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CTE Q i i W
- Triggering e

Task: inspect detector information and provide a first
decision on whether to keep the event or throw it out

The trigger is a function of :

II I“ﬁl II
g | REJECTED
= *
- - - ACCEPTED

Event data & Apparatus
Physics channels & Parameters

* Detector data not (all) promptly available

 Selection function highly complex

—T(...) is evaluated by successive approximations, the
TRIGGER LEVELS

(possibly with zero dead time)
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Proton-Proton 2835 bunch/beam
Protons/bunch 10"

Beam energy 7 TeV (7x10"2 eV)
Luminosity 10%** cm? s’

Bunch  ogessls £ o o, % Crossing rate 40 MHz

Proton c e with every bunch crossing

23 Minimum Bias events
with ~1725 particles produced

Parton Y
(quark, gluon)

Selection of 1 in
10,000,000,000,000

Particle
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appsl Beam Xings: LEP. TeV, LHC W

AAAAAA

LHC has ~3600 bunches
 And same length as LEP (27 km)
* Distance between bunches: 27km/3600=7.5m
* Distance between bunches in time: 7.5m/c=25ns

LEP: ete Crossmg rate 30 kHz
< || I U

f 22us
/ - Tevatron Run |
T ! I

3.5us
- - un Il

LHC: pp Crossing rate 40 MHz

I I 0T T 1T 1
25ns
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kA8l | HC Physics & Event Rates W

WISCONSIN

At design L = 103%cm2s-1 " LHC VestaTev  L=t0¥em?s’ rate Z:f:ﬂf;
e 23 PP events/25 ns Xing «————— s inelastic LV1 input e é"' "
~ 1 GHz input rate N _ ::
*“Good” events contain 2 W
~ 20 bkg. events AN o 2
« 1 kHz W events b o 1 o o™
« 10 Hz top events oA el e

. < 104 detectable Higgs ., =zt oo i
decays/year _ _ e Jw
Can store ~ 300 Hz events j 10
Select in stages wr R\\ .= "
« Level-1 Triggers 2 '\\ N\ 10°

-1 GHz to 100 kHz o ﬂ i\ \\

* High Level Triggers [y ||| [ S 1

+100 kHz to 300 Hz T o T .
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Collisions (p-p) at LHC W

WISCONSIN

6 LHC Vs=14TeV L=10cm’s’ Event Rate ev/year

bar 10 Operating conditions:
g Event rate Bp|CHz 410 good’” event (e:g'Higgs in4 m
Ine|aStIC . * '.,.._. 0 .I u
10 .
mb bT:J 10 14

MHz 410 ™

kHz

Hz

b = ot I
Reconstructed tracks with pt > 25 GeV

_. mHz

b 1w Event size: ~1 MByte

ns_ 3, Processing Power: ~X TFlop
5300200 00 1000 20000

jet Er or particle mass (GeV) —

» Zpdy scalar 1Q Z;72A
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Processing LHC Data W

WISCONSIN
Rate (Hz) LEVEL-1 Trigger 40 MHz
QED | Hardwired processors (ASIC, FPGA)
i  MASSIVE PARALLEL
| /| Pipelined Logic Systems
108 | | {114
=y

105 \
- — 4 =001-1sec —

ol T~
L B L
Top 10 £ A
10° —fé —:é.x_ b b 4
e P A

104
HIGH LEVEL TRIGGERS 100 kHz
Standard processor FARMs
104 25 ns = IS5 ms sec
- T T | I | ] S
10 10  10° 102 10° =

Available processing time
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LHC Trigger & DAQ

AAAAAA

Challenges

sown: B

COLLISION RATE

DETECTOR CHANNELS

Sy

Charge

Pattern

11

Time

100 - 50 kHz

1 Terabit/s

READOUT |47

50,000 data
channels

500 Gigabit/s

SWITCH NETWORK

300 Hz
FILTERED

o

EVENT
Gigabit/s

Computing Services

SERVICE LAN

16 Million channels
3 Gigacell buffers

f=-"{

Tracks

[T

Energy

- 1 MB EVENT DATA

*' 200 GB buffers

~ 400 Readout
memories

EVENT BUILDER.

A large switching network (400+400
ports) with total throughput ~ 400Gbit/s
forms the interconnection between the
sources (deep buffers) and the
destinations (buffers before farm
CPUs).

~ 400 CPU farms
EVENT FILTER.

A set of high performance commercial
processors organized into many farms
convenient for on-line and off-line

applications. 5 TeraIPS
Petabyte ARCHIVE

Challenges:

1 GHz of Input
Interactions

Beam-crossing
every 25 ns
with ~ 23
interactions
produces over
1 MB of data

Archival
Storage at
about 300 Hz of
1 MB events
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Challenges: Pile-up W

m “In-time” pile-up: particles from the same crossing but
from a different pp interaction

Long detector
response/pulse shapes:
+ “Out-of-time” pile-up: left-over
signals from interactions in
previous crossings

¢ Need “bunch-crossing

identification” - :
/‘s& super— 7[ N In+Out-of-time

In-ti \ pulses
XY pE]s;me ::> i

0
Impose / \EM

5 4 3 2101 2 3 45 6 7 8 910 1 12 13 14 15 16 17 $ 4 32414901 2 3 45 6 7 8 9 10111213 14 15 16 17 18 19 20
t (25ns units)

t (25ns units)

pulse shape
pulse shape

Wesley Smith, U. Wisconsin, July 19, 2011 CTEQ11: Trigger & DAQ - 9



THE UNIVERSITY

WISCONSIN

MADISON

c=30cm/ns - in25ns,s= 7.5m

Muon Detectors Electromagnetic Calorimeters

Forward Calorimeters

End Cap Toroid

oroi Inner Detector E i ieldi
Sl Hadronic Calorimeters e
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LHC Trigger Levels W

AAAAAA

107 s Collision rate 10° Hz
J Channel data sampling at 40 MHz

%@ Level-1 selected events 10° Hz
\\g’s Particle identification (High p, e, y, jets, missing E.)
* Local pattern recognition
» Energy evaluation on prompt macro-granular information

10ts

i?/ Level-2 selected events 10° Hz
L

Clean particle signature (Z, W, ..)

