Radiative contributions to vector boson production

Pavel Nadolsky
Southern Methodist University
Dallas, Texas
July 13, 2011

Born cross section with decay effects

From yesterday's lecture: the Born cross section for $q\left(p_{a}\right) \bar{q}\left(p_{b}\right) \rightarrow \gamma^{*}(q) \rightarrow e^{-}\left(p_{1}\right) e^{+}\left(p_{2}\right)$ is

$$
\begin{aligned}
& \quad \frac{d \sigma}{d Q^{2} d y d \Omega}=\frac{1}{16 \pi N_{c}^{2} s} \frac{Q^{2}}{\left(Q^{2}-M_{V}^{2}\right)^{2}+\Gamma_{V}^{2} Q^{4} / M_{V}^{2}} \\
& \times \sum_{j, \bar{k}=u, \bar{u}, d, \bar{d}, \ldots}\left\{\left(f_{R}^{2}+f_{L}^{2}\right)\left(g_{L, j \bar{k}}^{2}+g_{R, j \bar{k}}^{2}\right)\left(1+\cos ^{2} \theta_{*}\right)\left[q_{j}\left(x_{A}\right) \bar{q}_{\bar{k}}\left(x_{B}\right)+\bar{q}_{\bar{k}}\left(x_{A}\right) q_{j}\left(x_{B}\right)\right]\right. \\
& \left.+\left(f_{R}^{2}-f_{L}^{2}\right)\left(g_{L, j \bar{k}}^{2}-g_{R, j \bar{k}}^{2}\right)\left(2 \cos \theta_{*}\right)\left[q_{j}\left(x_{A}\right) \bar{q}_{\bar{k}}\left(x_{B}\right)-\bar{q}_{\bar{k}}\left(x_{A}\right) q_{j}\left(x_{B}\right)\right]\right\}
\end{aligned}
$$

- The $\left(1+\cos \theta_{*}^{2}\right)$ dependence confirms the vector (spin-1) nature of low- Q Drell-Yan process
Let's derive it!

Derive the LO cross section for a spin-1 boson

Traditional path

Lagrangian \Rightarrow Feynman rules \Rightarrow
$\sum_{\text {spin }}|\mathcal{M}|^{2} \Rightarrow \operatorname{Tr}\left(\gamma^{\alpha_{1}} \ldots \gamma^{\alpha_{n}}\right) \Rightarrow$ cross section

Helicity amplitudes

Lagrangian \Rightarrow "Feynman rules" for helicity amplitudes $\Rightarrow \mathcal{M} \Rightarrow \sum_{\text {spin }}|\mathcal{M}|^{2} \Rightarrow$ cross section
■ Efficient computation of tree diagrams
■ can be applied to 1-loop and 2-loop
 calculations (not discussed here)

■ Many excellent reviews, e.g., Mangano, Parke, Phys. Rep. 200, 301; Dixon, hep-ph/9601359

Symmetries of the minimal Standard Model

Forces between particles emerge from the local $S U(3)_{c} \otimes S U(2)_{L} \otimes U(1)_{Y}$ symmetry of the quantum Lagrangian, broken as $S U(2)_{L} \otimes U(1)_{Y} \rightarrow U(1)_{E M}$ by interaction with Higgs scalar field doublet(s)

Spin-1 fields (force carriers)

- photons A^{μ} (electromagnetism)
- massive bosons $W^{ \pm \mu}, Z^{\mu}$ (weak force)
- gluons $G^{a, \mu}$ (strong force)

Spin-1/2 fields ψ_{f} (matter fields)

	Charge		
	QCD	QED	Weak
quarks u, d, s, c, b, t	yes	yes	yes
charged leptons e, μ, τ	no	yes	yes
neutrinos $\nu_{e}, \nu_{\mu}, \nu_{\tau}$	no	no	yes

The interaction Lagrangian

$$
\mathcal{L}_{i n t}^{S M}=i \sum_{j, k} \sum_{V} \bar{\psi}_{j}\left[\left(1+\gamma_{5}\right) g_{R, j k V}+g_{L, j k V}\left(1-\gamma_{5}\right)\right] \gamma^{\mu} V_{\mu} \psi_{k},
$$

where

- ψ_{j} are fermion mass eigenstates
- $\left(\gamma^{\mu} p_{\mu}-m_{j}\right) \psi_{j}=0 ; j, k$ run over all quark and lepton flavors
- the weak and mass eigenstates for down-type quarks and neutrinos are related as

$$
\begin{aligned}
& \left(\begin{array}{c}
d^{\prime} \\
s^{\prime} \\
b^{\prime}
\end{array}\right)=V^{C K M}\left(\begin{array}{l}
d \\
s \\
b
\end{array}\right), V^{C K M}\left(V^{C K M}\right)^{\dagger}=1 \\
& \left(\begin{array}{c}
\nu_{e} \\
\nu_{\mu} \\
\nu_{\tau}
\end{array}\right)=V^{M N S}\left(\begin{array}{l}
\nu_{1} \\
\nu_{2} \\
\nu_{3}
\end{array}\right), V^{M N S}\left(V^{M N S}\right)^{\dagger}=1
\end{aligned}
$$

