

Data Selection & Collection: Trigger & DAQ CTEQ Summer School

Wesley H. Smith *U. Wisconsin - Madison* July 19, 2011

Outline: Introduction to LHC Trigger & DAQ Challenges & Architecture Examples: ATLAS & CMS Trigger & DAQ The Future: LHC Upgrade Trigger & DAQ (if time)

Task: inspect detector information and provide a first decision on whether to keep the event or throw it out

The trigger is a function of :

Event data & Apparatus Physics channels & Parameters

Detector data not (all) promptly available
 Selection function highly complex
 ⇒T(...) is evaluated by successive approximations, the TRIGGER LEVELS

(possibly with zero dead time)

LHC Collisions

<mark>стео</mark> Beam Xings: LEP. TeV, LHC

LHC has ~3600 bunches

- And same length as LEP (27 km)
- Distance between bunches: 27km/3600=7.5m
- Distance between bunches in time: 7.5m/c=25ns

CTEQ LHC Physics & Event Rates

At design $L = 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$

- 23 pp events/25 ns xing
 - •~ 1 GHz input rate
 - "Good" events contain
 ~ 20 bkg. events
- 1 kHz W events
- 10 Hz top events
- < 10⁴ detectable Higgs decays/year
- Can store ~ 300 Hz events
- **Select in stages**
 - Level-1 Triggers
 - •1 GHz to 100 kHz
 - High Level Triggers
 100 kHz to 300 Hz

Collisions (p-p) at LHC

Wesley Smith, U. Wisconsin, July 19, 2011

THE UNIVERSITY

Processing LHC Data

WISCONSIN

LHC Trigger & DAQ Challenges

Challenges: 1 GHz of Input Interactions Beam-crossing every 25 ns with ~ 23 interactions produces over 1 MB of data

Archival Storage at about 300 Hz of 1 MB events

In-time" pile-up: particles from the same crossing but from a different pp interaction

- Long detector response/pulse shapes:
 - "Out-of-time" pile-up: left-over signals from interactions in previous crossings
 - Need "bunch-crossing identification"

Wesley Smith, U. Wisconsin, July 19, 2011

стео Challenges: Time of Flight

c = 30 cm/ns \rightarrow in 25 ns, s = 7.5 m

LHC Trigger Levels

Collision rate 10⁹ Hz

Channel data sampling at 40 MHz

Level-1 selected events 10⁵ Hz

Particle identification (High $p_{T} e, \mu$, jets, missing E_{T})

- Local pattern recognition
- Energy evaluation on prompt macro-granular information

Level-2 selected events 10³ Hz

Clean particle signature (Z, W, ..)

- Finer granularity precise measurement
- Kinematics. effective mass cuts and event topology
- Track reconstruction and detector matching

Level-3 events to tape 100- 300 Hz Physics process identification

Event reconstruction and analysis

Optical System:

Single High-Power Laser per zone

- Reliability, transmitter upgrades
- Passive optical coupler fanout

1310 nm Operation

Negligible chromatic dispersion

InGaAs photodiodes

 Radiation resistance, low bias

CTE

CTEQ Detector Timing Adjustments

Wesley Smith, U. Wisconsin, July 19, 2011

CTEQ11: Trigger & DAQ - 15

CTEQ Synchronization Techniques

2835 out of 3564 p bunches are full, use this pattern:

WISCONSIN

Muon Spectrometer ($|\eta| < 2.7$)

air-core toroids with muon chambers.

