ATLAS Results (2)

Corrinne Mills

(Harvard University && the ATLAS Collaboration)

Lectures at the CTEQ School & Workshop

Madison, WI, USA 11-19 July 2011

The ATLAS Detector

The Atlas Detector, in Numbers

- Precision tracking to $|\eta| = 2.5$, R < 1.1 m, 0 < |z| < 3.5 m
- 7 layers of 3d spacepoints from semiconductor tracking,
 → 3 pixel layers, SCT is 4 double-layers (small-angle stereo)
- TRT is 4 mm diameter straw tubes (Xe), providing 36 additional R- ϕ (or z- ϕ) points

The Atlas Detector, in Numbers

- Calorimetry
 - → LAr barrel from 1.5 < R < 2m, $22 X_0$ deep
 - \rightarrow 10 λ (interaction lengths) active, >11 total
 - → HCAL from 2.3 < R < 4.3 m, 7.4 λ by itself
 - \rightarrow total coverage to almost $|\eta| = 5$

φ

TileCal (HCAL)

Photomultiplier

The Atlas Detector, in Numbers

• Magnets

→ Solenoid field 2T, Toroid field bending power $1 < \int B \cdot dl < 7.5 T \cdot m$

- Muons
 - \rightarrow Three MDT planes measure R-z using 3mm diameter tubes (Ar/CO₂)
 - Nominal single-hit precision 80 μm
 - → Forward precision by CSC (MWPC strip-wire-strip) $2 < |\eta| < 2.7$
 - Designed to be functional at expected rates of > 150 Hz/cm²
 - → RPC and TGC: fast 2d spacepoints for triggering and second (phi) coordinate

The ATLAS Trigger System

Dibosons: $WW \rightarrow |v|v$

- Start from events with two oppositecharge leptons (e^+e^- , $e^\pm\mu^\mp$, or $\mu^+\mu^-$)
- Veto Z candidates ($|M_{||} M_Z| < 10 \text{ GeV}$)

$WW \rightarrow |_{V}|_{V}$

Final state neutrinos:

E_T^{miss}_{rel} threshold rejects events where E_T^{miss} points at an object

WW cross section

- Standard Model inclusive cross section 44 ± 3 pb
- Observe 8 candidates (1 ee, 2 eµ, 5 µµ) over predicted background of 1.7 ± 0.4 (stat) ± 0.4 (sys)
 - \rightarrow observation has 3σ significance
 - → measure cross section 41_{-16}^{+20} (stat) ± 5 (syst) ± 1 (lumi) pb

Sensitivity to Standard Model Higgs

$H \rightarrow WW \rightarrow |_{V}|_{V}$

- Search separately in 0, 1, 2 jet events
 - → different backgrounds
 - → 2-jet has sensitivity to VBF
- Signature: 2 charged leptons + E_T^{miss}
- Backgrounds: WW, Z/γ^* , ttbar, W+jets
 - \rightarrow data-driven estimates

$H \rightarrow WW \rightarrow |_{V}|_{V}$

- Again, start from events with two isolated opposite-charge leptons (e, μ)
 - \rightarrow $p_T > 20$ (leading), $p_T > 15$ (subleading)
- DY vetos (same flavor only)
 - → Veto Z candidates ($|M_{II} M_Z| > 10 \text{ GeV}$)
 - \rightarrow Veto Y, low-mass (M_{II} > 15)
- $E_T^{miss} > 30$
- Higgs kinematics: scalar WW spin correlations
 - $\rightarrow \Delta \varphi(ll) > 1.3 \ (1.8) \ \text{for } m_H < 170 \ (m_H > 170) \iff \text{low mass (high mass)} \\ \text{optimizations}$

0 jet	1 jet	\geq 2 jets
$p_{T}(II) > 30 \text{ GeV}$	b-jet veto	$\Delta \eta(jj) > 3.8$ and $\eta_1 * \eta_2 < 0$
m _{II} < 50 (65)	$ M_{\tau\tau}$ - $M_Z < 25 \text{ GeV}$	m(jj) > 500
$0.75 m_{H}^{} < m_{T}^{} < m_{H}^{}$	tot $p_T < 30$	m(II) < 80
		+ 1 jet cuts

 $H \rightarrow WW \rightarrow |_V|_V?$

Photons in ATLAS

- $\delta E/E \sim 1-2\%$ like electrons
- "few%" systematics from MC
 - → extra material, cross talk between calo. cells
- cross check with data/MC comparisons
- purity = true/all

