Vector boson production in hadron-hadron scattering (Drell-Yan-like processes)

Pavel Nadolsky

Southern Methodist University Dallas, Texas

July 12, 2011

Pavel Nadolsky (SMU)

CTEQ summer school

July 12, 2011

Notations

■ A,B – initial-state hadrons ($p, \bar{p}, n,$ nuclei, $\pi, ...$)

■ V – a final-state QCD-neutral system (a vector boson or boson pair with mass $Q \gg \Lambda_{QCD}$)

■ v_1 , v_2 - observed particles from decay of V (e.g., leptons)

DY-like processes are ubiquitous

- $AB \to (\gamma^*, Z \to \ell^+ \ell^-) X$ (with $\ell = e, \mu$)
- $\blacksquare AB \to (W \to \ell \nu_{\ell})X$
- $\blacksquare AB \to VVX$
- (with $V = \gamma, W, Z, ...$)
- $\blacksquare AB \rightarrow \mathsf{Higgs} + X$ (F. Petriello)
- $AB \rightarrow V_{BSM}X$ (with $V_{BSM} = Z'$, Randall-Sundrum graviton, etc.)

DY-like processes are "simple"

■ V does not interact with final-state hadrons, which are summed over in cross sections

 \Rightarrow no dependence on final-state nonperturbative functions

■ QCD factorization is **proved** to all orders in α_s for a number of DY observables

► (In many other processes, factorization is only a plausible conjecture)

Example: factorization for the total cross section

 $\frac{d\sigma}{dQ^2} = \sum_{a,b} \int_{\tau}^{1} \frac{d\xi}{\xi} f_{a/A}(\xi, Q) f_{b/B}(\frac{\tau}{\xi}, Q) \frac{d\hat{\sigma}_{ab}}{dQ^2},$

where

- Q is the invariant mass of V;
- $au\equiv Q^2/s$;
- $\hat{\sigma}_{ab}$ is the hard-scattering cross section (calculated as a series in the QCD coupling α_s);

 $f_{a/A}(\xi,\mu)$ and $f_{b/B}(\tau/\xi,\mu)$ are parton distribution functions

DY-like processes produced many important discoveries

- early confirmation of the parton model
- discovery of heavy quarks (which ones?)
- discovery of massive carriers of weak force (*W* and *Z*)

Modern DY experiments provide most precise QCD tests at hadron colliders

W and Z cross sections at the LHC

Measurement of σ_W and σ_Z confirms the validity of perturbative QCD at $\sqrt{s} = 7$ TeV

Final states in DY-like processes

Explore the DY-like processes as a function of $Q \equiv M_{\ell\ell'}$, the invariant mass of the heavy EW state

$$\frac{d\sigma}{dQ^2} = \sum_{a,b} \int_{\tau}^{1} \frac{d\xi}{\xi} f_{a/A}(\xi,Q) f_{b/B}(\frac{\tau}{\xi},Q) \frac{d\widehat{\sigma}_{ab}}{dQ^2}$$

Typical parton momentum fractions

$$x_{A,B} \equiv \frac{Q}{\sqrt{s}} e^{\pm y}$$

Born level: $p_a^{\mu} = x_A p_A^{\mu}$, $p_b^{\mu} = x_B p_B^{\mu}$

Typical rapidities in the experiment: $|y| \lesssim 2$

experiments at higher energies are sensitive to PDF's at smaller x

Final states in DY-like processes

$$pN \xrightarrow{\gamma^*} \ell^+ \ell^- X$$
 at $Q <$ 20 GeV

- Continuous γ^* cross section
- Multiple quarkonium resonances (studied by non-relativistic QCD, not in the PDF fit)
- $\blacktriangle J/\psi$ (cc)– found in e^+e^- scattering (1974)

▲
$$\Upsilon$$
 (*bb*)– found in $pN \rightarrow \mu^+ \mu^- X$
(FNAL-E288, 1977)

Final states in DY-like processes

 $J/\psi, \Upsilon$ resonances shown with better resolution (FNAL-E866)