Calorimetry ($|\eta| < 5$) -

• EM : Pb-LAr

 $\mathbf{C} \mathbf{T} \mathbf{E} \mathbf{Q}$

• HAD : Fe/scintillator (central), Cu/W-Lar (fwd)

Tracking ($|\eta| < 2.5$, B=2T)

- Si pixels and strips
- TRD (e/π separation)

CMS Detector Design

 $\mathbf{C} \mathbf{T} \mathbf{E} \mathbf{Q}$

ATLAS & CMS Trigger Data

ATLAS & CMS Level 1: Only Calorimeter & Muon

High Occupancy in high granularity tracking detectors

 Pattern recognition much faster/easier

Wesley Smith, U. Wisconsin, July 19, 2011

ATLAS Three Level Trigger Architecture

- LVL1 decision made with <u>calorimeter</u> data with coarse granularity and <u>muon trigger</u> <u>chambers</u> data.
 - Buffering on detector
- LVL2 uses <u>Region of Interest</u> <u>data</u> (ca. 2%) with full granularity and combines information from all detectors; performs fast rejection.
 - Buffering in ROBs
- EventFilter refines the selection, can perform event reconstruction at full granularity using latest alignment and calibration data.
 - Buffering in EB & EF

CTEQ

ATLAS Level-1 Trigger -Muons & Calorimetry

Trigger efficiency 99% (low- p_T) and 98% (high- p_T)

ATLAS LVL1 Trigger

Rol Mechanism

LVL1 triggers on high p_T objects

 Caloriemeter cells and muon chambers to find e/γ/τ-jet-μ candidates above thresholds

LVL2 uses Regions of Interest as identified by Level-1

 Local data reconstruction, analysis, and sub-detector matching of Rol data

The total amount of Rol data is minimal

 ~2% of the Level-1 throughput but it has to be extracted from the rest at 75 kHz

CMS Trigger Levels

Wesley Smith, U. Wisconsin, July 19, 2011

CTEQ11: Trigger & DAQ - 28

сте Calorimeter Trigger Processing

ECAL Trigger Primitives

In the trigger path, **digital filtering** followed by a **peak finder** is applied to energy sums (L1 Filter)

Efficiency for energy sums above 1 GeV should be close to 100% (depends on electronics noise)

Pile-up effect: for a signal of 5 GeV the efficiency is close to 100% for pile-up energies up to 2 GeV (CMS)

Test beam results (45 MeV per xtal):

Wesley Smith, U. Wisconsin, July 19, 2011

CTEQ11: Trigger & DAQ - 30

THE UNIVERSIT

- Larger trigger towers in HF but ~ same jet region size, 1.5 η x 1.0 ϕ
- τ algorithm (isolated narrow energy deposits), within -2.5 < η < 2.5
- Redefine jet as τ jet if none of the nine 4x4 region $\tau\text{-veto}$ bits are on Output
 - Top 4 τ-jets and top 4 jets in central rapidity, and top 4 jets in forward rapidity

CMS Muon Chambers

CTEQ11: Trigger & DAQ - 33

WISCONSIN

CMS Muon Trigger Primitives

DT and CSC track finding:

- Finds hit/segments
- Combines vectors
- Formats a track
- Assigns p, value

MS2

MS1

 $\mathbf{C} \mathbf{T} \mathbf{E} \mathbf{Q}$

CMS Muon Trigger Track Finders

Drift Tubes

Meantimers recognize tracks and form vector / quartet.

Correlator combines them into one vector / station.

Cathod Strip Chambers (CSC)

Comparators give 1/2-strip resol.

Sort based on P_T , Quality - keep loc.

Combine at next level - match

Sort again - Isolate?

Top 4 highest P_T and quality muons with

Hit strips of 6 layers form a vector OCation coord.

Match with RPC Improve efficiency and quality

C T E Q

CMS Global Trigger

Input:

- Jets: 4 Central, 4 Forward, 4 Tau-tagged, & Multiplicities
- Electrons: 4 Isolated, 4 Non-isolated
- •4 Muons (from 8 RPC, 4 DT & 4 CSC w/P, & quality)
 - All above include location in η and ϕ
- Missing E₇ & Total E₇ Output
 - L1 Accept from combinations & proximity of above

стео Global L1 Trigger Algorithms

Particle Conditions

Flexible algorithms implemented in FPGAs 100s of possible algorithms can be reprogrammed

Wesley Smith, U. Wisconsin, July 19, 2011

Full event reconstruction and analysis

physics selection

HLT: All processing beyond Level-1 performed in the Filter Farm Partial event reconstruction "on demand" using full detector resolution

