## Find a signal

$$\begin{split} \mathbf{N_{obs}}(\mathbf{p_T}, \boldsymbol{\phi}, \boldsymbol{\eta}, \mathbf{z}) &= B + \sigma A \epsilon \int \mathcal{L} dt \\ &= B(p_T, \boldsymbol{\phi}, \boldsymbol{\eta}, z, \mathcal{L}) + \\ &\int \sigma(p_T^0, \boldsymbol{\phi}^0, \boldsymbol{\eta}^0) \times \mathcal{L}(t, z) \times A(p_T^0, \boldsymbol{\phi}^0, \boldsymbol{\eta}^0, z^0) \times \\ &R(p_T^0, \boldsymbol{\phi}^0, \boldsymbol{\eta}^0, z^0; p_T, \boldsymbol{\phi}, \boldsymbol{\eta}, z, \mathcal{L}) \times \\ &\epsilon(p_T, \boldsymbol{\phi}, \boldsymbol{\eta}, z, \mathcal{L}) dp_T^0 d\boldsymbol{\phi}^0 d\boldsymbol{\eta}^0 dt \end{split}$$

- $\sigma(X_{\alpha}...)$  is the true cross section as a function of true variables  $X_{a}...$
- $\mathcal{L}(t,z)$  is the luminosity as a function of time.
- $A(X_{\alpha}..)$  is the geometrical Acceptance as a function of true variables.
- $R(X_{\alpha}...,\mathcal{L};X_{a}...)$  is the Resolution function which smears true  $X_{\alpha}...$  to detected  $X_{a}...$
- $\epsilon(X_a..., \mathcal{L})$  is the probability that a particle is actually detected by a physical detector.
- $B(X_a..., \mathcal{L})$  is the background

## Look for Z's In our detector



# $Z \rightarrow ee$



This ZO has high transverse momentum!

10/30/2009 – Louisville

Electrons have a track and EM energy

#### A $Z^0 \rightarrow e^+e^- + jjevent$



 $M_{ee} \sim 91 \text{ GeV/c}^2$ 

Jets have many tracks and EM+Hadron energy



End view

ouisville

#### What do we expect

$$\frac{d\sigma(f\bar{f} \to e^- e^+)}{d\cos\theta^*} = (1/128\pi\hat{s})[(|A_{LL}|^2 + |A_{RR}|^2)(1 + \cos\theta^*)^2 + (|A_{LR}|^2 + |A_{RL}|^2)(1 - \cos\theta^*)^2] \quad .$$

$$\frac{d\sigma(gg \to gg)}{d\cos\theta^*} \propto \frac{1}{\sin^4\frac{\theta}{2}^*}$$

The leptons are more isotropic than the backgrounds

CTEQ2011 Schellman 7/12/11

#### Jacobian peak



CTEQ2011 Schellman 7/12/11

## Now let's do some data analysis

I happen to have a di-electron root file lying around.

CTEQ2011 Schellman 7/12/11

#### Invariant mass of raw electron pairs



## After quality cuts

9



#### Phi

10



## Detector $\eta$





CTEQ2011 Schellman 7/12/11

Ζ.

## PT of leptons



#### Z position of vertex in cm

I\_z0 PK I z0 PK 569750 **Entries** 0.01386 Mean RMS 17.57 5000 4000 3000 2000 1000 -100 -60 -80 -40 -20 20 40 60 80 100 0 S A V I **UCHONING** z<sub>0</sub>, cm

14

## The signal



## Luminosity

16

$$\begin{split} N_{obs}(p_T,\phi,\eta,z) &= B + \sigma A\epsilon \int \mathcal{L} dt \\ &= B(p_T,\phi,\eta,z,\mathcal{L}) + \\ &\int \sigma(p_T^0,\phi^0,\eta^0) \times \mathcal{L}(t,z) \times A(p_T^0,\phi^0,\eta^0,z^0) \times \\ &R(p_T^0,\phi^0,\eta^0,z^0;p_T,\phi,\eta,z,\mathcal{L}) \times \\ &\epsilon(p_T,\phi,\eta,z,\mathcal{L}) dp_T^0 d\phi^0 d\eta^0 dt \end{split}$$

 $\sigma(X_{\alpha}...)$  is the true cross section as a function of true variables  $X_{a}...$ 

- $\mathcal{L}(t,z)$  is the luminosity as a function of time.
- $A(X_{\alpha}..)$  is the geometrical Acceptance as a function of true variables.
- $R(X_{\alpha}..., \mathcal{L}; X_{a}...)$  is the Resolution function which smears true  $X_{\alpha}...$  to detected  $X_{a}...$
- $\epsilon(X_a..., \mathcal{L})$  is the probability that a particle is actually detected by a physical detector.
- $B(X_a..., \mathcal{L})$  is the background CTEQ2011 Schellman 7/12/11

