ATLAS Results

Corrinne Mills

(Harvard University && the ATLAS Collaboration)

Lectures at the CTEQ School & Workshop

Madison, WI, USA 16-17 July 2011

Introduction

- What kinds of things does ATLAS measure?
- How are these measurements related to one another?
- What do we learn about how the universe works?
- What is interesting right now?
- Too much to cover in 2 hours, so while I'll try to give a good sense of the breadth of the measurements being done at ATLAS, this "overview" is necessarily biased toward
 - → Topics I've worked on or want to work on
 - \rightarrow Or that I think are really interesting

Part I: leptons (both charged and neutral) and all things electroweak Part II: photons, quarks, and QCD!

The Standard Model

Fermilab 95-759

What happens when you throw the Standard Model at a collider detector?

The LHC at CERN

The 2010 run at 7 TeV

- Rapid LHC startup
- 2010 Instantaneous luminosity • $record = 2.1 \times 10^{32} \text{ cm}^{-2}\text{s}^{-1}$
 - Tevatron record ~ $4x10^{32}$ cm⁻²s⁻¹ \rightarrow

- $2 \rightarrow 368$ bunches
 - 2808 possible \rightarrow
- ~10¹¹ p/bunch
- > 20 MJ stored energy
 - Tevatron: 2 MI

July 16, 2011

The 2011 Run, So Far

- Rapid lumi. evolution continues
- 2011 Instantaneous luminosity record = $1.26 \times 10^{33} \text{ cm}^{-2}\text{s}^{-1}$
 - → Tevatron record ~ $4x10^{32}$ cm⁻²s⁻¹

- $75 \rightarrow 50$ ns bunch spacing $\rightarrow 1380/2808$ bunches filled
- Up to 62 pb⁻¹ / fill
- Expect up to 4 fb⁻¹ by end of the year

> 1 fb⁻¹ and integrating! Analysis ramping up

The ATLAS Detector

Hadron Collider Kinematics

The ATLAS Trigger System

The W and Z Bosons

Focus on leptonic signatures

Electrons and Photons in ATLAS

Electrons in ATLAS

d/E

0.08

0.07

0.06

Loose electrons are basically just a calo cluster Medium electrons have a track and pass more shower shape cuts Tight electrons get the works, incl. transition radiation and a conversion veto

electron resolution

25 GeV 50 GeV

100 GeV 200 GeV

1000 GeV

•ATLAS Preliminary

Simulation

$Z \rightarrow ee \ data \ (2010)$

July 16, 2011

c. mills (Harvard U.)

Muon resolution in $Z \rightarrow \mu\mu$ data

Muon Performance: Resolution

Z → µµ data

$Z \rightarrow II \ cross \ section \ results$

Cross section:

$$\sigma(pb) = \frac{N_{\text{cand}} - N_{\text{background}}}{(A_Z \times C_Z) \times (\mathcal{L}(pb^{-1}))}$$

- $A_Z \times C_Z$ = fraction of signal expected to pass selection
- \mathcal{L} = integrated luminosity

Dominant systematics:

- lepton ID & reco
- (not scale & resolution)

measured

	$\sigma_{Z/\gamma^*}^{\text{tot}} \cdot \text{BR}(Z/\gamma^* \to \ell\ell) \text{ [nb]}, 66 < m_{ee} < 116 \text{ GeV}$
Z/γ^*	$0.945 \pm 0.006 (sta) \pm 0.011 (sys) \pm 0.032 (lum) \pm 0.038 (acc)$

predicted: 0.964 ± 0.018 nb

Taus in ATLAS

$Z \rightarrow \tau \tau$ observation

visible mass m_{vis} = invariant mass of tau "jet" and electron or muon

Experimental Calibrations w/ Z

- Unfortunately named but ubiquitous "tag+probe" method
- Great signal/background ratio allows partial ID on second lepton

Run Number: 152221, Event Number: 383185

Date: 2010-04-01 00:31:22 CEST

W→µv candidate in 7 TeV collisions

 $p_{T}(\mu +) = 29 \text{ GeV}$

 $E_{\tau}^{miss} = 24 \text{ GeV}$

 $M_{\tau} = 53 \text{ GeV}$

0.66

η(μ+) =

Missing Transverse Energy

Detect neutrino (or other weakly interacting neutral) by invoking conservation of momentum in the plane transverse to the beam

E_T^{miss} Performance – first data

- All calo clusters treated equally
- Calibrate with minimum bias events
- SumET = $100 \text{ GeV} \Rightarrow \sigma = 5 \text{ GeV}$
- SumET = 1600 GeV $\Rightarrow \sigma = 20$ GeV

$$\sigma_{E_T^{miss}} = \alpha \sqrt{\sum E_T}$$

E_T^{miss} Performance – Z

- Associate calo. cells with particular objects (jet, electron) and calibrate to best knowledge
- Calibrate with Z events (no v)
- SumET = $100 \text{ GeV} \Rightarrow \sigma = 3.6 \text{ GeV}$
- SumET = 1600 GeV $\Rightarrow \sigma = 14$ GeV

$$\sigma_{E_T^{miss}} = \alpha \sqrt{\sum E_T}$$

Backgrounds to W

The W Candidate Sample

- Transverse mass $M_T = \sqrt{2(p_T^{\mu})(E_T^{\text{miss}})(1 \cos(\varphi^{\mu} \varphi^{E_T^{\text{miss}}}))}$
- Clean up sample with $M_T > 40 \text{ GeV}$