Wesley Smith, U. Wisconsin, July 19, 2011

CTEQ11: Trigger & DAQ - 40

CTEQ Start with L1 Trigger Objects

Electrons, Photons, τ -jets, Jets, Missing E_T, Muons

HLT refines L1 objects (no volunteers)

Goal

- Keep L1T thresholds for electro-weak symmetry breaking physics
- However, reduce the dominant QCD background
 - From 100 kHz down to 100 Hz nominally

QCD background reduction

- Fake reduction: e±, γ , τ
- Improved resolution and isolation: $\boldsymbol{\mu}$
- Exploit event topology: Jets
- Association with other objects: Missing E_T
- Sophisticated algorithms necessary
 - Full reconstruction of the objects
 - Due to time constraints we avoid full reconstruction of the event L1 seeded reconstruction of the objects only
 - Full reconstruction only for the HLT passed events

Electron selection: Level-2 $\mathbf{C} \mathbf{T} \mathbf{E} \mathbf{Q}$

- Search for match to Level-1 trigger

стео CMS tracking for electron trigger

Present CMS electron HLT 100 e^\pm efficiency (%) 10³⁴/cm²/s Cluster E Cluster position 95 ongegte to redict a track he pixel lavers and look for compatible hits Nominal vertex (0,0,0) b) a) 90 □Inl < 2.1 $|\eta| < 2.5$ 85 Pixel hit If a hit is found, stimate z vertex d propagate Estimated vertex (θ, θ, z) d) c) 805 10 15 20 25 Jet rejection Factor of 10 rate reduction η=**1.5** γ : only tracker handle: isolation

 Need knowledge of vertex location to avoid loss of efficiency

CTEQ11: Trigger & DAQ - 43

 $z_{vtx} = \pm 15 \ cm$

τ -jet tagging at HLT

 τ -jet (E_t^{τ -jet} > 60 GeV) identification (mainly) in the tracker:

Hard track, $p_t^{max} > 40$ GeV, within $\Delta R < 0.1$ around calorimeter jet axis **Isolation:** no tracks, $p_t > 1$ GeV, within $0.03 < \Delta R < 0.4$ around the hard track

For 3-prong selection 2 more tracks in the signal cone $\Delta r < 0.03$

Further reduction by ~ 5 expected for 3-prong QCD jets from τ vertex reconstruction (CMS full simulation) ack Jacob

WISCONSIN

Wesley Smith, U. Wisconsin, July 19, 2011

$\mathbf{C} \mathbf{T} \mathbf{E} \mathbf{Q}$

B and τ tagging

Soft b-jets with a wide η-range:

- Efficiency to tag one b-jet ~ 35% for ~1% mistagging rate (CMS)
- tagging with impact parameter measurement.
- combining the ip measurements of the hard tracks in
- the two t's (τ -> hadron, τ -> lepton) into one variable: $\sqrt{\sigma_{t}}$

background for $m_A = 200 \text{ GeV}$, $\tan\beta = 20$

Wesley Smith, U. Wisconsin, July 19, 2011

Prescale set used: 2E32 Hz/cm² Sample: MinBias L1-skim 5E32 Hz/cm² with 10 Pile-up

 $\mathbf{C} \mathbf{T} \mathbf{E} \mathbf{Q}$

CMS DAQ

. . .

m

Building the event

Event builder :

Physical system interconnecting data sources with data destinations. It has to move each event data fragments into a same destination

PC motherboards for data Source/Destination nodes

Myrinet Barrel-Shifter

BS implemented in firmware

- Each source has message queue per destination
- Sources divide messages into fixed size packets (carriers) and cycle through all destinations
- Messages can span more than one packet and a packet can contain data of more than one message
- No external synchronization (relies on Myrinet back pressure by HW flow control)

zero-copy, **OS-bypass principle works** for multitage switches

EVB – HLT installation

End Drivers / EED v ... 70

THE UNIVERSITY WISCONSIN

- EVB input "RU" PC nodes
 - 640 times dual 2-core E5130 (2007)
 - Each node has 3 links to GbE switch
- Switches
 - 8 times F10 E1200 routers
 - In total ~4000 ports
- EVB output + HLT node ("BU-FU")
 - 720 times dual 4-core E5430, 16 GB (2008)
 - 288 times dual 6-core X5650, 24 GB (2011)
- Each node has 2 links to GbE switch HLT Total: 1008 nodes, 9216 cores, 18 TB memory @100 kHz: ~90 ms/event