Scaling of the continuum cross section S. Drell, T. M. Yan, 1970

$$srac{d\sigma}{dQ^2}pprox \mathcal{L}_{ab}(au)\cdot ext{const}$$

 $\mathbf{L}_{ab}(\tau)$ is the "parton luminosity", originally derived from DIS functions; depends only on τ if the $\ln Q$ dependence is neglected

Scaling of the continuum cross section S. Drell, T. M. Yan, 1970

$$srac{d\sigma}{dQ^2}pprox \mathcal{L}_{ab}(au)\cdot ext{const}$$

Compare to the Born cross section:

$$\begin{pmatrix} \frac{d\sigma}{dQ^2} \end{pmatrix}_{LO} = \frac{4\pi\alpha_{EM}^2}{3N_cQ^2s} \\ \times \underbrace{\sum_{i=u,d,s,\dots} e_i^2 \int_{\tau}^1 \frac{d\xi}{\xi} \left[f_{q_i/A}(\xi,Q) f_{\bar{q}_i/B}(\frac{\tau}{\xi},Q) + f_{\bar{q}_i/A}(\xi,Q) f_{q_i/B}(\frac{\tau}{\xi},Q) \right]}_{\mathcal{L}(\tau)},$$

with $N_c = 3$, $\alpha_{EM} \equiv e^2/(4\pi)$, ee_i is the fractional quark charge

Scaling of the low-Q data

NLO corrections and the K-factor

Tau-scaling works because radiative corrections to $q\bar{q} \rightarrow VX$ are relatively constant at $x \sim 0.1$

A useful estimate

$$\frac{d\sigma}{dQ^2} \approx \left(\frac{d\sigma}{dQ^2}\right)_{LO} (\tau) \cdot K_{NLO}(Q),$$

where $K_{NLO} = 1 + \kappa \alpha_s(Q)$ with $\kappa = 3 \pm 1$

(also applies to W, Z, ... production)

Exercise: show that $K \approx 1.65$ (1.35) at Q = 5 (90) GeV

NLO cross section

Virtual contributions

The dominant contribution to σ_{tot} , if x is moderate $\sigma_{tot}^{NLO} \sim \left[1 + \frac{\alpha_s}{2\pi}C_F(1 + \frac{4\pi^2}{3})\right]\sigma_{tot}^{LO}$ $\sim [1 + 3.005\alpha_s]\sigma_{tot}^{LO}$

At $x \to 0$ or 1, ln(x) or $ln^p(1-x)/(1-x)_+$ terms are enhanced; the NLO factor is not constant!

$2 \rightarrow 3$ contributions

Generate $Q_T \neq 0$, non-trivial θ_*, φ_* dependence

NNLO cross sections for low-Q DY process

Anastasiou, Dixon, Melnikov, Petriello, 2003-05

 $K^{(2)} = \sigma_{NNLO}/\sigma_{NLO}$ – uniform enhancement over NLO by \sim 8%

Classical measurements in low-Q DY process

- **1.** Sea quark PDFs $\bar{q}_i(x, Q)$ from rapidity (y) distributions
- 2. Spins of γ^* and quarks from angular distributions of decay leptons

1. Constraints on quark sea from $pN \rightarrow \ell^+ \ell^- X$ (N = p, d, Fe, Cu, ..) $d\sigma_{pp} \rightarrow (2)^2 [u, \bar{u}_D + \bar{u}_+ u_D] + (-1)^2 [d, \bar{d}_D + \bar{d}_+ d_D] + metatrum$

 $\frac{d\sigma_{pp}}{dQ^2 dy} \sim \left(\frac{2}{3}\right)^2 \left[u_A \bar{u}_B + \bar{u}_A u_B\right] + \left(-\frac{1}{3}\right)^2 \left[d_A \bar{d}_B + \bar{d}_A d_B\right] + \text{ smaller terms}$ $\Rightarrow \text{ sensitivity to } \bar{q}(x, Q)$

Assuming charge symmetry between protons and neutrons $(u_p = d_n, u_n = d_p)$: $\frac{d\sigma_{pn}}{dQ^2 dy} \sim (\frac{2}{3})^2 \left[u_A \bar{d}_B + \bar{u}_A d_B \right] + (-\frac{1}{3})^2 \left[d_A \bar{u}_B + \bar{d}_A u_B \right] +$ smaller terms