$V^{C K M}, V^{M N S}:$ mass mixing (Cabibbo-Kobayshi-Maskawa and Maki-Nakagawa-Sakata) matrices

The interaction Lagrangian

$$
\mathcal{L}_{i n t}^{S M}=i \sum_{j, k} \sum_{V} \bar{\psi}_{j}\left[\left(1+\gamma_{5}\right) g_{R, j k V}+g_{L, j k V}\left(1-\gamma_{5}\right)\right] \gamma^{\mu} V_{\mu} \psi_{k},
$$

where
$\square V=A^{\mu}, \mathcal{G}^{\mu}, W^{ \pm \mu}, Z^{\mu}$

- $\mathcal{G}_{\mu} \equiv G_{\mu}^{a} T^{a}, T^{a}$ is the $S U(3)_{C}$ generator matrix $\left(\operatorname{Tr} T^{a} T^{b}=\delta^{a b} / 2\right)$
- $g_{L, j k V}, g_{R, j k V}$: boson couplings to left- and right-handed fermions

The interaction Lagrangian

$$
\mathcal{L}_{\text {int }}^{S M}=i \sum_{j, k} \sum_{V} \bar{\psi}_{j}\left[\left(1+\gamma_{5}\right) g_{R, j k V}+g_{L, j k V}\left(1-\gamma_{5}\right)\right] \gamma^{\mu} V_{\mu} \psi_{k},
$$

where

Fermions Isospin $I_{3}=1 / 2$: $I_{3}=-1 / 2$	$\begin{gathered} \hline \text { Quarks } \\ u, c, t \\ d, s, b \end{gathered}$	$\begin{gathered} \hline \text { Leptons } \\ \nu_{1}, \nu_{2}, \nu_{3} \\ e^{-}, \mu^{-}, \tau^{-} \\ \hline \end{gathered}$
$g_{L, j k G}=g_{R, j k G}$	$g \frac{\delta_{j k}}{2}$	0
$g_{L, j k A}=g_{R, j k A}$	$e e_{j} \frac{\delta_{j k}}{2}$,	
	$e_{j} \equiv I_{3}+1 / 6$	$e_{j} \equiv I_{3}-\frac{1}{2}$
$g_{L, j k W^{+}}=g_{L, k j W^{-}}^{*}$	$\frac{V_{j k}^{C K M} g_{W}}{2 \sqrt{2}}$	$\frac{V_{j k}^{M N S} g_{W}}{2 \sqrt{2}}$
$g_{R, j k W^{+}}=g_{R, k j W^{-}}^{*}$	0	
$g_{L, j k Z}$	$\frac{g_{W}}{2 c_{W}}\left(I_{3}-e_{j} s_{w}^{2}\right) \delta_{j k}$	
$g_{R, j k Z}$	$-\frac{g_{V}}{2 c}$	$e_{j} s_{W}^{2}$

Calculation of $\mathcal{M}\left(q\left(p_{a}\right) \bar{q}\left(p_{b}\right) \rightarrow \ell\left(p_{1}\right) \bar{\ell}\left(p_{2}\right)\right)$

1. Crossing

Compute \mathcal{M} in an auxiliary process $\ell\left(k_{1}\right) \bar{\ell}\left(k_{2}\right) q\left(k_{3}\right) \bar{q}\left(k_{4}\right) \rightarrow 0$ to simplify the algebra; cross to the physical channel $q\left(p_{a}\right) \bar{q}\left(p_{b}\right) \rightarrow \ell\left(p_{1}\right) \bar{\ell}\left(p_{2}\right)$ at the very end
\square Denote $k_{1,2}^{\mu}=-p_{1,2}^{\mu}, k_{3,4}^{\mu}=p_{a, b^{\prime}}^{\mu}$

- Assume $m_{i}^{2}=0, i=1, . .4$

■ Particle spins are $s_{i} \equiv \lambda_{i} / 2, \lambda_{i}= \pm 1$

- Convenient notation: $\left\{k_{i}, \lambda_{i}\right\} \equiv k_{i}^{\lambda_{i}}$

Calculation of $\mathcal{M}\left(q\left(p_{a}\right) \bar{q}\left(p_{b}\right) \rightarrow \ell\left(p_{1}\right) \bar{\ell}\left(p_{2}\right)\right)$