ﬁ} * Finer granularity precise measurement
» Kinematics. effective mass cuts and event topology
* Track reconstruction and detector matching

103 s

—¥
} Level-3 events to tape 100- 300 Hz

@ Physics process identification
/j » Event reconstruction and analysis
10°s

- !
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Level 1 Trigger Operation W

WISCONSIN
Local level-1 Global
Primitive e, g, jets, y Trigger
—
__=—_
- 40 MHz Clock
- Level-1 Accept

- Controls

Trigger Front-End Digitizer
Primitive Generator T

Pipeline delay ( = 3 us)

Accept/Reject LV-1
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s | evel 1 Trigger Organization W

WISCONSIN

AAAAAA

Time | Clock | Clock 25 19 SI°P| Clock | Clock

— -

Detector
Signals
DIGITIZATIONS

Tens of thousand
inputs

TRIGGER PRIMITIVE
GENERATORS ]

Detector coverage

Ja—
-

Thousands inputs

Pipeline system REGIONAL TRIGGERS

Frequency 40 MHz B
Trigger latency 128 clock periods _

128 events are processed in parallel Tens inputs
Feed-forward algorithms (no backward loops)

Highly distributed

Data in each computing step must belong to the same BC

L1A

SUB-DETECTOR TRIGGER

WHAT'S NEW

Scale Low latency

Algorithm complexity High speed serial links
Short bunch spacing Extensive use of ASICs
Speed and FPGAs

Few inputs

GLOBAL TRIGGER
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Trigger Timing & Control

0

THE UNIVERSITY

WISCONSIN

ADIS

TTC system DbisTRIBUTION of:
LHC clock

{C cloc
- Trigger-1 acceplance

U ;
N weom [t |
o F_L{_’E'ﬂ'i-'_m_ﬂtjﬂi_: L1 Accept n.:r-l.:-::Tr:.-l::l - BUnc CrﬂShlﬁg numoer Optlcal System:
_ _
Thsen . Single High-Power
L 1:32 TREE COUPLER | intenay Laser per zone
oo () TTTTTIT] TTTTTT loop o ]
TR OPFTICAL DISTRIBUTION BACKBOMNE | = 1000 fibres) * Rellablllty’ transmltter
TTTTTT upgrades
* Passive optical
coupler fanout
1310 nm Operation
* Negligible chromatic
' dispersion
GENERATOR |1 ! InGaAs photodiodes
Recener | - Radiation resistance,
ERONT-END low bias
CONTROLLER

COMPENSATION of:
- Particle TOF

- Detector and Electronics
- Propagation delays (= 200 ps)

Fine and ooarsa
programmanie delays

CTEQ11: Trigger & DAQ - 14

Wesley Smith, U. Wisconsin, July 19, 2011



TTTTTTTTTTTTT

WISCONSIN
=il Need to Align:
R - Detector pulse
10000 trigger links *_Testsignals w/collision at IP
» Trigger data w/
eve
s readout data
(/) .
o {? — Total latency ~ ° Different
Global Level 1 of the order of H
; D | Se'mx detector trigger
data
RF TTCrx
Controls — TTC ‘—D—'@ | v w/each other
| | —'f 10° readoutlinks | g 0k Crossing
10000 TTC links and FE systems e eadout Number
* Level 1 Accept
. Signal-Data coincidence @ Programmable delays (25ns units) Number

D Layout delays (cable, electronics...) @ Clock phase adjustment (~100 ps units)
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Y Synchronization Techniques W

WISCONSIN
81 BUNCHES 950 ns
55 ns DISTANT (38 MISSING BUNCHES)
220 ns 317 us
(8 MISSING BUNCHES) 127 MISSING

BUNCHES)

L1|2 3| 4l 51 6!l 7 81 910!l 11 12‘
F

88.924 us
2835 out of 3564 p bunches are full, use this pattern:

: Hit | Histogram #hits g
Farticle T versu% BX count” | jﬂ.
Collision T
— @ — 40 MHz | [ [ l

Cross correlate g(t)h(z-t)dt

A

Bunch pattern
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ATLAS Dete@r Design W

AAAAAA

Muon Spectrometer ( |n|<aJ7 )
 air-core toroids with muon chambers

Tracking ( |n|<2.5, B=2T)
'  Si pixels and strips

Calorimetry ( |n|<5) - TRD (e/n separation)

« EM : Pb-LAr

« HAD : Fe/scintillator (central), Cu/W-Lar (fwd)

Wesley Smith, U. Wisconsin, July 19, 2011 CTEQ11: Trigger & DAQ - 17



CMS Detector Design

CALORIMETERS
ECAL HCAL

Plastic scintillator/brass
sandwich

Superconducting Coil, 4 Tesla

T - 76k scintillating
e PbWO4 crystg

IRON YOKE

TRACKER

Pixels

//C\
Silicon Microstrips I~

210 m? of silicon sensors ‘ -
9.6M channels VS

/ *:'\;__

--.__x
Q

MUON

MUON BARREL ENDCAPS
Drift Tube Resistive Plate Cathode Strip Chambers (CSC)
Chambers (DT) Chambers (RPC) Resistive Plate Chambers (RPC)
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ATLAS & CMS y,

THE UNIVERSITV

Trigger & Readout Structure viscowsi

AAAAAA

I -+— —FI I = 54 i
= 30 Collisions/25ns 25 ns Luminosity 1'3 cm* sec

[ 10 % event/sec )
— Pap—
107 channels |
(10 1% bit/sec) ’ ' !
Detectors Detectors

@ Front end pipelines @ Front end pipelines
@ Readout buffers Readout buffers

- Switching network Switching network

@ Processor farms Processor farms

ATLAS: 3 physical levels CMS: 2 physical levels
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ATLAS & CMS @

Trigger Data WisConein

MUON System

Segment and track finding

Use prompt data (calorimetry
and muons) to identify:

High p, electron, muon, jets,
missing E.