Can be easily expanded by adding PC nodes and recabling EVB network

Control&Services Network

 $\mathbf{C} \mathbf{T} \mathbf{E}$

....

12.5 kHz

СТЕО of the upgrades: ~2010-2020

Phase 1:

- Goal of extended running in second half of the decade to collect ~100s/fb
- 80% of this luminosity in the last three years of this decade
- About half the luminosity would be delivered at luminosities
 above the original LHC design luminosity
- Trigger & DAQ systems should be able to operate with a peak luminosity of up to 2 x 10³⁴

Phase 2: High Lumi LHC

- Continued operation of the LHC beyond a few 100/fb will require substantial modification of detector elements
- The goal is to achieve 3000/fb in phase 2
- Need to be able to integrate ~300/fb-yr
- Will require new tracking detectors for ATLAS & CMS
- Trigger & DAQ systems should be able to operate with a peak luminosity of up to 5 x 10³⁴

СТЕQ in ATLAS at 10³⁵ Expected Pile-up at High Lumi LHC

- 230 min.bias collisions per 25 ns. crossing
- ~ 10000 particles in $|\eta| \le 3.2$
- mostly low p_T tracks
- requires upgrades to detectors

стео Detector Luminosity Effects

$H \rightarrow ZZ \rightarrow \mu\mu ee$, M_H = 300 GeV for different luminosities in CMS

Wesley Smith, U. Wisconsin, July 19, 2011

<mark>стео</mark> CMS Upgrade Trigger Strategy

Constraints

- Output rate at 100 kHz
- Input rate increases x2/x10 (Phase 1/Phase 2) over LHC design (10³⁴)
 - Same x2 if crossing freq/2, e.g. 25 ns spacing \rightarrow 50 ns at 10^{34}
- Number of interactions in a crossing (Pileup) goes up by x4/x20
- Thresholds remain ~ same as physics interest does

Example: strategy for Phase 1 Calorimeter Trigger (operating 2016+):

- Present L1 algorithms inadequate above 10³⁴ or 10³⁴ w/ 50 ns spacing
 - Pileup degrades object isolation
- More sophisticated clustering & isolation deal w/more busy events
 - Process with full granularity of calorimeter trigger information
- Should suffice for x2 reduction in rate as shown with initial L1 Trigger studies & CMS HLT studies with L2 algorithms
- Potential new handles at L1 needed for x10 (Phase 2: 2020+)
 - Tracking to eliminate fakes, use track isolation.
 - Vertexing to ensure that multiple trigger objects come from same interaction
 - Requires finer position resolution for calorimeter trigger objects for matching (provided by use of full granularity cal. trig. info.)

Wesley Smith, U. Wisconsin, July 19, 2011

CTEQ11: Trigger & DAQ - 56

стео The Track Trigger Problem

- Power & bandwidth to send all data off-detector is prohibitive
 - Local filtering necessary
 - Smart pixels needed to locally correlate hit P_t information
- Studying the use of 3D electronics to provide ability to locally correlate hits between two closely spaced layers

WISCONSIN

3D Interconnection

No "horizontal" data transfer necessary – lower noise and power

Fine Z information is not necessary on top sensor – long (~1 cm vs ~1-2 mm) strips can be used to minimize via density in interposer

Wesley Smith, U. Wisconsin, July 19, 2011

low pT

offset=2

high pT

offset=0

Various projects being pursued:

