channels

Detect ~ 2000 e in a $350 \mu \mathrm{~m}$ thick detector
Can measure x, y, z to $10-20 \mu \mathrm{~m}$
7/12/11

Magnetic Tracking

Measure transverse momentum, $\mathrm{p}_{\mathrm{T}}, \theta, \phi$

Magnetic tracking measures the curvature of a track.

The curvature is related to the momentum perpendicular to the field B in Tesla

$$
k=0.3 Q \times B / p_{T}
$$

and has approximately Gaussian distributed errors.

$$
\begin{aligned}
& \delta k \approx \frac{\sigma}{L^{2}} \sqrt{720 /(N+4)} \\
& \frac{\delta p_{T}}{p_{T}} \text { scales as } \\
& p_{T} \times \frac{1}{Q} \times \frac{\sigma}{L^{2}} \times \frac{1}{B} \times \frac{1}{\sqrt{N}}
\end{aligned}
$$

and is not Gaussian.
7/12/11

Electron and photon detection

electron

$\mathrm{Q}=-e$
$\mathrm{m}=0.511 \mathrm{MeV} / \mathrm{c}^{2}$
stable
couples to γ, W, Z

7/12/11

Electromagnetic calorimetry

electron bremsstrahlungs,
photon pair-produces, electrons radiate, products do the same. Length scale for one interaction is X0 $\sim 0.3 \mathrm{~cm}$ in lead, 9 cm in silicon
Shower length ~ X0 $\log (\mathrm{ZE})$

Sampling Calorimete

Combine calorimetry and tracking

Measure :
Energy and z- ϕ of shower
P_{T} and θ, ϕ of track
$x-y-z$ of vertex
Know radius R of calorimeter

Derive:
angle θ of shower $=\tan ^{-1} \mathrm{R} / \Delta \mathrm{z}$
P_{T} of shower relative to beam $=\mathrm{E} \sin \theta$
$\eta=-\ln \tan \theta / 2$

Quark and Gluon detection

$\stackrel{\text { 䨗 }}{\text { 数 }} \square$ Quarks and gluons are confined.
\square Energetically easier to make new quarks than to separate them.
\square If you try to knock one out of a proton
\square You get a "jet" of particles

Parton and Particle view

Hadron calorimetry

Sampling Calorimeter

$$
\frac{\delta E}{E} \approx 0.50 \frac{1}{\sqrt{(E, G e V)}}
$$

Uranium
Liquid Argon

n

Calorimeter cells and jets

`Typical' Event in the D0 Detector

Missing ET 8.4 GeV

$$
\hat{\mathrm{s}}=1187 \mathrm{GeV}
$$

W and Z production

10/30/2009 - Louisville

QCD processes at hadron colliders

Collider kinematics

\square The initial state is made up of colliding partons.

Rapidity continued

$$
\begin{aligned}
y & \equiv \frac{1}{2}\left(\frac{E+p_{\|}}{E-p_{\|}}\right) \\
E & =\frac{1}{2} e^{y} \sqrt{m^{2}+p_{T}^{2}}
\end{aligned}
$$

Lorentz Invariant Phase Space can be written as

$$
\frac{d^{3} p}{2 E}=d \phi d \cos \theta p^{2} d p=d \phi d y d p_{T}^{2}=2 \pi d y d p_{T}^{2}
$$

In frame where $p_{z}=0$,

$$
\delta y \approx \delta \theta+\mathcal{O}(\delta \theta)^{3}
$$

equivalent to small variations in the polar angle θ.

Pseudo-rapidity

For massless particles the rapidity y reduces to the pseudo-rapidity:

7/12/11

Proton antiProton collision

7/12/11

