

Heavy Flavour

Thomas J. LeCompte Argonne National
Laboratory

Before We Start

STOP ME if I go too fast or you have questions!!

I know I talk too fast, so please interrupt me - my goal is not to cover as much material as possible: it's to uncover as much material as possible

Heavy Flavor...From Top To Bottom

- I'm going to talk about the top and the bottom quarks
- I'm an experimenter, so I will focus on hows and whys:
- How do we know what we know?
- Why is this interesting?

ELEMENTARY PARTICLES

Fermilab $95-75$

Reminder: Cabibbo-Kobiyashi-Maskawa Matrix

$$
\begin{aligned}
& \binom{d_{W}}{s_{W}}=\left(\begin{array}{cc}
\cos \theta_{C} & \sin \theta_{C} \\
-\sin \theta_{C} & \cos \theta_{C}
\end{array}\right)\binom{d}{s} \\
& \left(\begin{array}{l}
d_{W} \\
s_{W} \\
b_{W}
\end{array}\right)=\left(\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)\left(\begin{array}{c}
d \\
s \\
b
\end{array}\right) \\
& \left(\begin{array}{lll}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)= \\
& \text { Can be expressed in terms of three angles and } \\
& \text { one phase - the } 9 \text { terms are not independent } \\
& \left(\begin{array}{cc}
\cos \theta_{1} & -\sin \theta_{1} \cos \theta_{3}
\end{array}-\sin \theta_{1} \sin \theta_{3}\right. \\
& \sin \theta_{1} \cos \theta_{2} \quad \cos \theta_{1} \cos \theta_{2} \cos \theta_{3}-\sin \theta_{2} \sin \theta_{3} e^{i \delta} \quad \cos \theta_{1} \cos \theta_{2} \sin \theta_{3}+\sin \theta_{2} \cos \theta_{3} e^{i \delta} \\
& \left.\sin \theta_{1} \sin \theta_{2} \quad \cos \theta_{1} \sin \theta_{2} \cos \theta_{3}+\cos \theta_{2} \sin \theta_{3} e^{i \delta} \quad \cos \theta_{1} \sin \theta_{2} \sin \theta_{3}-\cos \theta_{2} \cos \theta_{3} e^{i \delta}\right) \\
& \approx\left(\begin{array}{lll}
.974 & .227 & .004 \\
.227 & .973 & .042 \\
.008 & .042 & .999
\end{array}\right) \\
& \text { Aside: the phase here gives } \\
& \text { rise to CP violation. Three is } \\
& \text { the minimum number of } \\
& \text { families for this to happen. }
\end{aligned}
$$

CKM Matrix II

$\approx\left(\begin{array}{lll}.974 & .227 & .004 \\ .227 & .973 & .042 \\ .008 & .042 & .999\end{array}\right)$

Numbers don't give me a very good intuition for what's going on

Here the shading reflects the magnitude of the components: black = 1 and white $=0$.

- Because the CKM matrix appears squared in any observable, it acts even more like a diagonal matrix
- The weak interaction apparently does not like to cross family boundaries

"The" Unitarity Triangle

" "The" is a terrible (but common) way to describe this phenomenon - There are six unitarity triangles (but not all are independent).

- Magnitudes of CKM matrix elements give the sides
- Phases of CKM matrix elements give the angles
- Non-unitarity of the 3×3 CKM (for instance, a $4^{\text {th }}$ family) causes the "triangle" not to close.

Top Quarks

- The CKM matrix tells us the $1^{\text {th }}$ key fact about top quarks
- $\mathrm{BF}(\mathrm{t} \rightarrow \mathrm{Wb}) \approx 100 \%$
- Top quarks events are categorized by how the W's decay:
- "dileptons" (4/81)
- "lepton + jets" (24/81)
- "all hadronic" (36/81)

An Early Top Event

e +4 jet event
 40758_44414
 24-September, 1992

TWO jets tagged by SVX fit top mass is $170+-10 \mathrm{GeV}$
e^{+}, Missing E_{t}, jet \#4 from top
jets 1,2,3 from top ($2 \& 3$ from W)

And One More Recent

And One To Show The Improvement in Graphics

Top Quark Pair Production

Expected Reaction:

Why so Boring?

- How did I know this would get you to yawning?
- Because data and theory agree.