Prompt photons

- Measure the cross section for isolated photons (including direct and fragmentation contributions)
 - → Isolated = energy in a cone of 0.4 < 3 GeV describe a bit more, talked about in dir. photon alg
 - $\rightarrow \quad 45 < E_T^{\gamma} < 400$
- Experimental challenges
 - → No good control sample to calibrate efficiencies
 - \rightarrow Large backgrounds from π^0 and $\eta \rightarrow \gamma \gamma$ decays
- Constrain PDFs and test pQCD

Isolated photons vs. photon E_T

2010 result, **36 pb⁻¹**

from ATLAS-CONF-2011-058, update of http://arxiv.org/abs/arXiv:1012.4389

<u>Dibosons: Wγ</u>

Dibosons: Zγ

<u>Diboson: Wy/Zy</u>

The Case for $H \rightarrow \gamma \gamma$

• Energy resolution and S/B make this a compelling channel in spite of the (Standard Model) branching fraction

$H \rightarrow \gamma \gamma$

- 209 pb-1, ET thresholds 40,25, ~99% efficient diphoton trigger
- Background from γγ (mostly), γj, jj
- Myy depends on getting the right primary vertex
 - → Photon pointing: exploit depth segmentation and fine granularity of innermost compartment
- $M_{\gamma\gamma}$ resolution = 13%

<u>Jet Energy Scale</u>

- Correct for
 - 1. pileup / underlying event
 - 2. origin (not 0,0,0 but 0,0,z₀)
 - 3. from EM scale to hadronic scale
 - non-compensation
 - detector non-uniformity
 - dead material and leakage
 - lost energy "out-of-cone" and soft
- By means of
 - 1. avg/area/vertex from minbias data
 - 2. $max p_T^2$ vertex
 - 3. particle jet reco jet comparison in MC (will ultimately use data)
- All-MC, cross-checked with data

<u>Jet Energy Scale</u>

Jet-driven Searches

• First data – q* resonance searches

Jet-driven Searches

- The most generic SUSY search: jets+MET
 - → Call it a "search for squarks and gluinos"
 - → Most generically, dark matter search

ETmiss for ≥ **2 jet events** Exclude 500-800 GeV gluino (depends on assumptions)

the top quark

And then there's the top quark

- Most massive fundamental particle $m_t = 173.1 \pm 1.3 \text{ GeV}$
- Complex final state
 - → Leptons, jets, and MET, together at last
 - \rightarrow Including jets from b quarks

Top Pair Decay Channels

Dilepton ttbar cross section

- Final state: 2 leptons (e/ μ), E_T^{miss} , ≥ 2 jets
 - → Opposite-sign ee, eµ, or µµ with $E_T(p_T)$ > 20 e (µ), isolated
 - → Anti- k_T jets with R = 0.4 and $E_T > 20$ and $|\eta| < 2.5$
 - → $E_T^{miss} > 40$ and $|m_{II}-m_Z| > 10$ in ee, $\mu\mu$ channels
- 105 candidates in 35 pb⁻¹
 - → expect 100.6 = 79.0 signal + 21.6 bg
- Combined result

173 ± 22 (stat.) __16⁺¹⁸ (syst.) _7⁺⁸ (lum.) pb

- Theory prediction: 165_{-16}^{+11} pb for m_t = 172.5
- kinematic cleverness

ttbar Cross Section

<u>b-jet tagging</u>

- Exploit b properties that distinguish them from light-quark jets...
 - \rightarrow in this case, $\tau_b \sim 1.5$ ps
- ...and excellent resolution of tracker
 - \rightarrow intrinsic accuracy of R- φ hits in barrel is 10 μ m (17 μ m) in pixels (SCT) x (3 + 4) measurement layers
- Detect via displaced vertices
 - \rightarrow Reconstruct of displaced vertex
 - Soft leptons also possible, but more \rightarrow challenging
 - → "SV0" algorithm commissioned before other displaced vertex algs due to robustness

Track

<u>b-jet tagging</u>

- 1. Associate "high-quality" (see below) tracks to jet
- 2. Reconstruct significantly displaced 2-track vertices
- 3. Remove " V_0 ": K_0^s , Λ_0 , γ conversion (based on mass)
- 4. Remove vertices at R = {pixels}
- 5. Merge 2-track vertices and iteratively remove tracks with largest χ^2 until fit prob. > 0.001, $M_{vtx} < 6$ GeV, $\chi^2_{max} < 7$
- 6. Cut on signed decay length significance $L/\sigma(L) > 5.72$