If deuterium binding corrections are neglected: $q_d(x) \approx q_p(x) + q_n(x)$

At $x_A \gg x_B$ (large y): $\bar{q}(x_A) \sim 0$ and $4u(x_A) \gg d(x_A)$

$$rac{\sigma_{pd}}{2\sigma_{pp}} pprox rac{1}{2} rac{(1+rac{d_A}{4u_A})[1+r]}{(1+rac{d_A}{4u_A}r)} pprox rac{1}{2}(1+r), ext{ where } r \equiv \overline{d}(x_B)/\overline{u}(x_B)$$

 $\therefore \sigma_{pd}/(2\sigma_{pp})$ constrains $\bar{d}(x,Q)/\bar{u}(x,Q)$ at moderate x

Theory vs. experiment

Cross section at Q = 4 - 17 GeV

PDF fits (e.g., CTEQ5M) quantitatively account for the violation of SU(2) symmetry in the quark sea

Pavel Nadolsky (SMU)

CTEQ summer school

2. Lepton distributions in the rest frame of γ^*

The Born cross section for $q_j \bar{q}_{\bar{k}} \to V \to \ell \bar{\ell}'$ is derived tomorrow: $\frac{d\sigma}{dQ^2 dy d\Omega} \propto$

$$\times \sum_{j,\bar{k}=u,\bar{u},d,\bar{d},...} \left\{ (f_R^2 + f_L^2) (g_{L,j\bar{k}}^2 + g_{R,j\bar{k}}^2) (1 + \cos^2\theta_*) \left[q_j(x_A) \bar{q}_{\bar{k}}(x_B) + \bar{q}_{\bar{k}}(x_A) q_j(x_B) \right] \right\}$$

$$+(f_R^2-f_L^2)(g_{L,j\bar{k}}^2-g_{R,j\bar{k}}^2)(2\cos\theta_*)[q_j(x_A)\bar{q}_{\bar{k}}(x_B)-\bar{q}_{\bar{k}}(x_A)q_j(x_B)]\Big\}$$

f_L, *f_R* are left-handed and right-handed *Vℓℓ̄* couplings
 g_{L,jk̄}, *g_{R,jk̄}* are left-handed and right-handed *Vq_jq̄_{k̄}* couplings

$$\begin{array}{l} \text{Leading order} \\ \gamma^{*} \text{ rest frame} \\ \hline q(p_{a}) \\ e^{+}(p_{2}) \end{array} \xrightarrow{e^{-}(p_{1})} \\ \hline p_{a} = \frac{Q}{2} \left(1, 0, 0, 1 \right); \ p_{b} = \frac{Q}{2} \left(1, 0, 0, -1 \right); \\ p_{1} = \frac{Q}{2} \left(1, 0, 0, \cos \theta_{*} \right); \ p_{2} = \frac{Q}{2} \left(1, 0, 0, -\cos \theta_{*} \right); \end{array}$$

The Born cross section

 $\overline{dQ^2dyd\Omega} \propto$

 $\times \sum_{j,\bar{k}=u,\bar{u},d,\bar{d},...} \left\{ (f_R^2 + f_L^2) (g_{L,j\bar{k}}^2 + g_{R,j\bar{k}}^2) (1 + \cos^2\theta_*) \left[q_j(x_A) \overline{q}_{\bar{k}}(x_B) + \overline{q}_{\bar{k}}(x_A) q_j(x_B) \right] \right\}$

$$+(f_R^2-f_L^2)(g_{L,j\bar{k}}^2-g_{R,j\bar{k}}^2)(2\cos heta_*)[q_j(x_A)\overline{q}_{\bar{k}}(x_B)-\overline{q}_{\bar{k}}(x_A)q_j(x_B)]$$

The $2\cos\theta_*$ term vanishes in the parity-conserving case $(f_L = f_R \text{ or } g_L = g_R)$

The $(1 + \cos \theta_*^2)$ dependence in the experimental data confirms the vector (spin-1) nature of low-Q Drell-Yan process