- We make more progress by seeing a disagreement between data and theory.
- They can't both be right. (They can, however, both be wrong)

The Dog That Didn't Bark

- Consider the following supersymmetric model:
- A stop squark weighing close to 175 GeV
- A light LSP
- No other funny business
- Now the stop decays look very much like top decays
- Identical final states, and near-identical kinematics
- The stop "hides" under the top.
- Where it can't hide is the overall rate - the cross-section is about 30% of the top's
- We could see a 10% discrepancy, so at 3σ we exclude this.

Single Top - A Less Boring Example

$\mathrm{u}(\overline{\mathbf{d}})$

s-channel

Theoretical cross section predictions at $\sqrt{ } \mathbf{s}=1.96 \mathrm{TeV}$
$1.98 \pm 0.25 \mathrm{pb}$
$0.88 \pm 0.11 \mathrm{pb}$

- Directly probes Vtb.
- This is electroweak production - but note that it is comparable to QCD production of ttbar. Why?

The Sort of Events We Look For

The Data

- The rate of single top is close to expected.
- That means Vtb is near 1, again, as the SM predicts.
- The backgrounds are difficult
- There are so many of them.
- The uncertainty on the background is larger than the predicted signal. This makes an Candidate Events
 ordinary counting experiment impossible.

Turning to B's

Apart from being a good transition slide, this points out the key feature in b-identification- b's live a long time. (c τ is about $1 / 2 \mathrm{a}$ millimeter).

Mixing

A second-order weak interaction allows us to turn a neutral meson into its antiparticle.

Mixing II

We can do some surgery on this diagram to make it work for particles other than kaons, like B's.

Mixing III

Or even D's

Some Mixing Facts

It is useful to discuss mixing in terms of a variable unimaginatively called "x".
X is the mixing frequency in units of the lifetime - i.e. a particle mixes on average before it decays.

This has $\mathrm{x}=.774$ which is equal to x_{d} for the B_{d} meson.

More Mixing Facts

- K's and B's mix like crazy
- K_{l} has \times near 200
- B_{d} has $x_{d}=.774$
- B_{5} has $x_{5}=26.2$
- D's hardly mix at all
- $\quad x$ is around a percent
- (there is also y mixing, which I won't discuss)

WHY?

The Magic of Mixing

- The mixing rate has the virtual quark mass in the numerator.
- The heaviest quark dominates.
- K's and B's mix through the tquark. The D meson has to mix through a b-quark, which is $35 x$ lighter.
- The same calculation e why the B_{s} mixes so mu more readily than the B
- Indeed, this tells us th the branching fraction $\mathrm{BF}(\mathrm{t} \rightarrow \mathrm{Ws})$ is larger th
and $B F(t \rightarrow W d)$. Even thol we haven't seen eithel decay.

$$
\begin{aligned}
\Delta m_{d} & =\frac{G_{F}^{2}}{6 \pi^{2}} m_{B_{d}} f_{B_{d}}^{2} B_{B_{d}} \eta_{B} m_{t}^{2} f_{2}\left(m_{t}^{2} / M_{W}^{2}\right)\left|V_{t d}^{*} V_{t b}\right|^{2} \\
\Delta m_{s} & =\frac{G_{F}^{2}}{6 \pi^{2}} m_{B_{s}} f_{B_{s}}^{2} B_{B_{s}} \eta_{B} m_{t}^{2} f_{2}\left(m_{t}^{2} / M_{W}^{2}\right)\left|V_{t s}^{*} V_{t b}\right|^{2} \\
\frac{\Delta m_{s}}{\Delta m_{d}} & =\frac{m_{B_{s}} f_{B_{s}}^{2} B_{B_{s}}}{m_{B_{d}} f_{B_{d}}^{2} B_{B_{d}}}\left|\frac{V_{t s}}{V_{t d}}\right|^{2}
\end{aligned}
$$

The Magic of Mixing II

- The mixing rate has the virtual quark mass in the numerator.
- The heaviest quark dominates.
- I can make the box supersymmetric by sprinkling twiddles around.
- Even with very, very heavy sparticles, I can have a very large SUSY-induced mixing:
- Mixing "touches" the physics at a very high scale.

Experimentally, How It Works

- B's are produced in pairs of opposite flavor.
- When one decays, I know the flavor of the other.