## Luminosity

Luminosity is a measure of how often protons/antiprotons get close enough to interact

$$L = f \frac{n_1 n_2}{4\pi s_x s_y}$$





- f= beam crossing frequency 396 nsec
- n= protons/bunch 10<sup>11</sup>
- s = transverse beam size = 0.0001 m
- $L \sim 10^{32} \text{ crossings/cm}^2/\text{sec}$

# **Typical Cross Sections**

Total proton/antiproton cross section is  $7x10^{-30} m^2$ 

Unit of Barns (b) =  $10^{-28}$  m<sup>2</sup>

 $\sigma(p\overline{p} \Rightarrow X) \approx 70 \, mb$ 

Run II L  $\sim 10^{32}\,crossings/cm^2/sec$ 

N/sec ~  $\sigma L = 7 \times 10^6$ /sec

> 3 interactions per beam crossing!

Cross Section for top production:

$$\sigma(p\overline{p} \Longrightarrow t\overline{t} + X) \approx 5\,p\,b$$

This is around  $1/10^{10}$  of total

N/sec ~  $\sigma L = 5 \times 10^{-4}$ /sec

A couple were created/hour but we only saw a small %

7/12/11

CTEQ2011 Schellman

#### Luminosity



CTEQ2011 7/12/11

## Not easy to do this

- Hard to measure currents accurately
- the beam density depends on the intrinsic beam lengths and widths and on the local beam optics.

$$\int = 2 f_{rev} \iiint \rho_1 \rho_2 \, dx \, dy \, dz \, d(ct)$$

$$\rho(x,y,z,ct) = \frac{N_1}{\sqrt{2\pi} \sigma_x} \quad \exp[-(x+\Delta x/2)^2/2 \sigma_x^2]$$

$$\frac{1}{\sqrt{2\pi} \sigma_y} \quad \exp[-(y+\Delta y/2)^2/2 \sigma_y^2]$$

$$\frac{1}{\sqrt{2\pi} \sigma_z} \quad \exp[-(z+ct-ct_0)^2/2 \sigma_z^2]$$

$$CTEQ2011 \quad 7/12/11$$

You can measure the beam spot size as a function of distance along the beam to get  $\sigma_x(z)$ ,  $\sigma_y(z)$ 

21

- Also need estimates of beam current
  - σ<sub>z</sub> can be estimated from beam timing or N(z)
  - Estimates are good to
     ~10% at the Tevatron.
  - The beam position and size vary with time as the beam "heats up" and "cools down"



7/12/11

## $\mathcal{L}(z)$ distribution for beam collisions



CTEQ2011 7/12/11

## Alternate method

- 23
- Measure the total inelastic proton antiproton cross section in a special run.
- Count inelastic collisions as you run your regular experiment.
- Use those to get an estimate of your integrated luminosity.

#### DO Luminosity System



٠



Count fraction, P(0), of beam crossings without inelastic interactions.

CTEQ2011 7/12/11

#### Method

- $\Box$  Measure  $\mu$ , the average number of interactions/crossing
- Apply acceptance and efficiency corrections and then compare to the inelastic pbar p total cross section to get the luminosity integrated over the 396 nsec crossing time.
- $\hfill\square$  Typical  $\mu$  are 1-10 at the Tevatron

## Interactions/crossing



#### Luminosity errors

- 27
- □ The luminosity measurement has 3 sources of error
  - The inelastic cross section is only known to 3-4%
  - The luminosity detector is not perfect... 3-4%
  - Bookkeeping you have to match the luminosity data stream up with your real data.
    - What happens if you lose a data tape? Flag data as bad?
    - We track this by matching "luminosity blocks", 1 minute periods of data.

# So far we

- Have a signal
- Have a normalization
- □ How do we find backgrounds?
- How do we correct for detector efficiency and resolution?
- □ How do we correct for Acceptance?