2. Color decomposition

- Decompose \mathcal{M} into a sum of products of color $S U\left(N_{c}\right)$ factors $\left(T^{a_{1}} \ldots T^{a_{n}}\right)_{c_{1} c_{n+1}}$ and kinematical partial amplitudes $A_{4}\left(k_{1}^{\lambda_{1}}, k_{2}^{\lambda_{2}}, k_{3}^{\lambda_{3}}, k_{4}^{\lambda_{4}}\right)$
- trivial in our case:

$$
\begin{aligned}
\mathcal{M}\left(\ell\left(k_{1}^{\lambda_{1}}\right), \bar{\ell}\left(k_{2}^{\lambda_{2}}\right), q^{c_{3}}\left(k_{3}^{\lambda_{3}}\right), \bar{q}^{c_{4}}\left(k_{4}^{\lambda_{4}}\right)\right) & =\mathcal{I}_{c_{3} c_{4}} A_{4}\left(k_{1}^{\lambda_{1}}, k_{2}^{\lambda_{2}}, k_{3}^{\lambda_{3}}, k_{4}^{\lambda_{4}}\right) \\
\operatorname{TrI} & =N_{c}
\end{aligned}
$$

Δ general formulas are given in the above references

- $A_{n}(1 \ldots n)$ satisfy several helpful symmetries, which drastically reduce the number of independent amplitudes
$A_{n}(1,2, \ldots, n)$ are gauge-invariant

$$
A_{n}(1, \ldots, n)=(-1)^{n} A_{n}(n, n-1, \ldots 1) \text { (reflection identity) }
$$

$A_{n}\left(1^{ \pm}, 2^{+}, \ldots ., n^{+}\right)=0$ (effective supersymmetry)

Massless spinor formalism in 4 dimensions

In the massless case, only 2 out of 4 components of the Dirac spinor field $\psi(k, \lambda)$ are independent

Introduce two 4-spinors $\left|k_{i} \pm\right\rangle \equiv|i \pm\rangle$:
$|i \pm\rangle=u\left(k_{i}, \pm 1\right)=v\left(-k_{i}, \mp 1\right), \quad\langle i \pm|=\bar{u}\left(k_{i}, \mp 1\right)=\bar{v}\left(-k_{i}, \pm 1\right)$;
$\frac{1}{2}\left(1 \pm \gamma_{5}\right)|i \pm\rangle=|i \pm\rangle ; \quad\langle i \pm| \frac{1}{2}\left(1 \mp \gamma_{5}\right)=\langle i \pm|$
On-shell conditions
$\not k_{i}|i \pm\rangle=\langle i \pm| \not k_{i}=0 ; \quad \not k_{i}=|i+\rangle\langle i+|+|i-\rangle\langle i-|$
Spinor products
$\langle i-\mid j+\rangle \equiv\langle i j\rangle ;\langle i+\mid j-\rangle \equiv[i j]$
$\langle i j\rangle^{*}=[j i]$
$\langle i j\rangle[j i]=2 k_{i} \cdot k_{j} \equiv s_{i j}$
Tree amplitudes are rational functions of $\langle i j\rangle$ and $[i j]$

Some identities for spinor products

Gordon identity and projection operator:

$$
\begin{equation*}
\left\langle i^{ \pm}\right| \gamma^{\mu}\left|i^{ \pm}\right\rangle=2 k_{i}^{\mu}, \quad\left|i^{ \pm}\right\rangle\left\langle i^{ \pm}\right|=\frac{1}{2}\left(1 \pm \gamma_{5}\right) \not \psi_{i} \tag{19}
\end{equation*}
$$

antisymmetry:

$$
\begin{equation*}
\langle j i\rangle=-\langle i j\rangle, \quad[j i]=-[i j], \quad\langle i i\rangle=[i i]=0 \tag{20}
\end{equation*}
$$

Fierz rearrangement:

$$
\begin{equation*}
\left\langle i^{+}\right| \gamma^{\mu}\left|j^{+}\right\rangle\left\langle k^{+}\right| \gamma_{\mu}\left|l^{+}\right\rangle=2[i k]\langle l j\rangle \tag{21}
\end{equation*}
$$

charge conjugation of current:

$$
\begin{equation*}
\left\langle i^{+}\right| \gamma^{\mu}\left|j^{+}\right\rangle=\left\langle j^{-}\right| \gamma^{\mu}\left|i^{-}\right\rangle \tag{22}
\end{equation*}
$$

Schouten identity:

$$
\begin{equation*}
\langle i j\rangle\langle k l\rangle=\langle i k\rangle\langle j l\rangle+\langle i l\rangle\langle k j\rangle . \tag{23}
\end{equation*}
$$