CALORIMETERSs

Cluster finding and energy
deposition evaluation

New data every 25 ns
Decision latency ~ ys
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ATLAS & CMSLevel 1: @

THE UNIVERSITY
2

Only Calorimeter & Muon viscowsi

MADISON

High Occupancy in high granularity tracking detectors

Pattern recognition much | = Compare to tracker info
faster/easier e ey .

Complex

Algorithms
Simple Algorithms Huge
Small amounts of data amounts of
data
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40 MHz

MuTrCh

40 MHz

Other detectors

specialized h/w T e ||
asics LV 7 L - ——
FPGA | P T 8
L1 5 Lvl1 ac¢ = 75 kHz
75 kH j
z
Rol data = 1-2%
Rol
: LVL2 ~10ms requests
Rol Builder |—>
L2 Supervisor ROS
L2 N/work
L2 Proc Unit
~2 kHz Lvi2 acc = ~2 kHz N i
DFM
T Event Filter o
< EB
Event Filter !
Processors
EFacc £ ~0. 2k ( J
I SE
~ 200 Hz

ATLAS Trigger & DAQ
Architecture

SOrm>» >0

THE UNIVERSITY

WISCONSIN

MADISON

M 1 PB/s

FE Pipelines

Read-QOut Drivers

- 120 GB/s
Read-Out Links

Read-Out Buffers

Read-Out Sub-systems

~2+4 GB/s

Dataflow Manager
Event Building N/work

Sub-Farm Input
Event Builder

Event Filter N/work

Sub-Farm Output

~ 300 MB/s

Wesley Smith, U. Wisconsin, July 19, 2011
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Interaction rate
-1 GHz CALO MUON TRACKING
Bunch crossing
rate 40 MHz
Pipeline
'%IE_E}I mgﬁ'mries
2.5 —
: 75 (100) kHz
usS .
Derandomizers
Regions of Interest ?ngdng']-'t drivers
LEVEL 2 % Read out buffers
~1 O ms TRIGGER (ROBs)
~ 1 kHz ?

Event builder

~ gec. EVENT FILTER
~ 100 Hz

Data recording

ATLAS Three Level Trigger
Architecture

Full-event buffers
and
processor sub-farms

AAAAAA

LVL1 decision made with
calorimeter data with coarse
granularity and muon trigger
chambers data.

- Buffering on detector

LVL2 uses Region of Interest
data (ca. 2%) with full
granularity and combines
information from all detectors;
performs fast rejection.

- Buffering in ROBs

EventFilter refines the
selection, can perform event
reconstruction at full
granularity using latest
alignment and calibration data.

- Buffering in EB & EF

Wesley Smith, U. Wisconsin, July 19, 2011
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ATLAS Level-1 Trigger -

Muons & Calorimetry Wisconsin

MADISON

TGC 2 -~
I TGC 3
M
D
RPC 1 T
TGCEl low p_ =z =)
T i L~
[ f,’ /! MO | | Toroid ::-' @ @
f i 1 7 .
Tile Calorimeter TGCFI Gz Hadronic
I | i calorimeter
- D g .
high
/// - gne, Electromagnetic
% calorimeter

EX-LLOTVos
e

Trigger towers /(An xAp=01x0.1)

0 5 10 15m 1 [ .
Vertical Sums Electromagnetic

— [ isolation <e.m.
I isolation threshold

Muon Trigger looking for Horizontal Sums Hadronic isolation
cgincigences in muon trigger De-cluster/Rol region: . eblation tareanolds
chambers
2 out of 3 (low-py; >6 GeV) and Calorimetry Trigger looking for e/y/t +
3 out of 3 (high-py; > 20 GeV) jets

» Various combinations of cluster
Trigger efficiency 99% (low-p;) and sums and isolation criteria

98% (hlgh-p-r) . EETem,had , ETmiss
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ATLAS LVL1 Trigger O

AAAAAA

E; values (0.2x0.2) E; values (0.1x0.1) up to 2 u candidates/sector

EM & HAD EM&H .
% HAD (208 sectors in total)
~7\%)0 calorimeter tr%ger towers O(1M) R%C/'%C channels
Calorimeter trigger | / \ Muon
Pre-Processor Muon Barre/ Mugn End-cap
(analogue > E) Triggerl \r.igger
Jet/ Energyi Cluster Processor Muon-CTP Interface
sum Processor (ely, t/h) (MUCTPI)

/ Multiplicities of u

o Central Trigger
Multiplicities of ely, t/h, Processor for 6 pr thresholds
jet for 8 p; thresholds (CTP)
each; flags for 2E, ZEr | Timing, Trigger, LVL1 Accept, clock,
I, E{™ss over thresholds; Control (TTC) trigger-type to Front End
multiplicity of fwd jets systems, RODs, etc

Wesley Smith, U. Wisconsin, July 19, 2011 CTEQ11: Trigger & DAQ - 25



Rol Mechanism W

WISCONSIN

AAAAAA

LVL1 triggers on high p; objects

e Caloriemeter cells and muon
chambers to find ely/t-jet-u
candidates above thresholds

LVL2 uses Regions of Interest as
identified by Level-1

» Local data reconstruction, analysis,
and sub-detector matching of Rol data

The total amount of Rol data is
minimal

« ~2% of the Level-1 throughput but it has to
be extracted from the rest at 75 kHz
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CMS Trigger Levels W

WISCONSIN

ADISON

Level-1. Specialized processors h

- Particle identification: high p; electron, -
muon, jets, missing E.; i

- Local pattern recognition and energy
evaluation on prompt macro-granular n
information from calorimeter and muon :

detectors

T

Ewani
[Manager

High trigger Ieveﬁﬁm—m

MNetwork and CPU farms [

- Clean particle signature
UP to 100 kHz - Finer granularity precise measurement
- Kinematics. effective mass cuts & event topology

- Track reconstruction and detector matching
- Event reconstruction and analysis =100 Hz
= |

Ll 1 Dabaciar Frambanss J
Trigper |
¥ |

Ewarl
Ifanager

Syileh

Computing Services ]

|_ Computing Services ] *
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TTTTTTTTTTTTT