Now is a Good Time to Discuss The Major Players

Experiment	Years	Beam	Number of b pairs
ARGUS	$1982-1992$	$e^{+} e^{-}$	Few 100K
CLEO	$1979-2000$	$e^{+} e^{-}$	$\sim 10 \mathrm{M}$
UA1	$1981-1993$	p-pbar	$\sim 500 \mathrm{M}$
CDF	$1992-2011$	p-pbar	$\sim 40 \mathrm{~B}$
D0	$2001-2011$	p-pbar	$\sim 40 \mathrm{~B}$
BaBar	$1999-2008$	$e^{+} e^{-}$(asym.)	$\sim 400 \mathrm{M}$
Belle	$1999-$ present	$e^{+} e^{-}$(asym.)	$\sim 700 \mathrm{M}$

ng was discovered by the observation of same-sign lepton pairs by ARGUS and

An Example e+e- Detector

BABAR Detector

Electrons vs. Hadrons

- At an e+e- machine works like enis ${ }^{-} \rightarrow \mathrm{Y}(4 S) \rightarrow B \bar{B}$
- A hadron machine can produce 100's or 1000's times as many B's.
- However, the number of useful B's is much smaller.
- You need to be able to trigger on them - that usually means a leptonic decay ($1 / 10$), or sometimes a long flight distance
- Hadron colliders are less good at detecting neutral particles (LHCb is an exception) -so you want decays with zero photons or neutrons
 decay products

1	\times	6	$=.0006$
$\%$		$\%$	

Bs mixing: some data

- Bs's mix fast - 26.2 times faster than they decay.
- CDF took the mixing curve, and "wrapped it around itself" 26.2 times.
- This integrates out over the amplitude, and lets us see the phase.
- The scale on this plot is $35 C$ fs - about $1 / 10^{\text {th }}$ of a millimeter.

CP-violation

- You can see CP violation in the interference between two amplitudes:
- In this case, through the direct and mixed path to two final states.
- Probes phases in the unitarity triangle
- With interference effects, effects are strongest with two comparable amplitudes.
$-(a+b)^{2}=a^{2}+2 a b+b^{2}$
- In kaons, the effects are small. Because B's mix like crazy, and because even without mixing you can have two different Feynman diagrams leading to the same final states, the CP asymmetries can be large - like 60\%. (For kaons, they ar

A multi-hour lecture in itself!

Why Asymmetric B-Factories?

is is a consequence of the weirdness of quantum mechanics.

The key variable in oscillations is not t , but $\Delta \mathrm{t}$.
When does a neutral B meson know its flavour?

Combining all Measurements

Global fits of all the measurements

- sides and angles
- suggest the unitarity triangle is either closed, or very close to closed.

A Fourth Generation?

$$
\left(\begin{array}{c}
e \\
v_{e} \\
u \\
d
\end{array}\right)\left(\begin{array}{c}
\mu \\
v_{\mu} \\
c \\
s
\end{array}\right)\left(\begin{array}{c}
\tau \\
v_{\tau} \\
t \\
b
\end{array}\right)+\left(\begin{array}{c}
\sigma \\
v_{\sigma} \\
t^{\prime} \\
b^{\prime}
\end{array}\right) ?
$$

A Fourth Generation

- There are severe electroweak constraints on such a generation.
- First, the neutrino must be heavy (>45
- Otherwise the Z would decay to these neutrinos, which would be visible in the width and branching fractions (20\% invis
- Next, the quark and lepton doublets ne almost degenerate:
- The W mass loops are sensitive to the m differences between doublet members
- The top and bottom already have
 "saturated" this.

A Tight Fit

- In addition to precision EWK, there ar other difficulties a $4^{\text {th }}$ generation face
- Remember, neutral K's and B's mix qu but neutral D's mix slowly.
- With 3 generations, this is because the heaviest u-type quark (top) is much heavier than the heaviest d-type quark (bottom)
- With a heavy, degenerate $4^{\text {th }}$ generation, this is no longer true: it would have to be due to CKM suppression
- Adds 3 new angles and 2 new phases: enough to do this.

- It's possible to have a $4^{\text {th }}$ generation, but all of the parameters associated with it have to magically conspire to make it look like there are exactly 3 generations.

