Find a signal

$$
\begin{aligned}
\mathbf{N}_{\text {obs }}\left(\mathbf{p}_{\mathbf{T}}, \phi, \eta, \mathbf{z}\right)= & B+\sigma A \epsilon \int \mathcal{L} d t \\
= & B\left(p_{T}, \phi, \eta, z, \mathcal{L}\right)+ \\
& \int \sigma\left(p_{T}^{0}, \phi^{0}, \eta^{0}\right) \times \mathcal{L}(t, z) \times A\left(p_{T}^{0}, \phi^{0}, \eta^{0}, z^{0}\right) \times \\
& R\left(p_{T}^{0}, \phi^{0}, \eta^{0}, z^{0} ; p_{T}, \phi, \eta, z, \mathcal{L}\right) \times \\
& \epsilon\left(p_{T}, \phi, \eta, z, \mathcal{L}\right) d p_{T}^{0} d \phi^{0} d \eta^{0} d t
\end{aligned}
$$

$\sigma\left(X_{\alpha} \ldots\right)$ is the true cross section as a function of true variables $X_{a} \ldots$
$\mathcal{L}(t, z)$ is the luminosity as a function of time.
$A\left(X_{\alpha} ..\right)$ is the geometrical Acceptance as a function of true variables.
$R\left(X_{\alpha \ldots} \ldots, \mathcal{L} ; X_{a} \ldots\right)$ is the Resolution function which smears true $X_{\alpha} \ldots$ to detected $X_{a} \ldots$
$\epsilon\left(X_{a} \ldots, \mathcal{L}\right)$ is the probability that a particle is actually detected by a physical detector.
$B\left(X_{a} \ldots, \mathcal{L}\right)$ is the background

Look for Z's In our detector

\square Expect 2
"electrons"
$\square \mathrm{PT} \sim M Z / 2$
\square Calorimeter energy
\square Shower looks like an electron
\square Track momentum

- Tracks come from the same point

7/12/11

$Z \rightarrow$ ee

ET scale: 168 GeV

This ZO has high transverse momentum!

10/30/2009 - Louisville

Electrons have a track and EM energy
A $\mathbf{Z}^{0} \boldsymbol{\rightarrow} \mathrm{e}^{+} \mathrm{e}^{-}+\mathrm{jjevent}$
Jets have many tracks and EM+Hadron energy
$M_{e e} \sim 91 \mathrm{GeV} / \mathrm{c}^{2}$

End view

What do we expect

$$
\begin{gathered}
\frac{d \sigma\left(f \bar{f} \rightarrow e^{-} e^{+}\right)}{d \cos \theta^{*}}=(1 / 128 \pi \hat{s})\left[\left(\left|A_{L L}\right|^{2}+\left|A_{R R}\right|^{2}\right)\left(1+\cos \theta^{*}\right)^{2}\right. \\
\left.+\left(\left|A_{L R}\right|^{2}+\left|A_{R L}\right|^{2}\right)\left(1-\cos \theta^{*}\right)^{2}\right] \\
\frac{d \sigma(g g \rightarrow g g)}{d \cos \theta^{*}} \propto \frac{1}{\sin ^{4} \frac{\theta^{2}}{2}}
\end{gathered}
$$

The leptons are more isotropic than the backgrounds

Jacobian peak

Now let's do some data analysis

\square I happen to have a di-electron root file lying around.

Invariant mass of raw electron pairs

After quality cuts

[^0]
Phi

Detector η

Detector and physics coordinates

\square Detector is designed around $z=0$
\square The beam is actually $25-30 \mathrm{~cm}$ long

PT of leptons

$\mathrm{p}_{\mathrm{T}}, \mathrm{GeV}$

Z position of vertex in cm

The signal

Invariant mass - Z candidates(All)