- Track trigger
 - Fast Track Finder (FTK), hardware track finder for ATLAS (at L1.5)
 - ROI based track trigger at L1
 - Self seeded track trigger at L1
- Combining trigger objects at L1 & topological "analysis"
- Full granularity readout of calorimeter
 - requires new electronics
- Changes in muon systems (small wheels), studies of an MDT based trigger & changes in electronics
- Upgrades of HLT farms

Some of the changes are linked to possibilities that open when electronics changes are made (increased granularity, improved resolution & increased latency) Wesley Smith, U. Wisconsin, July 19, 201

Upgrade CMS DAQ

Phase 2 Network bandwidth at least 5-10 times LHC

- Assuming L1 trigger rate same as LHC
- Increased Occupancy
- Decreased channel granularity (esp. tracker)
- **CMS DAQ Component upgrades**
 - Readout Links: replace existing SLINK (400 MB/s) with 10 Gbit/s
 - Present Front End Detector Builder & Readout Unit Builder replaced with updated network technology & mult-gigabit link network switch
 - Higher Level Trigger CPU Filter Farm estimates:
 - 2010 Farm = 720 Dual Quad Core E5430 16 GB (2.66 GHz)
 - 2011 Farm = add 288 Dual 6-Core X5650 24 GB (2.66 GHz)
 - 1008 nodes, 9216 cores, 18 TB memory @100 kHz: ~90 ms/event
 - 2012 Farm = 3× present farm
 - 2016 Farm = 3× 2012 farm
 - Requires upgrades to network (40 Gbps links now affordable)

CTEQ Extrapolating PC performance 1000 100 "HepSpec06 (no HT) scaled to 2.66 GHz" "number of cores (excl HT)" -HLT evt/s 10 E5130 E5430 X5650 9 10 11 12 13 14 15 16 17 18 Launched in Year 2000+

Extrapolate performance dual-processor PCs In 2014 could have same HLT performance with 100 – 200 nodes Likely to have 10 GbE onboard

Wesley Smith, U. Wisconsin, July 19, 2011

HEP tools for high rate experiments: µTCA

- Advanced Telecommunications Computing Architecture ATCA
- µTCA Derived from AMC std.
 - Advanced Mezzanine Card
 - Up to 12 AMC slots
 - Processing modules
 - 1 or 2 MCH slots
 - Controller Modules
- 6 standard 10Gb/s point-to -point links from each slot to hub slots (more available)
- Redundant power, controls, clocks
- Each AMC can have in principle (20) 10 Gb/sec ports
- Backplane customization is routine & inexpensive

Typical MicroTCA Crate with 12 AMC slots

Single Module (shown): 75 x 180 mm Double Module: 150 x 180mm

FPGAs: Transceivers

£ XILINX.

 $\mathbf{C} \mathbf{T} \mathbf{E} \mathbf{Q}$

Challenge:

- Increase device BW
- No increase in total device power
- XCVR gains from scaling: negligible

Solution:

- Careful circuit design throughout XCVR
- Increased Gbps / XCVR
- More XCVR / Device
- Low power mode for short channels
- Lanes share a PLL vs PLL per lane

Result:

- 60% Increased max device BW
- Device XCVR power unchanged

	GTP	GTX	GTH	GT28
Max Rate (Gbps)	3.75	10.3125	13.1	28
Relative Power (Per GT)	.35x	.7x	1x	-
Max GTs per Device	4	56	72	-

Wesley Smith, U. Wisconsin, July 19, 2011

Trigger & DAQ Summary: LHC Case

Level 1 Trigger

 $C \overline{T E Q}$

- Select 100 kHz interactions from 1 GHz (10 GHz at SLHC)
- Processing is synchronous & pipelined
- Decision latency is 3 μs (x~2 at SLHC)
- Algorithms run on local, coarse data
 - Cal & Muon at LHC (& tracking at SLHC)
 - Use of ASICs & FPGAs (mostly FPGAs at SLHC)

Higher Level Triggers

- Depending on experiment, done in one or two steps
- If two steps, first is hardware region of interest
- Then run software/algorithms as close to offline as possible on dedicated farm of PCs