

7/12/11

H. Schellman – CTEQ2011

In these lectures

- Use an example, Z production at D0 to show how a data analysis is actually done.
- Theory has been covered by Pavel Nadolsky
- Lecture by W. Smith next week will say more about triggers/measurements at the LHC
- Neutrinos and DIS in the discussion

Warning!

CTEQ2011 Schellman

Plots are mixed and matched between

- $\Box Z \rightarrow \mu \mu$ Gavin Hesketh and Andrew Kobach
- \square Z \rightarrow ee Lei Wang, Hang Yin and Junjie Zhu
- Jets Levan Babukhadia and Mikko Voutilainen

HEP Units

- Energy is measured in eV, the energy picked up by an electron in going through 1V potential.
- 1 GeV is 10⁹ electron volts or
- $1 \text{ GeV} = 1.602 \text{ x } 10^{-10} \text{ Joules}$

Momentum is measured in GeV/c

Mass is measured in GeV/c^2

so $M^2c^4 = E^2 - c^2p^2$ can be calculated with 'c=1' $M(\text{proton}) = 938 \text{ MeV}/c^2$ $M(\text{electron}) = 0.511 \text{ MeV}/c^2$

 $\gamma = 959$ for a 900 GeV Proton $\beta = 0.9999994$

Example: The proton energy in the Tevatron is 960 GeV

There are 10^{12} protons in the machine. $E_{beam} = 960 \text{ GeV}*10^{12} = 1.7 \times 10^5 \text{ J}$

CTEQ2011 Schellman

More on Units

The speed of light is

 $3 \times 10^{8} \text{ m/sec}$

For a particle travelling at 'c'

1 nsec \sim 1 foot.

Example:

B meson as a lifetime in rest frame of τ = 1.5 x 10⁻¹² sec

and mass of $\sim 5 \; GeV/c^2$

 $N(t) = N_0 e^{-t/\tau}$ in rest frame

a 50 GeV B meson has $\gamma = 10$ and time-dilated lifetime of $t = \gamma \tau \sim 1.5 \times 10^{-11}$ sec

It will travel \sim 4.5 mm on average.

CTEQ2011 Schellman

Even more on Units

Quantum mechanics gives particles wavelengths related to their energy

 $\lambda = hc/E$

A particle needs E > hc/r to probe size scale r.

hbar = 197 MeV - fm

 \Box 1 fm = 10⁻¹⁵ m

- Nucleii are 1-10 fm in size. This is the range of the strong force.
- Particles of E > 200 MeV can probe nuclear scales
- 900 GeV proton can probe
 r ≅ 197 MeV fm /900 GeV
 ~ 2 x 10⁻¹⁹ m

Protons and Anti-protons

- All physics at hadron colliders starts with the collision of a proton with an antiproton (at the Tevatron) or another proton at the LHC.
- Protons are made up of quarks, anti-quarks and gluons collectively called Partons

Proton-AntiProton Collisions

 Collide a 980 GeV proton with a 980 GeV antiproton going in the opposite direction

$$E_{tot} = E_p + E_{pbar} = 1960 \, GeV$$

$$\vec{P}_{tot} = \vec{P}_p + \vec{P}_{pbar} = 0$$

$$Q_{tot} = 0$$

$$Mc^2 = \sqrt{s} = \sqrt{E_{tot}^2 - |c\vec{P}_{tot}|^2} = 1960 \, GeV$$

But the partons that collide only carry part of the proton momentum

Proton Anti-Proton Collisions

When a proton and anti-proton collide, the hard part of the collision is actually two partons, which carry fractions x₁ and x₂ of the proton/ antiproton momenta

$$E_{hard} = x_1 E_p + x_2 E_{\overline{p}} = (x_1 + x_2) E_{beam}$$

$$\vec{P}_{hard} = \vec{P}_p + \vec{P}_{\overline{p}} = (0, 0, x_1 - x_2) E_{beam}$$

$$M_{hard}^2 = E_{hard}^2 - |\vec{P}_{hard}|^2 = 4x_1 x_2 E_{beam}^2$$

Can get anything between 0 -1800 GeV/c^2

W and Z production

10/30/2009 - Louisville

Parts of a cross section measurement

The Cross Section will be the same for any experiment with the same physical conditions

Unit of Cross Section is area essentially the effective scattering size for the process

7/12/11 1

First find you signal

- Easiest way to find a Z boson is to look for:
- Two leptons opposite sign leptons.
 - Tau's are hard
 - Neutrinos are harder
 - B mesons are harder
 - Light quarks are really hard

7/12/11

First build a detector

10/30/2009 - Louisville

Side view of the D0 tracker/calorimeter

How do we detect particles?