## Estimating backgrounds

- Simulate and subtract
  - Requires good modeling
  - Hard to normalize absolutely
- Simulate and fit
  - Template method
- Vary cuts matrix method

### Simulated backgrounds





#### Background from template fit



#### Vary cuts – matrix method

Vary cuts

$$N_{loose} = \epsilon_{loose} \ N_e + f_{loose} \ N_{QCD}$$

$$N_{tight} = \epsilon_{tight} N_e + f_{tight} N_{QCD}$$

 $\epsilon$  is efficiency for signal  $\approx$  70-100%. f is probability to create a fake  $\approx$  0.1-10%

$$N_e \approx \frac{f_{tight} N_{loose} - f_{loose} N_{tight}}{\epsilon_{loose} f_{tight} - \epsilon_{tight} f_{loose}}$$

# Efficiency

33

$$\begin{split} \mathbf{N_{obs}}(\mathbf{p_T}, \phi, \eta, \mathbf{z}) &= B + \sigma A \epsilon \int \mathcal{L} \mathbf{dt} \\ &= B(p_T, \phi, \eta, z, \mathcal{L}) + \\ &\int \sigma(p_T^0, \phi^0, \eta^0) \times \mathcal{L}(\mathbf{t}, \mathbf{z}) \times A(p_T^0, \phi^0, \eta^0, z^0) \times \\ &R(p_T^0, \phi^0, \eta^0, z^0; p_T, \phi, \eta, z, \mathcal{L}) \times \\ &\epsilon(\mathbf{p_T}, \phi, \eta, \mathbf{z}, \mathcal{L}) dp_T^0 d\phi^0 d\eta^0 dt \end{split}$$

- $\sigma(X_{\alpha}...)$  is the true cross section as a function of true variables  $X_{a}...$  $\mathcal{L}(t, z)$  is the luminosity as a function of time.
- $A(X_{\alpha}..)$  is the geometrical Acceptance as a function of true variables.
- $R(X_{\alpha}...,\mathcal{L};X_{a}...)$  is the Resolution function which smears true  $X_{\alpha}...$  to detected  $X_{a}...$
- $\epsilon(\mathbf{X_a}...,\mathcal{L}) \text{is the probability that a particle is actually detected by a physical detector.}$

$$B(X_a..., \mathcal{L})$$
 is the background CTEQ2011 Schellman 7/12/11

# Efficiency

#### First pass

Define an "acceptance region" where you would expect your detector to work

(say |η|<3, p<sub>T</sub> > 10 GeV)

- Take a particle level MC like pythia
- Reweight kinematics to reflect best knowledge
- Trace particles through detector
- Overlay noise and interactions from other events
- Count how often you reconstruct the particle

#### The raw simulation isn't good enough

Use scale factors

- Find two ways of measuring something
- Compare the two in data and in simulation
- Correct by the ratio

$$\epsilon(p_T, z) = \frac{(P \cdot T)_{data} / T_{data}}{(P \cdot T)_{sim} / T_{sim}} \epsilon_{sim}(p_T, z)$$

CTEQ2011 Schellman 7/12/11

# Tag and probe



- Find a really good electron (TAG)
- □ Find a track which
- might be from a Z decay (PROBE)
- Did you find a shower

Do the same for a shower (PROBE) that might have a track



# Typical electron efficiencies

#### **Efficiency versus Instantaneous Luminosity**



#### Resolutions

Step 1 – Simulate
Step 2 – Cry in frustration
Step 3 – use the data
Tune to the Z peak width or
Compare energy of back to back jets





#### Check the tuned full detector simulation





CTEQ2011 Schellman 7/12/11

#### Curvature check

42



CTEQ2011 Schellman 7/12/11

- Ok, looks like we understand our efficiencies and resolutions pretty well in our simulation
- Correct data for backgrounds and efficiency
   Now on to unfolding the resolution effects

#### Unfolding the resolution effects

$$\begin{split} \mathbf{N_{obs}}(\mathbf{p_T}, \phi, \eta, \mathbf{z}) &= B + \sigma A \epsilon \int \mathcal{L} \mathbf{dt} \\ &= B(p_T, \phi, \eta, z, \mathcal{L}) + \\ &\int \sigma(p_T^0, \phi^0, \eta^0) \times \mathcal{L}(\mathbf{t}, \mathbf{z}) \times A(p_T^0, \phi^0, \eta^0, z^0) \times \\ &\mathbf{R}(\mathbf{p_T^0}, \phi^0, \eta^0, \mathbf{z}^0; \mathbf{p_T}, \phi, \eta, \mathbf{z}, \mathcal{L}) \times \\ &\epsilon(\mathbf{p_T}, \phi, \eta, \mathbf{z}, \mathcal{L}) dp_T^0 d\phi^0 d\eta^0 dt \end{split}$$