Luminosity

$$
\begin{aligned}
N_{o b s}\left(p_{T}, \phi, \eta, z\right)= & B+\sigma A \epsilon \int \mathcal{L} d t \\
= & B\left(p_{T}, \phi, \eta, z, \mathcal{L}\right)+ \\
& \int \sigma\left(p_{T}^{0}, \phi^{0}, \eta^{0}\right) \times \mathcal{L}(t, z) \times A\left(p_{T}^{0}, \phi^{0}, \eta^{0}, z^{0}\right) \times \\
& R\left(p_{T}^{0}, \phi^{0}, \eta^{0}, z^{0} ; p_{T}, \phi, \eta, z, \mathcal{L}\right) \times \\
& \epsilon\left(p_{T}, \phi, \eta, z, \mathcal{L}\right) d p_{T}^{0} d \phi^{0} d \eta^{0} d t
\end{aligned}
$$

$\sigma\left(X_{\alpha} \ldots\right)$ is the true cross section as a function of true variables $X_{a} \ldots$.
$\mathcal{L}(t, z)$ is the luminosity as a function of time.
$A\left(X_{\alpha} ..\right)$ is the geometrical Acceptance as a function of true variables.
$R\left(X_{\alpha} \ldots, \mathcal{L} ; X_{a} \ldots\right)$ is the Resolution function which smears true $X_{\alpha} \ldots$ to detected $X_{a} \ldots$
$\epsilon\left(X_{a} \ldots, \mathcal{L}\right)$ is the probability that a particle is actually detected by a physical detector.
$B\left(X_{a} \ldots, \mathcal{L}\right)$ is the background

Luminosity

Luminosity is a measure of how often protons/antiprotons get close enough to interact

$$
L=f \frac{n_{1} n_{2}}{4 \pi s_{x} s_{y}}
$$

$\mathrm{f}=$ beam crossing frequency 396 nsec
$\mathrm{n}=$ protons/bunch 10^{11}
$\mathrm{s}=$ transverse beam size $=0.0001 \mathrm{~m}$
$\mathrm{L} \sim 10^{32}$ crossings $/ \mathrm{cm}^{2} / \mathrm{sec}$

Typical Cross Sections

Total proton/antiproton cross section is $7 \times 10^{-30} \mathrm{~m}^{2}$

Unit of Barns $(b)=10^{-28} \mathrm{~m}^{2}$

$$
\sigma(p \bar{p} \Rightarrow X) \approx 70 m b
$$

Run II L $\sim 10^{32}$ crossings $/ \mathrm{cm}^{2} / \mathrm{sec}$
$\mathrm{N} / \mathrm{sec} \sim \sigma \mathrm{L}=7 \times 10^{6} / \mathrm{sec}$
>3 interactions per beam crossing!

Cross Section for top production:
$\sigma(p \bar{p} \Longrightarrow t \bar{t}+X) \approx 5 p b$
This is around $1 / 10^{10}$ of total
$\mathrm{N} / \mathrm{sec} \sim \sigma \mathrm{L}=5 \times 10^{-4} / \mathrm{sec}$

A couple were created/hour but we only saw a small \%

Luminosity

Rate $=\int \sigma_{\text {int }}$

pbars

$$
\begin{array}{r}
\mathrm{P}_{\text {int }}=\mathrm{N}_{\text {prot }} \sigma_{\text {int }} / \mathrm{A} \\
L=\mathrm{f}_{\text {rev }} \mathrm{N}_{\text {pbar }} \mathrm{N}_{\text {prot }} / \mathrm{A}
\end{array}
$$

Not easy to do this

\square Hard to measure currents accurately
\square the beam density depends on the intrinsic beam lengths and widths and on the local beam optics.

$$
\begin{aligned}
& L=2 \mathrm{f}_{\mathrm{rev}} \iiint \int \rho_{1} \rho_{2} \mathrm{dx} \mathrm{dy} \mathrm{dz} \mathrm{~d}(\mathrm{ct}) \\
& \rho(x, y, z, c t)=\frac{N_{1}}{\sqrt{2 \pi \sigma_{x}}} \quad \exp \left[-(x+\Delta x / 2)^{2} / 2 \sigma_{x}{ }^{2}\right] \\
& \sqrt{\frac{1}{2 \pi \sigma_{y}}} \exp \left[-(y+\Delta y / 2)^{2} / 2 \sigma_{y}{ }^{2}\right] \\
& \frac{1}{\sqrt{2 \pi \sigma_{z}}} \exp \left[-(\underset{\text { СтеQ2011 }}{(z+c t-C t})^{2} / 2 \sigma_{z}{ }^{2}\right]
\end{aligned}
$$