The Born cross section

 $\frac{dQ^2}{dQ^2 dy d\Omega} \propto$

 $\times \sum_{j,\bar{k}=u,\bar{u},d,\bar{d},...} \left\{ (f_R^2 + f_L^2) (g_{L,j\bar{k}}^2 + g_{R,j\bar{k}}^2) (1 + \cos^2\theta_*) \left[q_j(x_A) \bar{q}_{\bar{k}}(x_B) + \bar{q}_{\bar{k}}(x_A) q_j(x_B) \right] \right\}$

 $\left.+(f_R^2-f_L^2)(g_{L,j\bar{k}}^2-g_{R,j\bar{k}}^2)(2\cos\theta_*)\left[q_j(x_A)\bar{q}_{\bar{k}}(x_B)-\bar{q}_{\bar{k}}(x_A)q_j(x_B)\right]\right\}$

• W boson production: $f_R = g_R = 0$

W cross section depends on two functions $(1 \pm \cos \theta_*)^2$ weighted by different parton luminosities

non-trivial correlation between y and θ_* in the **acceptance**, etc.

Final states in DY-like processes

W and Z boson production

- **good convergence of the** α_s series
- small backgrounds
- separation of PDF flavors (via the CKM matrix)
- sensitivity to new physics

Z pole and γ^* continuum in $\ell^+\ell^-$ production

Leptonic vs. hadronic decay modes

The W and Z branching ratios $Br_i \equiv \Gamma_i / \Gamma$ are

- Br $[W \rightarrow \ell \nu_{\ell}] \approx 3 \times 11\%$, Br $[W \rightarrow \text{jets}] \approx 68\%$
- Br $[Z \rightarrow \ell^+ \ell^-] = 3 \times 3.36\%$, Br $[Z \rightarrow \nu_\ell \bar{\nu}_\ell] = 3 \times 6.67\%$, Br $[Z \rightarrow \text{jets}] \approx 70\%$

At \sqrt{s} of a few TeV, hadronic W, Z decays are hard to observe because of the large background from QCD jets

The most viable decay modes are

 $\blacksquare Z \to e^+e^-, Z \to \mu^+\mu^-$

■ $W \rightarrow e + \nu_e, W \rightarrow \mu + \nu_{\mu}$, with neutrinos identified by missing transverse energy E_T

W and Z observables

Total cross sections

$$\sigma_Z = \int \frac{d\sigma \left(pp \to (Z \to e^+ e^-)X\right)}{d\vec{p}_{e^+} d\vec{p}_{e^-}} d\vec{p}_{e^+} d\vec{p}_{e^-}$$

Rapidity distributions and asymmetries

 $\frac{d\sigma_{W,Z}}{dQ^2dy}$, etc.

 \blacksquare W boson mass M_W

Transverse momentum and related distributions

 $\frac{d\sigma_{W,Z}}{dQ_T^2}, \frac{d\sigma_{W,Z}}{d(p_T^e)^2}, \frac{d\sigma_{W,Z}}{d\left(M_T^{\ell\nu}\right)^2}$

Total W and Z cross sections

Provide tests of perturbative QCD and collider luminosity with accuracy 3-5% Require understanding of

- $\square O(\alpha_s^2)$, or NNLO, QCD corrections
- $\square O(\alpha)$, or NLO, EW corrections
- PDF uncertainties
- Experimental acceptance
- QCD and EW showering (all-orders resummations)

NNLO differential cross sections (Anastasiou, Dixon, Melnikov, Petriello, 2003-05)

Ratios of W and Z cross sections

Radiative contributions, PDF dependence have similar structure in W, Z, and alike cross sections; cancel well in Xsection ratios

W and Z observables

Total cross sections

$$\sigma_Z = \int \frac{d\sigma \left(pp \to (Z \to e^+e^-)X\right)}{d\vec{p}_{e^+}d\vec{p}_{e^-}} d\vec{p}_{e^+}d\vec{p}_{e^-}$$

Rapidity distributions and asymmetries

 $\frac{d\sigma_{W,Z}}{dQ^2dy}$, etc.