WISCONSIN
Overall Trigger & DAQ Architecture: 2 Levels:
Leve|_1 Tri g g er: %’?i\ézle 1r ‘ ) Detector Front-Ends -
° 25 ns input ;,rf’; | T » H H H H H Systems
(1; « 3.2 us latency Mot b4  Builder Network 100 GBIs oond
< Monitor
>
s H € Filter
UI[ J [HCAL] ECAL] [RPC }_{cso’ (DT | A L L T
q energy energy energy hits hits ' Computing Services
i :
frigger \i_ Interaction rate: 1 GHz
o™ Regonal Tl |
=3 Cal. Trigger b [N [ AN ] / Bunch Crossing rate: 40 MHz
naias arator Lo
,_l_a’rfg%l:z weck | [(weex ) Level 1 Output: 100 kHz (50 initial)
Glnba[ | inder inder
ol f“‘--._‘w 7 I Output to Storage: 100 Hz

, Global Muon Trigger ] _
o A Average Event Size: 1 MB
-{Giobal Trigaer} (TG Sysem J{ LR | Data production 1 TB/day
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SRR alorimeter Trig

T ProceSSing w

fr‘ WISCONSIN

MADISON

o4

Level 1 Trigger

L1
@100 (L1A)
kHz

Regional
CaloTRIGGER
LB
)

[
| |
<«—— Trigger Tower Flags
(TTF)
[

Global TRIGGER

Trigger Concentrator Card

I Synchronisation & Link Board
i Clock & Control System
Selective Readout

Selective Readout Processor

Flags (SRF)

/ . A\ Data Concentrator Card

I Trigger Control System

Wesley Smith, U. Wisconsin, July 19, 2011
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ECAL Trigger Primitives W

WISCONSIN
s Neutral filier (0,0,0,64,0,0) Falter (-64,-64,0,40,48 40), - Filter (04, m.oaﬁ"ﬁ;fuislo N
In the trigger path, digital filtering m;_ B S e Y | i —
followed by a peak finder is applied -} o
to energy sums (L1 Filter) of i
Efficiency for energy sums above 1 “" ) B
GeV should be close to 100% | L )
(depends on electronics noise) T ] ef )

Pile-up effect: for a signal of 5 GeV the

efficiency is close to 100% for pile-up  Test beam results (45 MeV per xtal):
energies up to 2 GeV (CMS)

[__Bunch Xssing Assignment Efficiency | One 5x5 Tri g g er Tower

1= G B :
> [ A A A § : .
c - A = ... Finite TPG preclslon
2 Gl A o | e Electronic noise Addi ional electronic noise -
E | A 2 '
s | :
——
c .-
“E’ 0.6 | &
E [
m -
2 T
8 04—
s E
(4] -
c
£ [
m 0.2}

B Instrmsnc Energy fluctuauons (MC)
L | oo i st e e 4
o 5 10 15 20 020406080100120140160180200
Energy (GeV) Energy (GeV)
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oA CMS Electron/Photon Algorithm W

AAAAAA

Trigger Primitive Generator

Fine grain FlagMaxof (£ , & , &  5)&SumET

Regional Calorimeter Trigger

E, cut O]+ Max (| ) > Threshold
AND: .
Longitudinal cut (H/E) Eﬁ / [E] <0.05
| AND
Isolation, Hadronic & EM n <2 GeV
AND
One of ( , ) l | W "J')<1GeV
mos

&
ELECTRON or PHOTON
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CMS t/Jet Algorithm O

AAAAAA

Trigger

Input from E/HCAL.:
Programmable 8-bit
non-linear scale
Converted to linear scale
and summed to obtain
10-bit range jet/t E,

PbWO4 fr ECAL Tower is active if EM E_ > 2 GeV
Cryst) - ~ or HD E >4 GeV
< An,A¢ = 0.348 t-veto set if none of the above
An,A$ = 1.04 activity patterns seen within 4x4

JetortE,
*12x12 trigger tower E_sums in 4x4 region steps with central region > others

« Larger trigger towers in HF but ~ same jet region size, 1.5 x 1.0 ¢
t algorithm (isolated narrow energy deposits), within -25<n <2.5
* Redefine jet as t jet if none of the nine 4x4 region t-veto bits are on

Output
*Top 4 t-jets and top 4 jets in central rapidity, and top 4 jets in forward rapidity
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MB3 GO%

MB2 @
*RP
MB1 400

*Double
Layenry,

200

100

CMS Muon Chambers W

AAAAAA

Single Layer
eta=0.8 RPC 1,04 1.2

" Reduced RE
system
| <1.6

DT

1200
Z cm)
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Muon Trigger Overview W

WISCONSIN
ml <12 o7 0.8 <Inlggg ]Inl <2.4 rec NI <21
0 hits hits hits M| < 1.6 in 2007
5 : : “ y
. local trigger local trigger
c ” t —_— t PAttern
o trac 6segm;n s rac 6segn'éen s Comparator
O * * <4 barrel +
0 F <4 endcap
O regional trigger regional trigger muohn candidates
n Barrel Track Finder Endcap Track Finder (Pt, M, 0, quality)
? <4 muon candidates <4 muon candidates
= (Pt M, ¢, quality) (Pt M, ¢, quality)
O
¢ Y Y l
®))
S Global Muon Trigger
S <4 muons
8 (Pt M, ¢, quality)

Y
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RPC pattern recognition
- Pattern catalog
- Fast logic

Memory to store patterns
Fast logic for matching
FPGAs are ideal

DT and CSC track finding:
- Finds hit/segments
- Combines vectors

- Formats a track 3 rack sogemeii pairs are.___

compind to one track string

- Assigns p, value -

AAAAAA

2T

MS1 MS2 MS3 MS4
i @

| e = 0 B 60 £33 )
| b k) ) WS G (2 N )

] =1 1 ) A T N

- b

mucn station 4
muon staticn 3
muon  MUon staton 2
staton 1 1
frack

~

\ segment

> 2 x extrapolation J [
= \ A A/
o S =

LY
hreshold

Wesley Smith, U. Wisconsin, July 19, 2011
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CMS Muon Trigger O

THE UNIVERSITY

Track Finders Wisconsin

AAAAAA

Drift Tubes (DT) Cathod Strip Chambers (CSC)

P e e Drift Tubes

m

® P~ & P
b @ bl @

Quiality - keep loc.