W Cross Section in Context

W cross section results (2010 final)

measured

	$\sigma_{W^{(\pm)}}^{\mathrm{tot}} \cdot \mathrm{BR}(W \to \ell \nu)$ [nb]
W^+	$6.257 \pm 0.017 (sta) \pm 0.152 (sys) \pm 0.213 (lum) \pm 0.188 (acc)$
W^-	$4.149 \pm 0.014 (sta) \pm 0.102 (sys) \pm 0.141 (lum) \pm 0.124 (acc)$
W	$10.391 \pm 0.022(sta) \pm 0.238(sys) \pm 0.353(lum) \pm 0.312(acc)$

Deeper look at W production

Actually colliding the partons within the protons

July 16, 2011

Parton Distribution Functions (PDFs)

- *x* = fraction of proton momentum carried by a *parton*
- *parton* = up, down, gluon, antiquarks, strange, charm, bottom...
- In the proton, up and down are *valence* quarks, and everything else is the *sea*
- High momentum = small scale

W+-W- Charge Asymmetry

- Twice as much up as down \rightarrow W⁺ favored
- up quark carries more momentum on average → W+ production boosted forward
- Measure asymmetry as a function of lepton angle

 $\eta = -\ln(\tan(\theta/2))$

• Many uncertainties cancel

$$A = \frac{\sigma^{\ell^+} - \sigma^{\ell^-}}{\sigma^{\ell^+} + \sigma^{\ell^-}}$$

F. Fayette et al., Eur. Phys. J. C63 (2009) 33

Muon Performance: Trigger

The Level 1 Muon Trigger

Muon Performance: Trigger

W Asymmetry Results

W' and Z' searches

- Experimental appeal: simple extension of W and Z measurements
- Physics appeal: actually appears in many models
- W' with 2011 data:
 - → exclude Sequential Standard Model $M_{W'}$ < 1.7 TeV at 95% CL
 - \rightarrow (combined limit from 2010+2011 data)

July 16, 2011

W' and Z' searches

c. mills (Harvard U.)

Intermission

- Leptonic signatures
 - \rightarrow Flag presence of W or Z boson
 - electroweak interaction, EWSB?
 - \rightarrow Efficient triggering and good S/B
 - good for precision tests of QCD
- Tomorrow:
 - 1. Continue with dibosons
 - 2. photons, gluons, and quarks

<u>Pileup</u>

- Multiple interactions per bunch crossing
- Count primary vertices as a proxy for counting interactions
 - \rightarrow 2.2 vertices / bunch crossing (avg) for 2010 data
- Significant improvement in modeling of E_T^{miss}

LHC design parameters

Quantity	number
Circumference	26 659 m
Dipole operating temperature	1.9 K (-271.3°C)
Number of magnets	9593
Number of main dipoles	1232
Number of main quadrupoles	392
Number of RF cavities	8 per beam
Nominal energy, protons	7 TeV
Nominal energy, ions	2.76 TeV/u (*)
Peak magnetic dipole field	8.33 T
Min. distance between bunches	~7 m
Design luminosity	10 ³⁴ cm ⁻² s ⁻¹
No. of bunches per proton beam	2808
No. of protons per bunch (at start)	1.1 x 10 ¹¹
Number of turns per second	11 245
Number of collisions per second	600 million

(*) Energy per nucleon

From http://cdsmedia.cern.ch/img/CERN-Brochure-2009-003-Eng.pdf

The Atlas Detector, in Numbers

- Tracker: precision tracking to $|\eta| = 2.5$
 - → 3d spacepoints from semiconductor tracking: 3 pixel layers, SCT is 4 doublelayers (SAS)
 - → TRT is 4 mm diameter straw tubes (Xenon), providing 36 additional $R-\varphi$ (or $z-\varphi$) points
- Calorimetry
 - \rightarrow LAr barrel from 1.5 < R < 2m, 22 X₀ deep
 - \rightarrow 10 λ (interaction lengths) active, >11 total
 - \rightarrow HCAL from 2.3 < R < 4.3 m, 7.4 λ by itself
 - → total coverage to almost $|\eta| = 5$
- Magnets
 - \rightarrow Solenoid field 2T
 - → Toroid field bending power $1 < \int B \cdot dl < 7.5 \ T \cdot m$
- Muons
 - → Three MDT planes measure R-z using 3mm diameter tubes (Ar/CO_2)
 - Nominal single-hit precision 80 μm
 - → Forward precision by CSC (MWPC strip-wire-strip) $2 < |\eta| < 2.7$
 - Designed to be functional at expected rates of > 150 Hz/cm²
 - → RPC and TGC: fast 2d spacepoints for triggering and second (phi) coordinate

Fact Sheet

- 1 event ~ 1 MB ESD, 150 kB AOD
- 75 \rightarrow 50 ns bunch spacing this spring
 - → 25 ns under discussion but unlikely for pp colliding beams before 2012
- Current data volume is ~ 400 MBytes/hour
- We will keep the raw for 3~4 week (~ TBytes) and then delete them

Next W Measurements: W p_T

- Measure via hadronic recoil
 - \rightarrow challenging to model
- Test nonperturbative QCD calculations
- Calibration of neutrino momentum measurement (aka E_T^{miss})

Next W measurements: W mass

- Measure via fit of p_T^{I} or M_T^{W}
- Current world avg $M_W = 80399 \pm 23$ MeV
- Projected ATLAS M_W precision 100 MeV (initial) \rightarrow < 10 MeV (ultimate)