You can measure the beam spot size as a function of distance along the beam to get $\sigma_{x}(z), \sigma_{y}(z)$
\square Also need estimates of beam current
$\square \sigma_{z}$ can be estimated from beam timing or $N(z)$
\square Estimates are good to ~10\% at the Tevatron.
\square The beam position and size vary with time as the beam "heats up" and "cools down"

7/12/11

$\mathscr{L}(z)$ distribution for beam collisions

Alternate method

\square Measure the total inelastic proton antiproton cross section in a special run.
\square Count inelastic collisions as you run your regular experiment.
\square Use those to get an estimate of your integrated luminosity.

DO Luminosity System

24
proton direction

LM

Count fraction, $P(0)$, of beam crossings without inelastic interactions.

Method

\square Measure μ, the average number of interactions/crossing
\square Apply acceptance and efficiency corrections and then compare to the inelastic pbar p total cross section to get the luminosity integrated over the 396 nsec crossing time.
\square Typical μ are 1-10 at the Tevatron

Interactions/crossing

Typical running at the Tevatron

Luminosity errors

\square The luminosity measurement has 3 sources of error

- The inelastic cross section is only known to 3-4\%
\square The luminosity detector is not perfect... 3-4\%
\square Bookkeeping - you have to match the luminosity data stream up with your real data.
- What happens if you lose a data tape? Flag data as bad?
- We track this by matching "luminosity blocks", 1 minute periods of data.

So far we

\square Have a signal
\square Have a normalization
\square How do we find backgrounds?
\square How do we correct for detector efficiency and resolution?
\square How do we correct for Acceptance?

Estimating backgrounds

\square Simulate and subtract
\square Requires good modeling
\square Hard to normalize absolutely
\square Simulate and fit
\square Template method
\square Vary cuts - matrix method

Simulated backgrounds

Muon channel

Background from template fit

MC Template Fit to $\mathbf{Z} \gamma$ Data

Do this for $Z+\gamma$ signal
Neural network discriminant for EM vs jet

Vary cuts - matrix method

Vary cuts

$$
\begin{aligned}
& N_{\text {loose }}=\epsilon_{\text {loose }} N_{e}+f_{\text {loose }} N_{Q C D} \\
& N_{\text {tight }}=\epsilon_{\text {tight }} N_{e}+f_{\text {tight }} N_{Q C D}
\end{aligned}
$$

ϵ is efficiency for signal $\approx 70-100 \%$.
f is probability to create a fake $\approx 0.1-10 \%$

$$
N_{e} \approx \frac{f_{\text {tight }} N_{\text {loose }}-f_{\text {loose }} N_{\text {tight }}}{\epsilon_{\text {loose }} f_{\text {tight }}-\epsilon_{\text {tight }} f_{\text {loose }}}
$$

Efficiency

$$
\begin{aligned}
\mathbf{N}_{\text {obs }}\left(\mathbf{p}_{\mathbf{T}}, \phi, \eta, \mathbf{z}\right)= & B+\sigma A \in \int \mathcal{L} \mathbf{d} \mathbf{t} \\
= & B\left(p_{T}, \phi, \eta, z, \mathcal{L}\right)+ \\
& \int \sigma\left(p_{T}^{0}, \phi^{0}, \eta^{0}\right) \times \mathcal{L}(\mathbf{t}, \mathbf{z}) \times A\left(p_{T}^{0}, \phi^{0}, \eta^{0}, z^{0}\right) \times \\
& R\left(p_{T}^{0}, \phi^{0}, \eta^{0}, z^{0} ; p_{T}, \phi, \eta, z, \mathcal{L}\right) \times \\
& \epsilon\left(\mathbf{p}_{\mathrm{T}}, \phi, \eta, \mathbf{z}, \mathcal{L}\right) d p_{T}^{0} d \phi^{0} d \eta^{0} d t
\end{aligned}
$$