Meantimers recognize tracks

and form vector / quartet.

/.
| BNCXN SO SO SNONS R A SO BRSO

Combine at next level
- match

['j'I'I']!I'I'IJ

Comparators give 1/2-strip resol.

A Sort again - Isolate?
ik
Sesmsesms=oamss ————t——= Top 4 highest P; and
o W W 4 S R S S W 5.4 . .
el quality muons with

7
Hit strips of 6 layers form a vectolOcation coord.

Correlator combines them
into one vector / station.

Match with RPC
Improve efficiency and quality

Wesley Smith, U. Wisconsin, July 19, 2011
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CMS Globﬂrigger W
i B WlMSCONSlN

Input: o

«Jets: 4 Central, 4 Forward, 4 Tau-tagged, & Multiplicities
*Electrons: 4 Isolated, 4 Non-isolated
*4 Muons (from 8 RPC, 4 DT & 4 CSC w/P, & quality)
* All above include location inm and ¢
*Missing E_ & Total E;
Output

L1 Accept from combinations & proximity of above

TTC | Detector
system Front-Ends

Trigger
Control
System

Technical
triggers
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A Global L1 Trigger Algorithms W

Particle Conditions

Uis,(ZI

eiS‘H]
Epd1) > Eq(l ,lluc.\lmld
Eq(2)> E'l(l)‘hrﬁhnlxl

= 0° < §(1) < 360°

M < (2) < 3600
170 < 100 1) - 120 < 1907

=

ythreshold
threshold

ut(1) preh) > prdl
pr(2) > pr(2)
0V < ¢(1) < 3607
09 < ¢2) < 360°
170° < 1901) - 0(2) < 190°
[SO(1) = 1.1S0(2) = |

MIP(1) = 1. MIP(2) = |
SGN (1) = 1,SGN(2) = -1

WISCONSIN

MADISON

Logical Combinations

J

A

E Tm’:ssmg

Eple;s )> Eqley threshold By missing -, E,rlhrcshnld P> pN‘”lhlvsl‘wkl

OR

Particle Conditions
for isolatad electrans

|
Parlicle Condition for Particle Conditions
missing Et | for muons

s

~

ALGORITHM AND-OR

Flexible algorithms implemented in FPGAs
100s of possible algorithms can be reprogrammed
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s High Level Trigger Strategy W

Detectors

Front-end pipelines
(107 channels)

Readout buffers
( 1000 units)

Event builder
(10° x 10° fabric switch)

Processor farms
(4 10 SMIPS)

High level triggers. CPU farms

* Finer granularity precise measurement

» Clean particle signature (n°-y, isolation, ...)

- Kinematics. Effective mass cuts and topology
* Track reco and matching, b,t-jet tagging

* Full event reconstruction and analysis  /

AAAAAA

40 MHz

Successive
improvements :
background
event filtering,
physics selection
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Data to surface:
Average event size 1 Mbyte
No. FED s-link64 ports > 512
DAQ links (2.5 Gb/s) 512+51
Event fragment size 2 kB
FED builders (8x8) = 64+64

DAQ unit

‘Qq

(1/8th full system):_~ (1 1

Lv-1 max. trigger rate 12.5 kHz AL

RU Builder (64x64)

125 Tbit/s ‘ﬁjli '

Event fragment size 16 kB L«TH
RU/BU systems 64 N
Event filter power = .5 TFlop

HLT: All processing beyond Level-1 performed in the Filter Farm
Partial event reconstruction “on demand” using full detector resolution

CTEQ11: Trigger & DAQ - 40
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epipsl Start with L1 Trigger Objects W

AAAAAA

Electrons, Photons, t-jets, Jets, Missing E;, Muons
 HLT refines L1 objects (no volunteers)

Goal
» Keep L1T thresholds for electro-weak symmetry breaking physics
 However, reduce the dominant QCD background
 From 100 kHz down to 100 Hz nominally

QCD background reduction
* Fake reduction: e, vy, t
* Improved resolution and isolation: u
- Exploit event topology: Jets
« Association with other objects: Missing E;
« Sophisticated algorithms necessary

 Full reconstruction of the objects

 Due to time constraints we avoid full reconstruction of the event - L1
seeded reconstruction of the objects only

 Full reconstruction only for the HLT passed events

Wesley Smith, U. Wisconsin, July 19, 2011
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“Level-2” electron:
« Search for match to Level-1 trigger
« Use 1-tower margin around 4x4-tower trigger region
 Bremsstrahlung recovery “super-clustering”
« Select highest E; cluster
Bremsstrahlung recovery:
* Road along ¢ — in narrow n-window around seed
« Collect all sub-clusters in road — “super-cluster”

1x5 domino
> / .
1x3 domino

search £Nggp

-t
seed crystal & /
~
\\
T
N
sub-cluster sub-cluster

> 0

Events

1

10

; basic cluste

~

04 06 08 1 12
E /E

meas’ —true

Wesley Smith, U. Wisconsin, July 19, 2011
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THE UNIVER SITY

e CMS tracking for electron trigger W

WISCONSIN
100 l
~ }
> 10%*/cm?/s
>
(&)
S 95
S
a am:':f hirs ©
oo
q  Neminal vertex (6,,6) " mpatible " . \:\
— e Ol < 2.1
o Inl < 2.5
Vd -
# ifahit is found, Predict 85
s extimate 7 vertex a new frack -
and propagate
c) d Estimated vertex (8,8,7) i
805 10 15 20 25

Factor of 10 rate reduction Jet reivection

v: only tracker handle: isolation et

* Need knowledge of vertex
location to avoid loss of efficiency |
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t-jet tagging at HLT W

WISCONSIN

MADISON

t-jet (E,"7 > 60 GeV) identification (mainly) in the tracker:

kL p > 40 GeV. within AR < (.1 around calorimeter jet axis

solatior: no tracks, p, > 1GeV, within 0.03 < AR < 0.4 around the hard track

For 3-prong selection 2 more tracks in the signal cone Ar<0.03

QCD jet rejection from isolation and hard track cuts

B4l T 1o, |

gn L i - el - e d = degll- Vo

o | -
E S ;:1’ 3
.: = s e [ _ -
= ﬂ -
g 5 | ++ 3 -
+ £ | +—+—'+‘ = 500 Ge
= = =

a > - an@ =
- : Ec{m =500 GeV) ~ 17 % + 2
= Ld 3 prorg seechO" h Total

il Eann L
W0 - #1 prong selection ‘ s | Seckpound Signal
L
S50 100 150 200 250 300 350 400 450 500