In an n-point amplitude, momentum conservation, $\sum_{i=1}^{n} k_{i}^{\mu}=0$, provides one more identity,

$$
\begin{equation*}
\sum_{\substack{i=1 \\ i \neq j, k}}^{n}[j i]\langle i k\rangle=0 . \tag{24}
\end{equation*}
$$

Exercises

1. In Weyl representation,

$$
\gamma^{0}=\left(\begin{array}{cc}
0 & \mathbf{I} \\
\mathbf{I} & 0
\end{array}\right), \vec{\gamma}=\left(\begin{array}{cc}
0 & -\vec{\sigma} \\
\vec{\sigma} & 0
\end{array}\right), \gamma^{5}=\left(\begin{array}{cc}
\mathbf{I} & 0 \\
0 & -\mathbf{I}
\end{array}\right),
$$

$\sigma_{i}(i=1,2,3)$ are 2×2 Pauli matrices. The massless spinors satisfy

$$
\begin{gathered}
|p+\rangle=\binom{\xi_{+}(p)}{0},|p-\rangle=\binom{0}{\xi_{-}(p)} ; \\
\langle p+|=\left(\begin{array}{cc}
0 & \xi_{+}^{\dagger}(p)
\end{array}\right),\langle p-|=\left(\begin{array}{cc}
\xi_{-}^{\dagger}(p) & 0
\end{array}\right),
\end{gathered}
$$

where $\xi_{\lambda}(p)$ is a 2 -component spinor for a massless fermion with momentum p and helicity λ, normalized by $\xi_{\lambda_{1}}^{\dagger}(p) \xi_{\lambda_{2}}(p)=2 p^{0} \delta_{\lambda_{1} \lambda_{2}}$. Show that some spinor products vanish:

$$
\langle p \pm \mid q \pm\rangle=\langle p \pm| \gamma^{\mu}|q \mp\rangle=0 .
$$

Exercises

2. One possible representation for $\xi_{ \pm}(p)$ is

$$
\xi_{ \pm}(p)=2^{1 / 4}\binom{ \pm \sqrt{p^{ \pm}} e^{-i \varphi_{p} / 2}}{\sqrt{p^{\mp} e^{i \varphi_{p}} / 2}},
$$

where I introduced light-cone coordinates for p,

$$
p^{ \pm} \equiv \frac{p^{0} \pm p^{3}}{\sqrt{2}}, \vec{p}_{T}=\left\{\sqrt{2 p^{+} p^{-}} \cos \varphi_{p}, \sqrt{2 p^{+} p^{-}} \sin \varphi_{p}\right\} .
$$

We have $p^{2}=2 p^{+} p^{-}-p_{T}^{2}=0, p \cdot q=p^{+} q^{-}+q^{+} p^{-}-\vec{p}_{T} \cdot \vec{q}_{T}$, etc.
(a) Check that $\xi_{\lambda_{1}}^{\dagger}(p) \xi_{\lambda_{2}}(p)=2 p^{0} \delta_{\lambda_{1} \lambda_{2}}$.
(b) Prove antisymmetry, Gordon identity, Fierz rearrangement on slide 9

Partial amplitudes

The rule

$$
\langle p \pm| \gamma^{\mu}|q \mp\rangle=0
$$

reflects chirality conservation in the $\bar{\psi} \psi \psi$ vertex:

This condition and effective supersymmetry of massless QCD,

$$
A_{n}\left(1^{ \pm}, 2^{+}, \ldots, n^{+}\right)=0,
$$

imply that the only non-vanishing LO amplitudes are $A_{4}(+-+-), A_{4}(+--+), A_{4}(-++-), A_{4}(-+-+)$.

Partial amplitudes

Denote the couplings as $g_{P, 12} \equiv f_{P}$ and $g_{P, 34} \equiv g_{P}$
 for $P=L, R$

$$
\begin{aligned}
& A_{4}(+-+-)=-\frac{i}{q^{2}-M_{V}^{2}} f_{R} g_{R}\langle 4+| \gamma^{\mu}|3+\rangle\langle 2+| \gamma_{\mu}|1+\rangle \\
= & -\frac{i}{q^{2}-M_{V}^{2}} g_{R, 12} g_{R, 34}[42]\langle 13\rangle \\
& A_{4}(+--+)=-\frac{i}{q^{2}-M_{V}^{2}} f_{L} g_{R}[41]\langle 23\rangle \\
& A_{4}(-++-)=-\frac{i}{q^{2}-M_{V}^{2}} f_{R} g_{L}[32]\langle 14\rangle \\
& A_{4}(-+-+)=-\frac{i}{q^{2}-M_{V}^{2}} f_{L} g_{L}[31]\langle 24\rangle
\end{aligned}
$$