20

- □ Single charged particles
- Electrons and Photons
- Quarks and Gluons
- Neutrinos

Particle parameters

Ζ.

- A trajectory has 6 parameters
- \Box x,y,z of starting position
- $\hfill\square$ Polar angle θ
- \Box Azimuthal angle ϕ
- Particle momentum p

Charged particle detection

Detection of charged particles

When a relativistic charged particle passes through matter, it knocks electron out of atoms as it passes by. This is what we call 'Energy Loss' and it is reasonably independent of the particle or material type.

$dE/dx \sim 2~MeV/cm~x~\rho~[gr/cm^3]$

this energy shows up as low energy electrons and photons and can be detected optically or electronically.

Silicon detectors find (x,y,z)

ISI

23

Silicon Detector

Joo um thick de

thick detector Can measure x,y, z to 10-20 μm

Magnetic Tracking

Measure transverse momentum, p_T , $\theta_{,} \phi$

Magnetic tracking measures the curvature of a track.

The curvature is related to the momentum perpendicular to the field B in Tesla

$$k = 0.3Q \times B/p_T$$

and has approximately Gaussian distributed errors.

$$\delta k \approx \frac{\sigma}{L^2} \sqrt{720/(N+4)}$$

 $\frac{\delta p_T}{p_T}$ scales as

$$p_T \times \frac{1}{Q} \times \frac{\sigma}{L^2} \times \frac{1}{B} \times \frac{1}{\sqrt{N}}$$

and is not Gaussian.

Electron and photon detection

25						
o 🗸 CTEQ2011 Schellman	γ 	m = 0 $Q=0$ couples to c force carrier no strong or e	harge for Electro-Magnetism weak interaction e ⁻ photon-electron scatter	е е	electron Q = -e m = 0.511 stable couples to e $\gamma *$ e	n MeV/ c^2 γ, W, Z
γ	\sim	e y*Sz	e pair-production of electron/positron in field of a nucleus e ⁺	e	e e Ze 7/12/11	γ bremsstrahlung

Electromagnetic calorimetry

electron bremsstrahlungs,

photon pair-produces, electrons radiate, products do the same. Length scale for one interaction is

 $X0 \sim 0.3$ cm in lead, 9 cm in silicon Shower length ~ $X0 \log(ZE)$

Electrons knocked loose in the Argon are detected $\approx 0.15 \frac{1}{\sqrt{(E,GeV)}}$ $\frac{\delta E}{E}$

Combine calorimetry and tracking

Quark and Gluon detection

- Quarks and gluons are confined.
- Energetically easier to make new quarks than to separate them.
- If you try to knock one out of a proton
- You get a "jet" of particles

Hadron calorimetry

CTEQ2011 Schellman

30

Calorimeter cells and jets

`Typical' Event in the D0 Detector

W and Z production

10/30/2009 - Louisville

QCD processes at hadron colliders

Collider kinematics

CTEQ2011 Schellman

- The initial state is made up of colliding partons.
- The initial state has unknown momentum in the z direction
- Differences in rapidity, y, are invariant under boosts along z.

$$R = \sqrt{\Delta y^2 + \Delta \phi^2}$$

 Defines an invariant distance between particle

Rapidity continued

36

$$y \equiv \frac{1}{2} \left(\frac{E + p_{\parallel}}{E - p_{\parallel}} \right)$$
$$E = \frac{1}{2} e^{y} \sqrt{m^{2} + p_{T}^{2}}$$

Lorentz Invariant Phase Space can be written as

$$\frac{d^3p}{2E} = d\phi \ d\cos\theta \ p^2 dp = d\phi dy dp_T^2 = 2\pi dy dp_T^2$$

In frame where $p_z = 0$,

$$\delta y \approx \delta \theta + \mathcal{O}(\delta \theta)^3$$

equivalent to small variations in the polar angle θ .

Pseudo-rapidity

Proton antiProton collision

Detecting neutrinos

e Infer neutrino direction from momentum balance Only works perp to beam V PT balance