Further reduction by ~ 5 expected for 3-prong QCD jets o} D—‘:FFEEEEQ:&

from T vertex reconstruction (CMS full simulation)

My _-|.I[il.*.'|--l
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B and t tagging W

WISCONSIN
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LA i - A § -

Efficiency to tag one b-jet ~ 35% for ~1% mistagging rate (CMS)

T - [agging Wilh Impacl parameter measuneine

S 1B

combining the ip measurements of the hard tracks in

the two 1's (1 -> hadron, t -> lepton) into one variable: /* LM R ™ L
CMS full simulation for Signal superimposed on the total
e r_],gh and QCD events background for my = 200 GeV, tanp =20
® H > rr.m, = 300 Gev’ _.__ - _‘_ _ |
- ..-. B 2T e . = o B - == TR |
s W°F . g g et s =f I,
- ‘_-' qn.a:ﬂ rejection s “F S-Sy
E | -.- 1‘,“ ] l:;l‘ 5 - 10 against ’ _ ng = 2
i 1 ;.'-._ +* i '[J'I:_ D h‘ﬂﬂkgfﬂ“ﬂd and : CMS. 30 b |
% ! T backgrounds with - 3
% Lpechmicary " = W, Z> I :
5 * 9 o
r'J'.,.1r,.—!|--‘I_.-"'.",Ej'lr +|'m'+f f ;II
1|;|'.I L i i i * t I
O &5 S T.5 1125 15 1750 20 I2.5 55 S - =
v AT Y+ ol ¥F . (GeYy
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el CMS HLT Time Distribution W

WISCONSIN
Prescale set used: 2E32 Hz/cm?
Sample: MinBias L1-skim 5E32 Hz/cm? with 10 Pile-up
Total time for all modules per event totalTime
- - - Entries 17099
1400 = Unpacking of L1 information, [ Mean 63.49
- q c o RMS 206.5
E / early-rejection triggers, Underflow .
1200 — non-intensive triggers Oexiion 853
1000 Mostly unpacking of calorimeter info.
- to form jets, & some muon triggers
800 —
N Triggers with intensive
600:_ tracking algorithms
400 Overflow: Triggers doing~_
2000 particle flow
reconstruction (esp. taus)
o 1 1 l 1 1 1 l 1 1 1 l 1 1 1 l 1 1 1

0 20 40 60 80 100 120 140 160 180 200
msec
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CMS DAQ

TTTTTTTTTTT

I Detector Front-End Drivers (| FED x <700 ) : [
K _ 512 |
o HEE—E]- Lr Read-out of detector front-end drivers Lr -
= Litaiin 11y
l | |:H:| 256x256 FED Roufer FED Data Balance (6 clos-256) ! '
Hif
] Prsts | felia 19 Mials o SE5 100 kHZ
| mm Event Building (|n two stages)
| HFU 1 H 2 H : FELD DAETS [BFED K ra] M?E
B | S I | LLLLLE B AL F
-
| =
| ’
x ‘ if'
a | b ]E H H ] I]II |
[ EVM Hb-" Readou! Buikder 1 l ' EVM e P Readoun Build Ew { i |
wraoe R T] High Level Trigger on full events o
g Storage of accepted events | I
| P Covilroil Sarvices Metwok
12.5 kHz 12.5 kHz 12.5 kHz
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2-Stage Event Builder

TTTTTTTTTTTTT

WISCONSIN
I Detecior Front-End Drvers [ FED = =700 )
o o AR - 512
L._! 'I_] : =3 ront-End Readout Links (=~ 512 Ll ] v
Y Lok %
l | P 2561256 FED Router 1st stage “FED-builder”
| Assemble data from 8 front-ends into
B one super-fragment at 100 kHz 100 kHz
| nin |
| PqFB 1 H 2 P 3 ‘ . FED Builders (Bx8 x 72) P72
. TR f
—
| g
! ! 1
O e
n | - il .
[ E'wiad }'{H Roadou! Buikdar 1 l , Evbd  b-d P Raachou) Buikd FWvM B i
v BELITC] 1] 8 independent “DAQ slices” "
.- Assemble super-fragments into full events | !
I [ Ciwrivcil Sarvices Metwndk
12.5 kHz 12.5 kHz 12.5 kHz
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Building the event W

AAAAAA

Event builder :
Physical system interconnecting data sources with data destinations. It has to
move each event data fragments into a same destination

Level 1 > Detector Frontend
Trigger

4

Event fragments :
Event data fragments are stored
in separated physical memory

systems
ngggter P4 Builder Networks Controls
l |
I Full events : _
4 Full event data are stored into
L« one physical memory system
associated to a processing unit
-l [ l

Computing Services

Hardware:
Fabric of switches for builder networks
PC motherboards for data Source/Destination nodes
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Myrinet Barrel-Shifter W

WISCONSIN

AAAAAA

BS implemented in firmware
« Each source has message queue
per destination
» Sources divide messages into
fixed size packets (carriers) and
cycle through all destinations
* Messages can span more than
one packet and a packet can
contain data of more than one
message
» No external synchronization
(relies on Myrinet back pressure by
HW flow control)

zero-copy, OS-bypass
principle works for multi-
tage switches

Fixed size

4

2 .

carrier l

“

—\ \‘

N

{ N\ .

v

Each carrier transports
a fraction or multiple
event fragments to

same BU destination

sindu] Ny wou4

Carriers barrel shifter

sindinO Ng oL
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EVB - HLT installation

Db ebvme et Bl Mlesames | EEMN w T 5

B |- EVB -input “RU” PC nodes
: » 640 times dual 2-core E5130 (2007)

: « Each node has 3 links to GbE switch

1 |+ Switches

« 8times F10 E1200 routers

s * In total ~4000 ports
1 |+ EVB — output + HLT node (“BU-FU?)