B-quark Production

We organize these diagrams as "flavour creation", "flavour excitation" and "gluon splitting".

At collider energies, the NLO contributions are huge.

Reminder: Portrait of a Simple QCD Calculation

One part: the calculation of the "hard scatter"

PERTURBATIVE

Reminder: Portrait of a Simple QCD Calculation

Another part: connecting the calculation (which involves gluons) to protons (which contain gluons)

Reminder: Portrait of a Simple QCD Calculation

Another part:

 connecting the calculation (which involves gluons) to protons (which contain gluons)

Comparison with Experiment

- Our experience has been that progress is made when we already know 2 of the 3 parts.
- Experiment then constrains the third.
- It is possible to gain information when this is not true, but the situation is much more confusing.

Parton densities

Fragmentation

The b-quark cross-section saga

- At DPF92, CDF reported bottom quark cross-sections a factor of at least two greater than theor
- This was at a center of mass energy of 1800 GeV .
- The 1989 UA1 measurements at 630 GeV agreed better with theory
- However, both theoretical and experimental uncertainties werc substantially larger.

Community reaction: someone (i.e. CDF) probably mismeasured something. Wait a while and this will go away.

But, it didn't go away.

- More recent CDF measurements showed the same difficulty - the theory underpredicts the data by the same factor
- This problem was not going away
- Note that CDF (and also D0) measures only the high p_{T} tail of the cross-section
- Most b's were invisible.

Commentary on measuring the top 10% of something

> Just how important could the other 90% be anyway?

Understanding the x -axis: $\mathrm{p}_{\mathrm{T}}(\mathrm{min})$

- Ideally, one would like to measure the differential crosssection $\mathrm{d} \sigma / \mathrm{d} p_{T}$.
- Allows comparison with theory in magnitude and shape of the cross-section.
- If this is difficult, one could quote just the total crosssection.
- Many experiments are insensitive to the cross-section below a p_{T} threshold.
- It makes no sense to quote the total cross-section if you have no acceptance to anything below (e.g.) 10 GeV , where the bulk of the cross-section is.
- To deal with this, experiments quote the cross-section at a certain $p_{T}(\mathrm{~min})$: the point where 90% of the $b^{\prime} \mathrm{s}$ lie above.
- This 90% is pure convention - we could have picked some other number

A Comment On Sociology

This was eventually resolved, building on a set of CDF measurements a few years ago.

Step 1: Measure the J / ψ yield in selected p_{T} bins

Yield is fit in each bin, corrected for acceptance and efficiency, and the cross-section bin-by-bin is calculated.

Step 2: Convert This To a Cross-Section

$\sigma \cdot B F(J / \psi \rightarrow \mu \mu)=240 \pm 1_{-28}^{+35} \mathrm{nb} \quad($ for $|\mathrm{y}|<0.6)$

Step 3: Measure the Fraction of J/ Ψ 's from b's

- Most J/ ψ 's do not come from b's. But a sizeable fraction are produced mm away from the interaction point. These are b daughters.

Step 3 (continued) - Do this in each bin of p_{T}.

$5.0<\mathrm{p}_{\mathrm{T}}<5.5 \mathrm{GeV}$
$10<\mathrm{p}_{\mathrm{T}}<12 \mathrm{GeV}$

$9.7 \pm 1.0 \%$ b's

$14.3 \pm 0.5 \%$ b's

$27.9 \pm 1.0 \%$ b's

The Fraction of J/ Ψ 's from b's

- The outcome of Step 3
- The trend is clear
- High transverse momentum means a larger beauty component
- "Flattening out" at low p_{T} is because the $J / \psi p_{T}$ is dominated by B decay kinematics, not $p_{T}(B)$

The LHC experiments see exactly the same thing. It's not at all clear why.

Why is the lowest bin at 1.25 GeV ?

- The fit has problems converging down here
- It's bitten by four factors at once:
- The b fraction is small: about 9\%
- The J/ ψ acceptance (and therefore yield) is small
- At 1 GeV , acceptance is 20% of what it is at 2 GeV
- The variable $L x y(=R x y \cos (\theta))$ loses separation power
- Not because the flight distance is small
- Because the J/ ψ flight direction is no longer aligned along the b flight direction
- B's are being miscategorized as prompt
- The sideband subtraction becomes less certain:
- We lose the left sideband
- However, CDF has already reached $p_{T}(b)=0$ at 1.25 GeV
- Pushing lower improves the precision of the measurement, but
- it does not improve the p_{T} reach!