<u>b-jet tagging</u>

top mass: sample definition

- world avg $m_t = 173.1 \pm 1.3 \text{ GeV}$ BUT $\delta(JES)/JES \ge 2\%$
- signature: charged lepton + ETmiss + \geq 4 jets
 - → isolated e (or μ) with $p_T > 20$
 - for μ , isol includes $\Delta R > 0.4$ to nearest jet
 - $\rightarrow E_T^{miss} > 35 (20)$
 - → $m_T^W > 40 \ ((E_T^{miss} + m_T^W) > 60)$
 - \rightarrow anti- k_T jets with R = 0.4 with $p_T > 25$ & $|\eta| < 2.5$
 - \rightarrow at least one jet b-tagged using SV0
 - reject event if two b-tagged jets assigned to had. top
 - → 60 < mjj < 100
- Leaves 155 candidates, with S/B \sim 5.5
- Hadronic top: pick 3 jets with max Σp_T (vector sum)
- Hadronic W: two untagged, or min ΔR , jets
 - 35 pb⁻¹ 2010 data

$$R_{32} = \frac{m_{\rm top}^{\rm reco}}{m_W^{\rm reco}}$$

top mass

- world avg m_t = 173.1 ±1.3 GeV (sub-% level!)
- BUT $\delta(JES)/JES \ge 2\%$
- Stat. uncertainty is largest single uncertainty, JES still leading systematic
 35 pb⁻¹ 2010 data

Template Method

$$\mathcal{L}(R_{32}|m_{top}) = \mathcal{L}_{shape}(R_{32}|m_{top}) \times \mathcal{L}_{n_s+n_b} \times \mathcal{L}_{bkg},$$

$$\mathcal{L}_{shape}(R_{32}|m_{top}) = \prod_{i=1}^{N} \frac{n_s \cdot P_{sig}(R_{32}|m_{top})_i + n_b \cdot P_{bkg}(R_{32})_i}{n_s + n_b},$$

$$\mathcal{L}_{n_s+n_b} = \frac{e^{-(n_s+n_b)} \cdot (n_s + n_b)^N}{N!},$$

$$\mathcal{L}_{bkg} = \exp\left\{-\frac{(n_b - n_b^{pred})^2}{2\sigma_{n_b^{pred}}}\right\}.$$

$$\stackrel{\text{Op}}{\underset{\text{use}}{}} = \exp\left\{-\frac{(n_b - n_b^{pred})^2}{2\sigma_{n_b^{pred}}}\right\}.$$

$$\stackrel{\text{Op}}{\underset{\text{use}}$$

Searching for Exotica in ttbar

Large m_t trying to tell us something about TeV-scale physics?

Searching for rarer processes

here there be tigers... we hope

Summary

- I've barely skimmed the surface of what's being done
- Flood of new results, many based on 1 fb⁻¹, going public now
 - → ATLAS public results: <u>https://twiki.cern.ch/twiki/bin/view/AtlasPublic</u>
- Up to maybe 4 fb⁻¹ by the end of the year
 - → unexplored phase space

LHC design parameters

Quantity	number
Circumference	26 659 m
Dipole operating temperature	1.9 K (-271.3°C)
Number of magnets	9593
Number of main dipoles	1232
Number of main quadrupoles	392
Number of RF cavities	8 per beam
Nominal energy, protons	7 TeV
Nominal energy, ions	2.76 TeV/u (*)
Peak magnetic dipole field	8.33 T
Min. distance between bunches	~7 m
Design luminosity	10 ³⁴ cm ⁻² s ⁻¹
No. of bunches per proton beam	2808
No. of protons per bunch (at start)	1.1 x 10 ¹¹
Number of turns per second	11 245
Number of collisions per second	600 million

(*) Energy per nucleon

From http://cdsmedia.cern.ch/img/CERN-Brochure-2009-003-Eng.pdf

Fact Sheet

- 1 event ~ 1 MB ESD, 150 kB AOD
- 75 \rightarrow 50 ns bunch spacing this spring
 - → 25 ns under discussion but unlikely for pp colliding beams before 2012
- Current data volume is ~ 400 MBytes/hour
- We will keep the raw for 3~4 week (~ TBytes) and then delete them