E « 720 times dual 4-core E5430, 16 GB (2008)

« 288 times dual 6-core X5650, 24 GB (2011)

|  Each node has 2 links to GbE switch

i | HLT Total: 1008 nodes, 9216 cores, 18 TB memory
14 @100 kHz: ~90 ms/event

Can be easily expanded by adding PC nodes and

recabling EVB network

SIS 250z 5| | ===

= = = | e = = = e

L 4

_ Scale readout bandwidth: Mo. DAC systems (1 o 8 x 12.5 kHz) ’
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CT

Phase 1:

* Goal of extended running in second half of the decade to
collect ~100s/fb

+ 80% of this luminosity in the last three years of this decade

« About half the luminosity would be delivered at luminosities
above the original LHC design luminosity

» Trigger & DAQ systems should be able to operate with a
peak luminosity of up to 2 x 1034

Phase 2: High Lumi LHC

« Continued operation of the LHC beyond a few 100/fb will
require substantial modification of detector elements

* The goal is to achieve 3000/fb in phase 2
* Need to be able to integrate ~300/fb-yr
« Will require new tracking detectors for ATLAS & CMS

» Trigger & DAQ systems should be able to operate with a
peak luminosity of up to 5 x 1034
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Expected Pile-up at High Lumi LHC (j

in ATLAS at 10%°

Barrel Detector =

230 min.bias collisions per 25 ns. crossing Ncn(lyl=<0.5)
~ 10000 particles in |n| < 3.2

mostly low p;tracks

requires upgrades to detectors
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yge] Detector Luminosity Effects
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H—ZZ — ppee, M, = 300 GeV for different luminosities in CMS
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R CMS Upgrade Trigger Strategy W

WISCONSIN
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Constraints
e Output rate at 100 kHz
* Input rate increases x2/x10 (Phase 1/Phase 2) over LHC design (1034)
« Same x2 if crossing freq/2, e.g. 25 ns spacing — 50 ns at 1034
 Number of interactions in a crossing (Pileup) goes up by x4/x20
 Thresholds remain ~ same as physics interest does

Exza(;qglce): strategy for Phase 1 Calorimeter Trigger (operating
+):

* Present L1 algorithms inadequate above 1034 or 1034 w/ 50 ns spacing
» Pileup degrades object isolation

* More sophisticated clustering & isolation deal w/more busy events
* Process with full granularity of calorimeter trigger information

« Should suffice for x2 reduction in rate as shown with initial L1 Trigger
studies & CMS HLT studies with L2 algorithms

Potential new handles at L1 needed for x10 (Phase 2: 2020+)

» Tracking to eliminate fakes, use track isolation.

* Vertexing to ensure that multiple trigger objects come from same
interaction

* Requires finer position resolution for calorimeter trigger objects for
matching (provided by use of full granularity cal. trig. info.)
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A8 Tracking needed for L1 trigger W

WISCONSIN

5105;1?'” :"la - MADISON
3 E — Single isolated £105 — .E::nerator .
S.n I I tr n < i\ - Doublelisolated 2 = L — 1034 » l_2Muon L1 trigger rate
< \ : . 1 © n
I g © electro @ losﬁ—“'\ e Poybleppr‘l-lﬁglatefj ﬂ,_: x : R O L2 +isolation (calo)
trigger rate : : 10°Elf, T . 13
N\ ! : - - _A _ - R L3 +isolation (calo + tracker
. . ] 10‘_;3‘5 \ _ - L N
Isolqt/on gr{ter/a L L=2x10% b
are insufficientto - R :
reducerate atL= w- ' | L.
35 mmr-2a-1 S e :
= e - | |5kHz @ 10%] :
(Or 5x10%at50ns) “t [ o - Standalone Muon
Eol R R S : E  trigger resolution
i ! 1 | | [ insufficient M
11101 | 1201111301 1 1401 L1 lsol 111601 1 : l e [ e E - ; E o S E e . E

Trigger E, threshold (GeV) 10 20 30 40 50 60

=

2 = p; threshold [GeVi/c]
o Cone 10°-30° | I p=c
(2] : > : % 10 i:'l'.. -Jf "U L1 tau vs jet Rates
8 ol i We need tO % E ".. =0 —&— Single jet
E T 10 W, ? "o — = Single tau
iL | E get anOther g ; ..‘.D :--Ii O —=&— Double jet
. . - B - e "a O —— Double tau
T Amount of energy carried by | 1 x200 _(XZO) W E BN AL =
. 1 tracks around tauljet direction |{ reduction for %10_13 - Ve T o
(PU=100) 1 single (double) .. "'o“J-...V“ = g
N J o np 0o
| I tau rate! 107 '-‘"'w.,.,.ﬁ#
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coS e 0 20 40 60 80 100 120 140 160 tau1go, Geaoo
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supad  The Track Trigger Problem W

AAAAAA

* Need to gather
information from 108
pixels in 200m? —
Of SI|ICOn at 40 MHZ Master tier EE=Tat=y

 Power & bandwidth to
send all data
off-detector is
prohibitive
» Local filtering necessary
« Smart pixels needed to

locally correlate hit P,
information

« Studying the use of 3D
electronics to Iprowde 1
ability to locally
correlate hits between
two closely spaced
layers

Correlator/ processor

Slave tier

~ &-6 Ccm
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3D Interconnection W

AAAAAA

Key to design is ability of a single IC to
connect to both top & bottom sensor

Enabled by “vertical
interconnected” (3D) technology .