Spin sum

$$
\begin{aligned}
\sum_{s p i n}\left|A_{4}\right|^{2} & =\frac{1}{\left(q^{2}-M_{V}^{2}\right)^{2}}\left(\left(f_{R}^{2} g_{R}^{2}+f_{L}^{2} g_{L}^{2}\right) s_{42} s_{13}\right. \\
& \left.+\left(f_{R}^{2} g_{L}^{2}+f_{L}^{2} g_{R}^{2}\right) s_{41} s_{23}\right) \\
= & \frac{1}{\left(q^{2}-M_{V}^{2}\right)^{2}}\left(\left(f_{R}^{2} g_{R}^{2}+f_{L}^{2} g_{L}^{2}\right) s_{13}^{2}\right. \\
& \left.+\left(f_{R}^{2} g_{L}^{2}+f_{L}^{2} g_{R}^{2}\right) s_{14}^{2}\right),
\end{aligned}
$$

where I used

$$
\begin{aligned}
\langle i j\rangle[j i] & =2 p_{i} \cdot p_{j}=s_{i j}, \\
s_{12} & =s_{34}, s_{13}=s_{24}, s_{14}=s_{23}
\end{aligned}
$$

A rest frame of the vector boson

Return to the physical channel and consider the rest frame of V :

$$
\begin{aligned}
& p_{a}=\frac{Q}{2}(1,0,0,1) ; p_{b}=\frac{Q}{2}(1,0,0,-1) ; \\
& p_{1}=\frac{Q}{2}\left(1,0,0, \cos \theta_{*}\right) ; p_{2}=\frac{Q}{2}\left(1,0,0,-\cos \theta_{*}\right) ;
\end{aligned}
$$

For $q\left(p_{a}\right) \bar{q}\left(p_{b}\right): p_{a}=-k_{3}, p_{b}=-k_{4}$
For $\bar{q}\left(p_{a}\right) q\left(p_{b}\right): p_{a}=-k_{4}, p_{b}=-k_{3}$

$$
\begin{aligned}
|\mathcal{M}|^{2} & =\frac{1}{\left(q^{2}-M_{V}^{2}\right)^{2}} \frac{Q^{4}}{4 N_{c}}\left[\left(f_{R}^{2}+f_{L}^{2}\right)\left(g_{L}^{2}+g_{R}^{2}\right)\left(1+\cos ^{2} \theta_{*}\right)\right. \\
& \left.+\epsilon_{q \bar{q}}\left(f_{R}^{2}-f_{L}^{2}\right)\left(g_{L}^{2}-g_{R}^{2}\right)\left(2 \cos \theta_{*}\right)\right],
\end{aligned}
$$

$$
\epsilon_{q \bar{q}}=1(-1) \text { for } q \bar{q}(\bar{q} q)
$$

Inclusive kinematics of the lepton pair

The momenta p_{1}^{μ}, p_{2}^{μ} are fully specified by

- the mass Q, transverse momentum Q_{T}, rapidity $y=\frac{1}{2} \ln \left(\frac{q^{0}+q^{3}}{q^{0}-q^{3}}\right)$ of the intermediate boson V in the lab frame
\square angles θ_{*} and φ_{*} of lepton momenta in the special rest frame of V (Collins-Soper frame)

$$
\begin{gathered}
\frac{d^{3} \vec{p}_{1}}{2 p_{1}^{0}} \frac{d^{3} \vec{p}_{2}}{2 p_{2}^{0}}=\frac{1}{8} d^{4} q \underbrace{d \cos \theta_{*} d \varphi_{*}}_{d \Omega} \\
=\frac{\pi}{16} d Q^{2} d y d Q_{T} d \Omega
\end{gathered}
$$

Collins-Soper frame

$$
\begin{aligned}
& \angle A O B=\angle B O C \\
& p_{A}^{x}, p_{B}^{x} \propto-Q_{T} \quad p_{A}^{y}=p_{B}^{y}=0 \\
& p_{1}=(Q / 2)\left(1, \sin \theta_{*} \cos \varphi_{*}, \sin \theta_{*} \sin \varphi_{*}, \cos \theta_{*}\right) \\
& p_{2}=(Q / 2)\left(1,-\sin \theta_{*} \cos \varphi_{*},-\sin \theta_{*} \sin \varphi_{*},-\cos \theta_{*}\right)
\end{aligned}
$$