 $\blacksquare W$ boson mass M_W

Transverse momentum and related distributions

 $\frac{d\sigma_{W,Z}}{dQ_T^2}, \frac{d\sigma_{W,Z}}{d(p_T^e)^2}, \frac{d\sigma_{W,Z}}{d\left(M_T^{\ell\nu}\right)^2}$

Charged lepton asymmetry at the Tevatron

$$A_{ch}(y_e)\equiv rac{d\sigma^{W^+}}{dy_e}-rac{d\sigma^{W^-}}{dy_e} + rac{d\sigma^{W^-}}{dy_e} + rac{d\sigma^{W^-}}{dy_e}$$

related to the boson Born-level asymmetry when y_e is large

$$A_{ch}(y) \stackrel{y \to y_{max}}{\longrightarrow} rac{r(x_B) - r(x_A)}{r(x_B) + r(x_A)}, \ r(x) \equiv rac{d(x, M_W)}{u(x, M_W)}$$

Constrains the PDF ratio $d(x, M_W)/u(x, M_W)$ at $x \to 1$

In experimental analyses, a selection cut $p_{Te} > p_{Te}^{min}$ is imposed

Charge asymmetry in p_T^e bins (CDF Run-2)

Without p_{Te} cuts, $A_{ch}(y_e)$ is not sensitive to radiative contributions

With p_{Te} cuts, $A_{ch}(y_e)$ is sensitive to small- Q_T resummation

Impact of the Tevatron A_{ch} data on PDFs

The A_{ch} data distinguish between the PDF models, reduce the PDF uncertainty

Very precise data! \Rightarrow Many subtleties in their analysis

Pavel Nadolsky (SMU)

CTEQ summer school

Charge asymmetry at the LHC

Sensitive both to d/u at x > 0.1 and \bar{u}/\bar{d} at $x \sim 0.01$ (not constrained well by other experiments)

W and Z observables

Total cross sections

$$\sigma_Z = \int \frac{d\sigma \left(pp \to (Z \to e^+e^-)X\right)}{d\vec{p}_{e^+}d\vec{p}_{e^-}} d\vec{p}_{e^+}d\vec{p}_{e^-}$$

Rapidity distributions and asymmetries

 $\frac{d\sigma_{W,Z}}{dQ^2dy}$, etc.

 $\blacksquare W$ boson mass M_W

Transverse momentum and related distributions

 $\frac{d\sigma_{W,Z}}{dQ_T^2}, \frac{d\sigma_{W,Z}}{d(p_T^e)^2}, \frac{d\sigma_{W,Z}}{d\left(M_T^{\ell\nu}\right)^2}$

Constraints on the Higgs sector and W boson mass M_W

Both the Tevatron and LHC measure M_W . It provides key constraints on Higgs mass M_H in electroweak fits.

$$M_W = 80.3827 - 0.0579 \ln\left(\frac{M_H}{100 \text{ GeV}}\right) - 0.008 \ln^2\left(\frac{M_H}{100 \text{ GeV}}\right) + 0.543 \left(\left(\frac{m_t}{175 \text{ GeV}}\right)^2 - 1\right) - 0.517 \left(\frac{\Delta \alpha_{had}^{(5)}(M_Z)}{0.0280} - 1\right) - 0.085 \left(\frac{\alpha_s(M_Z)}{0.118} - 1\right)$$

To know M_H to better than $\pm 50 \text{ GeV}$ (50%) from the fit, M_W must be measured to better than $\pm 0.030 \text{ GeV}$ (0.03%) – the accuracy that is already reached!

Pavel Nadolsky (SMU)

CTEQ summer school

July 12, 2011 29

Question to the audience

In $p\bar{p} \rightarrow (Z \rightarrow \mu^+ \mu^-)X$, the value of M_Z is found from the resonance in $d\sigma/dM_{\mu^+\mu^-}$

But in $p\bar{p} \rightarrow (W \rightarrow \ell\nu)X$, $d\sigma/dM_{\ell\nu}$ is not observed, because the ν 's longitudinal momentum $p_{\nu3}$ is not measured!

In this situation, which trick is used to measure M_W ?