A single chip on bottom tier can
connect to both top and bottom i bump bonds
sensors — locally correlate information long strip tier
. i cu-cu bond
Analog information from top short stip tier
DBl bond

sensor is passed to ROIC (readout
IC) through interposer |

One layer of chips

24 mcron
No “horizontal” data transfer necessary — lower noise and power

Fine Z information is not necessary on top sensor — long (~1 cm vs
~1-2 mm) strips can be used to minimize via density in interposer
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Track Trigger Architecture W
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LU VE THSLR

Readout designed to send all hits with
P.>~2 GeV to trigger processor

High throughput — micropipeline
architecture

Readout mixes trigger and event data
Tracker organized into phi segments

* Limited FPGA interconnections |
. . . T T Long Strip Tier
* Robust against loss of single layer hits & <=, T

(hathaa) (W

- Boundaries depend on p; cuts & tracker™ TL .
geometry 'U“ L)_

Event Memory

tracklet sorter inner and middle station T > hits or clusters
blocks blacks tracklets from sector n-1 cluster at du, o+ 1/2 2 L o ol
inner station [ [ ] 12 segment blnch --------------------------------------
(stubs) (tracklets) Neighbor ] Pt and charge Short Strip Tier
long strip range outputs
30 1 2 clusters i YYY g 2
L i Stub
- - Stub Logic | encoded cluster? out
middle station - pt and charge
(stubs) (tracklets) ﬁ T
a tracks out Neighbor z
30 1 b strips
© cluster at gu, g+ 1/2
outer station Neighbor chip Pipeline stages
(stubs) S 4]
~5
30 3 2
_____________ = local cluster addr
— to neighbor chip

use additional sector processors pinned

to inner, middle station P (TR e e U] 5
Short Strip discriminated outputs
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sl  ATLAS Trigger Upgrades W

WISCONSIN
Various projects being pursued:
« Track trigger high pT low pT
 Fast Track Finder (FTK), hardware “——— | '/ﬁ' '

track finder for ATLAS (atL1.5)  ———— o
« ROI based track trigger at L1
» Self seeded track trigger at L1
« Combining trigger objects at L1 & topological "analysis"
 Full granularity readout of calorimeter
* requires new electronics

« Changes in muon systems (small wheels), studies of an
MDT based trigger & changes in electronics

« Upgrades of HLT farms

Some of the changes are linked to possibilities that
open when electronics changes are made

(increased granularity, improved resolution &
' )
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Upgrade CMS DAQ W

AAAAAA

Phase 2 Network bandwidth at least 5-10 times LHC
 Assuming L1 trigger rate same as LHC

* Increased Occupancy

« Decreased channel granularity (esp. tracker)

CMS DAQ Component upgrades

 Readout Links: replace existing SLINK (400 MB/s)
with 10 Gbit/s

* Present Front End Detector Builder & Readout Unit Builder

replaced with updated network technology & mult-gigabit link
network switch

« Higher Level Trigger CPU Filter Farm estimates:
« 2010 Farm = 720 Dual Quad Core E5430 16 GB (2.66 GHz)

« 2011 Farm = add 288 Dual 6-Core X5650 24 GB (2.66 GHz)
* 1008 nodes, 9216 cores, 18 TB memory @100 kHz: ~90 ms/event
« 2012 Farm = 3X present farm

e 2016 Farm = 3X 2012 farm
* Requires upgrades to network (40 Gbps links now affordable)
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=="HepSpecOb (no HT)
scaled to 2.66 GHz"

“*"number of cores
(excl HT)"

HLT evt/s

> -
. —

E51 30.4&0 X5650

1 5 & r B ) 10 11 12 13 14 15 i 17 e

Launched in Year 2000+

Extrapolate performance dual-processor PCs
In 2014 could have same HLT performance with 100 — 200 nodes
Likely to have 10 GbE onboard
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HEP tools for high rate O

TTTTTTTTTTTTT

experiments: unTCA WisCONSIN

 Advanced Telecommunications
Computing Architecture ATCA

« MTCA Derived from AMC std.
« Advanced Mezzanine Card
 Up to 12 AMC slots

* Processing modules
1 0or2 MCH slots

CTEQ

Typical MicroTCA Crate with 12 AMC slots

Vadatech V1891

 Controller Modules
» 6 standard 10Gb/s point-to Power 1.6 9-12 ~f
-point links from each Modules AMC slots |
slot to hub slots (more
available) Single Module (shown): 75 x 180 mm
* Redundant power, controls, Double Module: 150 x 180mm

- =

« Each AMC can have in principle
(20) 10 Gb/sec ports

- Backplane customization is
routine & inexpensive
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FPGASs: Logic Cells W

WISCONSIN

ADIS

First First 28nm
28nm ES Production

Logic Cells

28nm Early / |
Access Program | > ﬂ :
Next generation 28 nm: 000K

> 2% capacity gains over 40nm devices

BODK
Artix-7 20K — 355K LCs
Kintex-7 30K — 410K LCs A

Virtex-7 285K — 2,000K LCs

Kintex-7

& XILINX.
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CTEQ FPGASs: Transceivers W
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& XILINX.

Newrﬁ%TS:éfries amily

= Challenge:
— Increase device BW
— Noincrease in total device power Virtex™-7 X
— XCVR gains from scaling: negligible GTH 13.1

= Solution: s Gbps
— Careful circuit design throughout XCVR 11.18 GTH 7
_ Gbps 10.3125

Increased Gbps / XCVR GTX Ghps
— More XCVR / Device .
ol Kintex™-7 &
— Low power mode for short channels ,’ Vitex™-7 T
’

— Lanes share a PLL vs PLL per lane

66 (..

Virtex-6

= Result:
— 60% Increased max device BW
— Device XCVR power unchanged

_ 3.75
l
- GT28 3.125 - i coes

Transceiver Rate (Gbps)

Artix™-7

Max Rate (Gbps) SHONN BIOEST258 BT S5
Relative Power (Per GT) .35x  .7x 1x -
Max GTs per Device 4 56 72 -

6 Series 7 Series
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BN Trigger & DAQ Summary: ()
LHC Case WISCONSIN

AAAAAA

Level 1 Trigger
» Select 100 kHz interactions from 1 GHz (10 GHz at SLHC)
* Processing is synchronous & pipelined
* Decision latency is 3 us (x~2 at SLHC)
» Algorithms run on local, coarse data
e Cal & Muon at LHC (& tracking at SLHC)
« Use of ASICs & FPGAs (mostly FPGAs at SLHC)

Higher Level Triggers
* Depending on experiment, done in one or two steps
* If two steps, first is hardware region of interest

* Then run software/algorithms as close to offline as
possible on dedicated farm of PCs
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