At Born level, $Q_{T}=0$

Covariant definitions for Q_{T} and y

Exercise. Convince yourself that y and Q_{T} can be introduced in a covariant form as

$$
\begin{aligned}
y & =\frac{1}{2} \ln \left(\frac{p_{B} \cdot q}{p_{A} \cdot q}\right), \\
Q_{T}^{2} & =-q_{t} q_{t}^{\mu}, \text { with } \\
q_{t}^{\mu} & \equiv q^{\mu}-\frac{\left(p_{A} \cdot q\right)}{\left(p_{A} \cdot p_{B}\right)} p_{B}^{\mu}-\frac{\left(p_{B} \cdot q\right)}{\left(p_{A} \cdot p_{B}\right)} p_{A}^{\mu}
\end{aligned}
$$

As a result, they can be a part of the Lorentz-invariant phase space

Born cross section with decay effects

Combining $|\mathcal{M}|^{2}$ with the phase space element and appropriate PDFs, obtain the full result:

$$
\begin{aligned}
& \quad \frac{d \sigma}{d Q^{2} d y d \Omega}=\frac{1}{16 \pi N_{c}^{2} s} \frac{Q^{2}}{\left(Q^{2}-M_{V}^{2}\right)^{2}+\Gamma_{V}^{2} Q^{4} / M_{V}^{2}} \\
& \times \sum_{j, \bar{k}=u, \bar{u}, d, d, \ldots}\left\{\left(f_{R}^{2}+f_{L}^{2}\right)\left(g_{L, j \bar{k}}^{2}+g_{R, j \bar{k}}^{2}\right)\left(1+\cos ^{2} \theta_{*}\right)\left[q_{j}\left(x_{A}\right) \bar{q}_{\bar{k}}\left(x_{B}\right)+\bar{q}_{\bar{k}}\left(x_{A}\right) q_{j}\left(x_{B}\right)\right]\right. \\
& \left.+\left(f_{R}^{2}-f_{L}^{2}\right)\left(g_{L, j \bar{k}}^{2}-g_{R, j \bar{k}}^{2}\right)\left(2 \cos \theta_{*}\right)\left[q_{j}\left(x_{A}\right) \bar{q}_{\bar{k}}\left(x_{B}\right)-\bar{q}_{\bar{k}}\left(x_{A}\right) q_{j}\left(x_{B}\right)\right]\right\}
\end{aligned}
$$

NLO cross section

Virtual contributions

- NLO: $\left(\alpha_{s}^{(1)}\right)$ virtual corrections $\left(q \overline{q^{\prime}}\right)_{v i r t}$

- NLO: $\left(\alpha_{s}^{(1)}\right)$ real emission diagrams $\left(q \bar{q}^{\prime}\right)_{\text {real }}$

- NLO: $\left(\alpha_{s}^{(1)}\right)$ real emission diagrams $(q G)_{\text {real }}$

- NLO: $\left(\alpha_{s}^{(1)}\right)$ real emission diagrams $\left(G \overline{q^{\prime}}\right)_{\text {real }}$ $\mid y_{n} \sum_{n}+\xi^{3}-\xi_{\xi}^{2}$

In the first approximation, rescale the LO cross section; do not affect LO kinematics

$$
\begin{aligned}
& \sigma_{t o t}^{N L O} \sim\left[1+\frac{\alpha_{s}}{2 \pi} C_{F}\left(1+\frac{4 \pi^{2}}{3}\right)\right] \sigma_{t o t}^{L O} \\
& \quad \sim\left[1+3.005 \alpha_{s}\right] \sigma_{\text {tot }}^{L O}
\end{aligned}
$$

Keep photon's $Q_{T}=0$

$2 \rightarrow 3$ contributions

Generate $Q_{T} \neq 0$, non-trivial θ_{*}, φ_{*} dependence

Immediate problems (Singularities)

- Ultraviolet singularity
(UV) $\sim \int^{\infty} d^{4} k \frac{k k}{\left(k^{2}\right)\left(k^{2}\right)\left(k^{2}\right)} \rightarrow \infty$
Infrared singularities

- Solutions

Compute $H_{i j}$ in pQCD in $n=4-2 \varepsilon$ dimensions (dimensional regularization)
(1) $n \neq 4 \Rightarrow$ UV \& IR divergences appear as $\frac{1}{\varepsilon}$ poles in $\sigma_{i j}^{(1)}$ (Feynman diagram calculation)
(2) $H_{i j}$ is IR safe \Rightarrow no $\frac{1}{\varepsilon}$ in $H_{i j}$ ($H_{i j}$ is UV safe after "renormalization".)
(Similar singularities also exist in virtual diagrams.)