$\sigma\left(X_{\alpha} \ldots\right)$ is the true cross section as a function of true variables $X_{a} \ldots$
$\mathcal{L}(t, z)$ is the luminosity as a function of time.
$A\left(X_{\alpha} ..\right)$ is the geometrical Acceptance as a function of true variables.
$R\left(X_{\alpha} \ldots, \mathcal{L} ; X_{a \ldots} \ldots\right.$ is the Resolution function which smears true $X_{\alpha} \ldots$ to detected $X_{a} \ldots$
$\epsilon\left(\mathbf{X}_{\mathbf{a}} \ldots, \mathcal{L}\right)$ is the probability that a particle is actually detected by a physical detector.
$B\left(X_{a} \ldots, \mathcal{L}\right)$ is the background

Efficiency

\square First pass
\square Define an "acceptance region" where you would expect your detector to work

- (say $|\eta|<3, \mathrm{p}_{\mathrm{T}}>10 \mathrm{GeV}$)
- Take a particle level MC like pythia
\square Reweight kinematics to reflect best knowledge
\square Trace particles through detector
\square Overlay noise and interactions from other events
\square Count how often you reconstruct the particle

The raw simulation isn't good enough

\square Use scale factors

Find two ways of measuring something
Compare the two in data and in simulation
Correct by the ratio

$$
\epsilon\left(p_{T}, z\right)=\frac{(P \cdot T)_{d a t a} / T_{d a t a}}{(P \cdot T)_{s i m} / T_{s i m}} \epsilon_{s i m}\left(p_{T}, z\right)
$$

Tag and probe

\square Find a really good electron (TAG)
\square Find a track which might be from a Z decay (PROBE)
\square Did you find a shower
\square Do the same for a shower (PROBE) that might have a track

Total efficiency : caleta_vtxz

Typical electron efficiencies

Efficiency versus Instantaneous Luminosity

Resolutions

Step 1 - Simulate\square Step 2 - Cry in frustration
\square Step 3 - use the data
\square Tune to the Z peak width or
\square Compare energy of back to back jets

$$
A=\frac{E_{T}^{1}-E_{T}^{2}}{E_{T}^{1}+E_{T}^{2}}
$$

Check the tuned full detector simulation

Z v†x check

Curvature check

\square Ok, looks like we understand our efficiencies and resolutions pretty well in our simulation

Correct data for backgrounds and efficiency
Now on to unfolding the resolution effects

Unfolding the resolution effects

$$
\begin{aligned}
& \mathbf{N}_{\text {obs }}\left(\mathbf{p}_{\mathbf{T}}, \phi, \eta, \mathbf{z}\right)= B+\sigma A \in \int \mathcal{L} \mathbf{d t} \\
&= B\left(p_{T}, \phi, \eta, z, \mathcal{L}\right)+ \\
& \int \sigma\left(p_{T}^{0}, \phi^{0}, \eta^{0}\right) \times \mathcal{L}(\mathbf{t}, \mathbf{z}) \times A\left(p_{T}^{0}, \phi^{0}, \eta^{0}, z^{0}\right) \times \\
& \quad \mathbf{R}\left(\mathbf{p}_{\mathbf{T}}^{\mathbf{0}}, \phi^{\mathbf{0}}, \eta^{\mathbf{0}}, \mathbf{z}^{\mathbf{0}} ; \mathbf{p}_{\mathbf{T}}, \phi, \eta, \mathbf{z}, \mathcal{L}\right) \times \\
& \epsilon\left(\mathbf{p}_{\mathrm{T}}, \phi, \eta, \mathbf{z}, \mathcal{L}\right) d p_{T}^{0} d \phi^{0} d \eta^{0} d t
\end{aligned}
$$

$\sigma\left(X_{\alpha} \ldots\right)$ is the true cross section as a function of true variables $X_{a} \ldots$
$\mathcal{L}(t, z)$ is the luminosity as a function of time.
$A\left(X_{\alpha} ..\right)$ is the geometrical Acceptance as a function of true variables.
$\mathbf{R}\left(\mathbf{X}_{\alpha} \ldots, \mathcal{L} ; \mathbf{X}_{\mathbf{a}} \ldots\right)$ is the Resolution function which smears true $X_{\alpha} \ldots$ to detected $X_{a} \ldots$
$\epsilon\left(\mathbf{X}_{\mathbf{a}} \ldots, \mathcal{L}\right)$ is the probability that a particle is actually detected by a physical detector.
$B\left(X_{a} \ldots, \mathcal{L}\right)$ is the background