Step 4: Infer the J/ Ψ-from-b Cross-section

CDF almost gets to the turnover at low p_{T}.

This is what CDF considers the primary measurement and should be used to compare with theory points are uncorrelated

Approximately 80\% of the cross-section is measured.

The Total Cross-Section

- CDF corrects this to $\sigma(\mathrm{b})$:
- Remove the $5.88 \% \mathrm{~J} / \psi$ branching fraction to mu pairs
- Remove the 1.16% b-hadron (inclusive) branching fraction to J/ $\psi+$ X
- Correct to ± 1.0 units of rapidity vs. ± 0.6
- Divide by two to get the single flavor b cross-section

$$
\sigma=29.4 \pm 0.4_{-3.9}^{+4.1} \mu b
$$

NLO QCD predicts $20-40 \mu \mathrm{~b}$

The Answer:

- Since the total cross-section agreed, but the high- p_{T} portion did not, we had a shape problem, not a size problem.
- The spectrum was stiffer than previously thought - causing us to mistake one for the other.
- Understanding fragmentation was the key - getting from the $\sigma(\mathrm{b}-$ quark) calculation to the σ (b-hadron) measurement.
- Once that was understood, the other parts (PDFs and detailed calculation) followed.
- All three contributed at some level.

What Happened?

- PDF's changed
- About a 20\% effect
- Calculations available to NLL
- About a 20\% effect
- Fragmentation functions changed
- remember, pQCD predicts quark production, but experiments measure hadron production
- Fragmentation cannot change the total cross section, but does change the spectrum
- About a 20-50\% effect

All these pull in the same direction, so the agreement is now substantially better than in the past.

The Future

- ATLAS and CMS have already collected top samples comparable to CDF and D0
- Of course "collected" and "analyzed" are two different things
- Ultimately, they will have samples hundreds (thousands?) of times larger.
- LHCb has been enormously successful so far - there is a real hope it can reach e+e- like event understanding with pp-like rates.
- If I gave this lecture a week from today, they would surely be a major player.
- BELLE is still running (or will after KEK recovers from the tragic earthquake.
" There is talk of a "Super B-factory" with ~50x the luminosity.

The Compact Muon Solenoid

ATLAS = A Toroidal LHC ApparatuS

LHCb

Things To Remember

- Thus far, top quarks behave exactly as predicted. Unfortunately.
- There is a rich phenomenology in B quark physics
- e.g. mixing, CP-violation
- This is largely due to having multiple amplitudes for a given process, often of comparable size.
- Again, the predictions are borne out in the data
- There is no evidence that the 3×3 CKM matrix is inadequate to explain anything
- The years-old b-quark discrepancy was eventually solved
- Patience is a virtue
- A "QCD Prediction" is not a simple thing
- I didn't tell you about all the blind alleys people went down. Progress is not a linear thing.

Emergency Abridged Slides

The b-quark cross-section saga

- At DPF92, CDF reported bottom quark cross-sections a factor of at least two greater than theo
- This was at a center of mass energy of 1800 GeV .
- UA1 measurements at 630 GeV agreed better with theory
- However, both theoretical and experimental uncertainties wern substantially larger.

Community reaction: someone (i.e. CDF) probably mismeasured something. Wait a while and this will go away.

But, it didn't go away.

- More recent CDF measurements showed the same difficulty - the theory underpredicts the data by the same factor
- This problem was not going away
- Note that CDF (and also D0) measures only the high p_{T} tail of the cross-section
- Most b's were invisible.

Commentary on measuring the top 10% of something

> Just how important could the other 90% be anyway?

The Answer:

- Since the total cross-section agreed, but the high- p_{T} portion did not, we had a shape problem, not a size problem.
- The spectrum was stiffer than previously thought - causing us to mistake one for the other.
- Understanding fragmentation was the key - getting from the $\sigma(\mathrm{b}-$ quark) calculation to the σ (b-hadron) measurement.
- Once that was understood, the other parts (PDFs and detailed calculation) followed.
- All three contributed at some level.