- Treatment of collinear logarithms introduces dependence on the factorization scheme
- Residual soft logarithms in differential distributions may require resummation to all orders in α_{s}

A quiz on W boson kinematics

Consider $A B \rightarrow\left(W^{+} \rightarrow e^{+} \nu_{e}\right) X$ decay in the lab frame. The most probable transverse momentum Q_{T} of the W boson is
a) $Q_{T}=\sqrt{s} / 2$
b) $Q_{T}=\left|\vec{p}_{T}^{e}\right|+E_{T}$
C) $Q_{T}=0$
d) $Q_{T}=2-5 \mathrm{GeV}$, depending on \sqrt{s}

A quiz on W boson kinematics

Consider $A B \rightarrow\left(W^{+} \rightarrow e^{+} \nu_{e}\right) X$ decay in the lab frame. The most probable transverse momentum Q_{T} of the W boson is
a) $Q_{T}=\sqrt{s} / 2$
b) $Q_{T}=\left|\vec{p}_{T}^{e}\right|+E_{T}$
c) $Q_{T}=0$
d) $Q_{T}=2-5 \mathrm{GeV}$, depending on \sqrt{s}

The LO condition $Q_{T}=0$ (corresponding to no QCD radiation) is never realized because of self-suppression of very soft QCD contributions (Sudakov suppression). To predict $d \sigma / d Q_{T}$ at $Q_{T} \ll Q \sim M_{W}$, one needs to resum such soft contributions to all orders in α_{S}.

Factorization for one-scale cross sections

Scale dependence of the renormalized QCD charge $g(\mu)$ and fermion masses $m_{f}(\mu)$:

$$
\mu \frac{d g(\mu)}{d \mu}=\beta(g(\mu)), \quad \mu \frac{d m_{f}(\mu)}{d \mu}=-\gamma_{m}(g(\mu)) m_{f}(\mu)
$$

The RG equations predict that $\alpha_{s}(\mu) \rightarrow 0$ and $m_{f}(\mu) \rightarrow 0$ as $\mu \rightarrow \infty$
These features are employed to prove factorization for inclusive Drell-Yan cross sections (Boowin, PRD 31, 2616 (1985): Collins, Soper, Sterman, NPB 2661, 104 (1985): B308, 833 (1988)).'

$$
\begin{aligned}
\frac{d \sigma\left(Q,\left\{m_{f}\right\}\right)}{d \tau} & =\sum_{a, b} \int_{x_{A}}^{1} d \xi_{A} \int_{x_{B}}^{1} d \xi_{B} \frac{d \widehat{\sigma}\left(\frac{Q}{\mu}, \frac{\tau}{\xi_{A} \xi_{B}},\left\{m_{f}=0\right\}\right)}{d \tau} f_{a / A}\left(\xi_{A}, \mu\right) f_{b / B}\left(\xi_{B}, \mu\right) \\
& +\mathcal{O}\left(\left\{m_{f}^{2} / Q^{2}\right\}\right)
\end{aligned}
$$

assuming $\mu \sim Q \sim \sqrt{s} \gg\left\{m_{f}\right\}, \Lambda_{Q C D}$

Factorization for one-scale cross sections

$$
\begin{aligned}
\frac{d \sigma\left(Q,\left\{m_{f}\right\}\right)}{d \tau} & =\sum_{a, b} \int_{x_{A}}^{1} d \xi_{A} \int_{x_{B}}^{1} d \xi_{B} \frac{d \widehat{\sigma}\left(\frac{Q}{\mu}, \frac{\tau}{\xi_{A} \xi_{B}},\left\{m_{f}=0\right\}\right)}{d \tau} f_{a / A}\left(\xi_{A}, \mu\right) f_{b / B}\left(\xi_{B}, \mu\right) \\
& +\mathcal{O}\left(\left\{m_{f}^{2} / Q^{2}\right\}\right)
\end{aligned}
$$

- The hard cross section $\widehat{\sigma}$ is infrared-safe: $\lim _{\left\{m_{f} \rightarrow 0\right\}} \widehat{\sigma}\left(\left\{m_{f}\right\}\right)$ is finite and can be computed as a series in $\alpha_{s}(\mu)$
- Collinear logarithms are subtracted from $\widehat{\sigma}$ and resummed in $f(\xi, \mu)$ using DGLAP equations
- Soft-gluon singularities in $\widehat{\sigma}$ vanish when the sum of all Feynman diagrams is integrated over all phase space (Kinoshita-Lee-Nauenberg theorem)

Factorization for Q_{T} distributions (two scales)

- Differential distributions may still contain integrable soft singularities of the type $\alpha_{s}^{k} \ln ^{m}\left(Q^{2} / p_{i} \cdot p_{j}\right)$, e.g., $L \equiv \ln \left(Q^{2} / Q_{T}^{2}\right) \gg 1$:

$$
\begin{aligned}
\left.\frac{d \sigma}{d Q^{2} d y d Q_{T}^{2}}\right|_{Q_{T} \rightarrow 0} \approx & \frac{1}{Q_{T}^{2}}\{ \\
& \alpha_{S}(L+1) \\
+ & \alpha_{S}^{2}\left(L^{3}+L^{2}+L+1\right) \\
+ & \alpha_{S}^{3}\left(L^{5}+L^{4}+L^{3}+L^{2}+L+1\right) \\
+ & \cdots\}
\end{aligned}
$$