Resolution Smearing

(a)

(b)

Unfolding method 1 - matrix

\square Invert the resolution matrix

$$
N_{a}=B_{a}+\epsilon_{a} R_{a \alpha} A_{\alpha} \sigma_{\alpha} \int \mathcal{L} d t
$$

Invert

$$
\sigma_{\alpha}=\frac{1}{A_{\alpha}} R^{-1} \alpha a \frac{\left(N_{a}-B_{a}\right)}{\epsilon_{a}} \int \mathcal{L} d t
$$

\square Common to regularize the matrix
\square Improved stability
\square Bias towards smoothing the function

Smearing Matrix $R\left(X_{\alpha}->X_{a}\right)$

Unfolding method 2 - Ansatz

\square Convolute a trial unsmeared function with the resolution as a function of (pt, η)

$$
f\left(p_{T}, \eta\right)=N_{0}\left(\frac{p_{T}}{100 \mathrm{GeV} / \mathrm{c}}\right)^{-\alpha}\left(1-\frac{2 p_{T} \cosh \left(y_{\min }\right)}{\sqrt{s}}\right)^{\beta} \exp \left(-\gamma p_{T}\right) .
$$

\square Fit this convoluted "smeared" function to your data
\square Correct data by the ratio of the unsmeared to smeared "ansatz" function.

$$
R\left(X_{\alpha} \rightarrow X_{a}\right)=\delta_{\alpha a} \frac{\operatorname{Smeared}\left(X_{a}\right)}{\operatorname{Unsmeared}\left(X_{\alpha}\right)}
$$

\square This works if a simple functional form can fit your data well and the resolution function is well understood.

Ansatz fit $\quad R\left(X_{\alpha} \rightarrow X_{a}\right)=\delta_{\alpha a} \frac{\operatorname{Smeared}\left(X_{a}\right)}{\operatorname{Unsmeared}\left(X_{\alpha}\right)}$

Now for the final step: Acceptance

\square Correct from the region we cover to the rest of phase space
\square Why do this instead of including in the "efficiency"?
\square This correction is big - factor of 3 for Z production $\varepsilon \sim 40 \%$, $\mathrm{A} \sim 30 \%$
\square Only depends on generator level quantities

- Can use the best NNLO simulations

DO $1 \mathrm{fb}^{-1}$ sample

Z Rapidity raw and generated

We actually define acceptance as $\left|\eta_{\mathrm{e}}\right|<1$ or $1.5<\left|\eta_{\mathrm{e}}\right|<2.4$ and $\mathrm{p}_{\mathrm{T}}>25 \mathrm{GeV}$

Cut cross section in electron rapidity and pt

Fully corrected normalized distributions

PHYSICAL REVIEW D 76, 012003 (2007)

Theory

The Drell-Yan Process

Higher order QCD is important
$\mathrm{gq} \rightarrow \mathrm{Zq}, \mathrm{qq} \rightarrow \mathrm{Zg}$ etc.
Cross section*B(Z \rightarrow ee)
LO ~ 180 pb
NLO ~ 250 pb
NNLO ~ 260 pb
CTEQ2011 7/12/11

$Z \rightarrow$ ee Errors

Statistical	0.62%
Preselection efficiency	0.85%
Radiative corrections	$<0.5 \%$
ID eff stat error	0.4%
Tag-probe bias	0.3%
Noise corrections	0.22%
Vertex z	0.6%
Cut variations	1.5%
Total systematic error	2.0%
PDF error on sigma(tot) Luminosity	$6.1 \% \%-1.7 \%$

More fun

\square Radiative corrections
\square Calibration
\square Jet definitions
\square B-tagging
\square My list of things to check is around 80 items long

[^0]: CTEQ2011 Schellman 7/12/11