- $\sigma(X_{\alpha}...)$  is the true cross section as a function of true variables  $X_{a}...$
- $\mathcal{L}(t, z)$  is the luminosity as a function of time.
- $A(X_{\alpha}..)$  is the geometrical Acceptance as a function of true variables.
- $\mathbf{R}(\mathbf{X}_{\alpha}...,\mathcal{L};\mathbf{X}_{\mathbf{a}}...)$  is the Resolution function which smears true  $X_{\alpha}...$  to detected  $X_{a}...$
- $\epsilon(\mathbf{X_a}..., \mathcal{L})$  is the probability that a particle is actually detected by a physical detector.
- $B(X_a..., \mathcal{L})$  is the background

# **Resolution Smearing**



### Unfolding method 1 - matrix

Invert the resolution matrix

$$N_a = B_a + \epsilon_a \mathbf{R}_{a\alpha} A_\alpha \sigma_\alpha \int \mathcal{L}dt$$

Invert

$$\sigma_{\alpha} = \frac{1}{A_{\alpha}} R^{-1} \alpha a \frac{(N_a - B_a)}{\epsilon_a} \int \mathcal{L} dt$$

Common to regularize the matrix

- Improved stability
- Bias towards smoothing the function

# Smearing Matrix $R(X_{\alpha} - X_{\alpha})$



## Unfolding method 2 - Ansatz

 $\square$  Convolute a trial unsmeared function with the resolution as a function of (pt,  $\eta)$ 

$$f(p_T, \eta) = N_0 \left(\frac{p_T}{100 \text{ GeV/c}}\right)^{-\alpha} \left(1 - \frac{2p_T \cosh(y_{\min})}{\sqrt{s}}\right)^{\beta} \exp\left(-\gamma p_T\right).$$

- □ Fit this convoluted "smeared" function to your data
- Correct data by the ratio of the unsmeared to smeared "ansatz" function.

$$R(X_{\alpha} \to X_{a}) = \delta_{\alpha a} \frac{\text{Smeared}(X_{a})}{\text{Unsmeared}(X_{\alpha})}$$

This works if a simple functional form can fit your data well and the resolution function is well understood.

# **Ansatz fit** $R(X_{\alpha} \to X_{a}) = \delta_{\alpha a} \frac{\text{Smeared}(X_{a})}{\text{Unsmeared}(X_{\alpha})}$



Figure 49: Illustration of the data unfolding procedure in the rapidity region  $|\eta| < 0.5$ .

#### Now for the final step: Acceptance

- Correct from the region we cover to the rest of phase space
- Why do this instead of including in the "efficiency"?
  - This correction is big factor of 3 for Z production  $\epsilon \sim 40\%$ , A ~ 30%
  - Only depends on generator level quantities
    - Can use the best NNLO simulations

# D0 1 fb<sup>-1</sup> sample



#### Z Rapidity raw and generated



We actually define acceptance as  $|\eta_e|<1$  or 1.5  $<|\eta_e|<$  2.4 and  $p_T>$  25 GeV

53

Cut cross section in electron rapidity and pt



#### Fully corrected normalized distributions



#### PHYSICAL REVIEW D 76, 012003 (2007)





56  $\frac{d\sigma^{h_1h_2}}{dQ^2 dp_T^2 dy \, d\Omega^*} = \sum_{a,b} \int dx_1 \, dx_2 \left( f_a^{h_1}(x_1, \mu_F^2) f_b^{h_2}(x_2, \mu_F^2) \right) \frac{s \, d\hat{\sigma}_{ab}}{dQ^2 \, dt \, du \, d\Omega^*} \left( x_1 P_1, x_2 P_2, \alpha_s(\mu_R^2) \right)$ 

Parton density functions

Hard cross section

The Drell-Yan Process



Higher order QCD is important

 $gq \rightarrow Zq, qq \rightarrow Zg$  etc.

Cross section\*B(Z→ee) LO ~ 180 pb NLO ~ 250 pb NNLO ~ 260 pb CTEQ2011 7/12/11

# $Z \rightarrow ee Errors$

| 57 | Statistical                           | 0.62%                     |
|----|---------------------------------------|---------------------------|
|    | Preselection efficiency               | 0.85%                     |
|    | Radiative corrections                 | <0.5%                     |
|    | ID eff stat error                     | 0.4%                      |
|    | Tag-probe bias                        | 0.3%                      |
|    | Noise corrections                     | 0.22%                     |
|    | Vertex z                              | 0.6%                      |
|    | Cut variations                        | 1.5%                      |
|    | Total systematic error                | 2.0%                      |
|    | PDF error on sigma(tot)<br>Luminosity | +1.3% -1.7%<br>6.1% -1.7% |

# More fun

- Radiative corrections
- Calibration
- Jet definitions
- B-tagging

□ My list of things to check is around 80 items long