Jacobian peaks in distributions of decay leptons

Certain distributions contain a quasi-resonance (the Jacobian peak) that indicates the value of M_W

Electron's transverse momentum p_T^e

Jacobian peak at $p_T^e = M_W/2 pprox$ 40 GeV

Jacobian peaks in distributions of decay leptons

Certain distributions contain a quasi-resonance (the Jacobian peak) that indicates the value of M_W

Leptonic transverse mass $M_T^{e\nu}$

(Smith, van Neerven, Vermaseren, 1983)

$$M_T^{e\nu} \equiv 2(p_T^e p_T^\nu - \vec{p}_T^e \cdot \vec{p}_T^\nu)$$

Jacobian peak at $M_T^{e\nu} = M_W$

 $e^{-}(p_1)$

The origin of the Jacobian peak

In the W rest
$$p_T^e = |\vec{p_1}| \sin \theta_* = \frac{M_W}{2} \sin \theta_*$$

frame,
for $Q = M_W$: $\frac{d\sigma}{d\cos\theta_*} = \sum_j F_j(Q, Q_T, y) a_j(\theta_*, \varphi_*)$

 $a_1 = 1 + \cos^2 \theta_*, a_2 = 2 \cos \theta_*,$ etc. (smooth functions)

$$\frac{d\sigma}{dp_T^e} = \underbrace{\left| \frac{d\cos\theta_*}{dp_T^e} \right|}_{\text{Jacobian}} \frac{d\sigma}{d\cos\theta_*} = \frac{1}{\sqrt{1 - \left(\frac{2p_T^e}{M_W}\right)^2}} \frac{4p_T^e}{M_W^2} \frac{d\sigma}{d\cos\theta_*}$$

$$rac{d\sigma}{dp_T^e}
ightarrow \infty$$
 if $p_T^e
ightarrow M_W/2$ (!)

The origin of the Jacobian peak

f
$$Q_T = 0$$
: (p_T^e) lab frame $= (p_T^e)$ CS frame

(the boost from the CS frame to the lab frame is along the z-axis)

Corrections to $d\sigma/dp_T^e$ are of order

■ $\mathcal{O}(Q_T/Q)$ due to the boost \Rightarrow sensitivity to the shape of $d\sigma/dQ_T$ (soft radiation) at $Q_T \ll Q$ dσ/dp₁(e), pb/GeV $p\bar{p} \rightarrow (W^+ \rightarrow \bar{e}\nu_e)X$ CTEQ6M 100 Leading order 80 60 Actu 40 20 $M_w/2$ 0 L .30 35 50 40 45 p_r(e), GeV

A similar Jacobian peak is present in $d\sigma/dp_T^
u$

More on lepton transverse mass

Exercise

Assuming $Q_T=$ 0, verify that there is a Jacobian peak in $d\sigma/dM_T^{e\nu}$ at $M_T^{e\nu}=M_W$

Corrections to $d\sigma/dM_T^{e\nu}$ are of order $\mathcal{O}(Q_T^2/Q^2) \Rightarrow$ reduced sensitivity to small- Q_T soft contributions

 $d\sigma/dM_T^{e\nu}, d\sigma/dp_T^e, \text{ and } d\sigma/dp_T^{\nu} \text{ are }$ commonly used to measure M_W . Γ_W is found from $d\sigma/dM_T^{e\nu}$ at large $M_T^{e\nu}$

Final states in DY-like processes

New physics at Q > 100 GeV

Indirect constraints from electroweak precision measurements

direct new physics searches

 $W' \to \ell \nu$

Randall-Sundrum graviton $\rightarrow ee, \gamma\gamma$

Pavel Nadolsky (SMU)

CTEQ summer school

Summary

Essential applications of Drell-Yan-like processes

- clean tests of QCD factorization
- studies of the nucleon structure (quark sea, flavor separation,...)
- "standard candle" processes (NNLO,...)
- electroweak precision measurements
- searches for new physics

Many interesting topics were not covered

- Polarized Drell-Yan-like processes (measurements of new nucleon structure functions)
- **Connections to** k_T factorization
- Various resummations (Q_T, small x, threshold, heavy-quark...)
- Drell-Yan production in heavy-ion scattering