The purpose of Q_{T} resummation is to reorganize this series as

$$
\left.\frac{d \sigma}{d Q^{2} d y d Q_{T}^{2}}\right|_{Q_{T} \rightarrow 0} \approx \frac{1}{Q_{T}^{2}}\left\{\alpha_{S} Z_{1}+\alpha_{S}^{2} Z_{2}+\ldots\right\},
$$

where $\alpha_{S}^{n+1} Z_{n+1} \ll \alpha_{S}^{n} Z_{n}$:

$$
\begin{array}{rrrrl}
\alpha_{S} Z_{1} & \sim & \alpha_{S}(L+1)+\alpha_{S}^{2}\left(L^{3}+L^{2}\right)+\alpha_{S}^{3}\left(L^{5}+L^{4}\right)+\ldots & \mid A_{1}, B_{1}, \mathcal{C}_{0} ; \\
\alpha_{S}^{2} Z_{2} & \sim & \alpha_{S}^{2}(L+1)+\alpha_{S}^{3}\left(L^{3}+L^{2}\right)+\ldots & \mid A_{2}, B_{2}, \mathcal{C}_{1} ; \\
\alpha_{S}^{3} Z_{3} & \sim & \alpha_{S}^{3}(L+1)+\ldots & \mid A_{3}, B_{3}, \mathcal{C}_{2} .
\end{array}
$$

QCD factorization at large and small Q_{T}

Finite-order (FO) factorization

$$
\text { Small- } q_{T} \text { factorization }
$$

$$
\Lambda_{Q C D}^{2} \ll q_{T}^{2} \sim Q^{2}
$$

$$
\Lambda_{Q C D}^{2} \ll q_{T}^{2} \ll Q^{2}
$$

Solution for all q_{T} :

Factorization at $Q_{T} \ll Q$

(Collins, Soper, Sterman, 1985)
Realized in space of the impact parameter b

$$
\begin{gathered}
\left.\frac{d \sigma_{A B \rightarrow V X}}{d Q^{2} d y d q_{T}^{2}}\right|_{q_{T}^{2}<Q^{2}}=\sum_{\text {flavors }} \int \frac{d^{2} b}{(2 \pi)^{2}} e^{-i \vec{q}_{T} \cdot} \cdot \widetilde{W}_{a b}\left(b, Q, x_{A}, x_{B}\right) \\
\widetilde{W}_{a b}\left(b, Q, x_{A}, x_{B}\right)=\left|\mathcal{H}_{a b}\right|^{2} e^{-\mathcal{S}(b, Q)} \overline{\mathcal{P}}_{a}\left(x_{A}, b\right) \overline{\mathcal{P}}_{b}\left(x_{B}, b\right)
\end{gathered}
$$

$\mathcal{H}_{a b}$ is the hard vertex, \mathcal{S} is the soft (Sudakov) factor, $\overline{\mathcal{P}}_{a}(x, b)$ is the unintegrated PDF

For $b \ll 1 \mathrm{GeV}^{-1}, \widetilde{W}_{a b}\left(b, Q, x_{A}, x_{B}\right)$ is calculable in perturbative QCD; at $Q \sim M_{Z}$, this region dominates the resummed cross section

Nonperturbative contributions at large b

At $b \gtrsim 1 \mathrm{GeV}^{-1}$, the leading nonperturbative contribution is approximated as $\exp \left(-a(Q) b^{2}\right)$, where $a(Q)$ is an effective "nonperturbative parton $\left\langle k_{T}^{2}\right\rangle / 4^{\prime \prime}$ inside the proton

The RG invariance suggests that

$$
a(Q) \approx a_{1}+a_{2} \ln Q,
$$

where $a_{1,2} \sim \Lambda_{Q C D}^{2}$, and a_{2} is process-independent

The $\ln Q$ growth of $a(Q)$ is indeed observed in the Drell-Yan and $Z p_{T}$ data

Fig. 9.2. The leption pair transverse momentumfrom the CFS collaboration [4]: The curve corresponds to a Gaussian intrinsic k_{T} distribution for the annihilating

An example of the resummed cross section

Z production at the Tevatron vs. resummed NLO (Balazs, Ladinsky, PN, Yuan)

These predictions for $d \sigma / d Q_{T}$ are employed in M_{W} measurements

