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Outline

• Jets are real.

- Experimental evidence

- Why does this happen?

• Jets are a convention.

- Infrared safety

- Cone definitions

- Iterative combination definitions
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Jets are real
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Experimental evidence

Atlas
PT

η
φ

• An Atlas event with 
4 high PT jets.

• Highest PT jet has 
PT = 144 GeV.
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DESY provided early 
evidence

• The PETRA 
accelerator had 
enough energy to 
make jets clearly 
visible. 

• The PETRA 
experiments had 4π 
detectors, so that one 
could be convinced 
that two and three jet 
events existed with 
single event displays.

from G. Wolf, Multiparticle Conference, 1983
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Why are there 
jets?

• Bjorken, Berman and Kogut 
(1971) had it figured out 
before jets were seen and 
before QCD.

• “... the isolated high PT 
partons will communicate 
with the ‘wee’ partons by 
cascade emission of partons.”
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Jets from QCD showers

• Think of shower starting at 
hard interaction.

• Most probable: soft and 
collinear splittings.

• Such splittings from a high PT  
parton builds up a jet.

• Very hard interactions happen 
with probability     .αs

Saturday, July 9, 2011



• For example ...

Atlas
PT

η
φ
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Jets are a convention
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dσ

dη1 dPT,1 dη2 dPT,2 dη3 dPT,3

• Suppose we want a cross section for pp→ 3 jets + X,

• Here X could include other jets.

• If we want, we could define the cross section so that
1,2,3 are the highest PT jets in the event.

Let’s measure a jet cross section
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• What is the PT of 
the third jet here?

• Is it the PT of what is 
in the blue circle?

• Or does the third jet 
include PT from 
three subjets?

• We need a definition.

Atlas
PT

η
φ
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σ =
1
2!

�
dη1 dp2 dη2 dφ2

dσ[2→ 2]
dη1 dp2 dη2 dφ2

S2(p1, p2)

+
1
3!

�
dη1 dp2 dη2 dφ2 dp3 dη3 dφ3

× dσ[2→ 2]
dη1 dp2 dη2 dφ2 dp3 dη3 dφ3

S3(p1, p2, p3)

+ · · ·

• Sn(p1, . . . , pn) defines the observable.

Infrared safety
• Our jet definition should be infrared safe.

• To see what this means, write the cross section as
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• Sn(p1, . . . , pn) is a smooth function of its arguments.

• I assume

• Then we need

• If any two partons become parallel it is the same as if
they were one.

• If any particle becomes soft or parallel to the beam

it is the same as if it were not there.

Sn+1(p1, . . . , pn, 0) = Sn(p1, . . . , pn)

Sn+1(p1, . . . , pn,λpA) = Sn(p1, . . . , pn)
Sn+1(p1, . . . , pn,λpB) = Sn(p1, . . . , pn)

Sn+1(p1, . . . , (1− λ)pn,λpn) = Sn(p1, . . . , pn)

• Sn(p1, . . . , pn) is a symmetric function of its arguments.
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• This ensures that you get a finite answer in a 
perturbative calculation.
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What does IR safety mean?

• The physical meaning is 
that for an IR-safe 
quantity, the physical 
event with hadron jets 
should give approximately 
the same measurement as 
a parton event.

• It also means that in a Monte Carlo simulation the 
hadronization model and the underlying event model 
should not much matter.

Saturday, July 9, 2011



Example of infrared danger

From G. Wolf at Multiparticle Dynamics 1983.

• Use e+e– annihilation event shapes and hadron 
energy spectrum to measure strong coupling.

•                                   , independent jet model. 

•                                   , string model. 

• Why?

• Measured quantities not infrared safe.

• Theory mixed short and long distance physics.

αs(MZ) = 0.17± 0.01

αs(MZ) = 0.13± 0.01
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(PT,i, ηi,φi).

Cone definitions
• I recall the “Snowmass” definition.

• Divide calorimeter into cells i.

• Definition is based on cell variables 
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• There is a jet axis (ηJ ,φJ).

• A jet consists of all cells with (ηi − ηJ)2 + (φi − φJ)2 < R2.
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• The jet variables are defined by

PT,J =
�

i∈cone

PT,i

ηJ =
1

PT,J

�

i∈cone

PT,i ηi

φJ =
1

PT,J

�

i∈cone

PT,i φi

• Adjust (ηJ ,φJ) to make this match.
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• Beyond this Snowmass 
convention, there is usually 
some fine print.

• Cones can overlap.

• If there is a lot of PT in the 
overlap region, join them.

• Otherwise, split them.
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• With seed: three jets, merged.

• Without seed: two jets, split.

• This is IR safe if search for solutions does not use “seeds.”
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From a tiny seed...

a giant jet can grow.

seed

jet
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Example with cone
• Here is an example event from Cacciari, Salam, and 

Soyez (2008).

• With a cone algorithm, we see what detector area 
goes into each jet.
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Successive combination 
algorithms

• These trace back to the Jade algorithm from the Jade 
Collaboration at DESY.
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• In some approximation, a final state is created by 
parton showers.

• You might want to deconstruct the shower to 
produce early state partons as jets.

• A resolution parameter defines how far back you 
want to go.

What people would like
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Beware of reality

• There can be many soft gluons that match your jet in 
angle but are from initial state radiation or radiated 
from other jets.

• In fact, more than one shower history can produce 
the same final state.
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The kT jet algorithm

• Choose a resolution parameter R.

• Start with a list of protojets, specified by their      .

• Start with an empty list of finished jets.

• Result is a list of finished jets with their momenta.

• Many are low pT  debris; just ignore these.

pµ
j
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1. For each pair of protojets define

dij = min(p2
T,i, p

2
T,j) [(ηi − ηj)2 + (φi − φj)2]/R2

For each protojet define

di = p2
T,i

2. Find the smallest of all the dij and the di. Call it dmin

3. If dmin is a dij , merge protojets i and j into a new protojet k
with

pµ
k = pµ

i + pµ
j

4. If dmin is a di, then protojet i is “not mergable.” Remove it
from the list of protojets and add it to the list of jets.
5. If protojets remain, go to 1.
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Why the name?

is essentially

dij = min(p2
T,i, p

2
T,j) [(ηi − ηj)2 + (φi − φj)2]/R2

dij = k2
T /R2

kT = |�pi|∆θ
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dij = min(p2
T,i, p

2
T,j) [(ηi − ηj)2 + (φi − φj)2]/R2

di = p2
T,i

[(ηi − ηj)2 + (φi − φj)2] > R2

• Protojet i is not mergable with parton j if dij > di. That is if

• Suppose p2
T,i < p2

T,j .

The “no merge” condition
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Why the no merge condition

• There will be many soft jets.

• They should not merge into a few giant jets.
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Cannibalistic jellyfish

Jellyfish of the species protojetius cannibalis come in a 
range of sizes.

The tentacles are always the same size.
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• Sometimes a big one 
has a little one for 
lunch.

• Then the big one is 
bigger.

• But the center-of-
mass stays where it 
was.
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At sunrise, the jellyfish would like a snack.

They look for a jellyfish that is small and near.

A few are out of range of predation.
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After the snack, there are fewer jellyfish.

Then they get hungry for a real breakfast, and 
reach further and for bigger jellyfish.
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By now, several jellyfish are out of 
reach from further predation.

For lunch, they start reaching further 
and for bigger jellyfish.

Saturday, July 9, 2011



Still, they are hungry...

but only a few jellyfish are within reach.
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Still, they are hungry...

and one more feeding stage is possible.
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Feeding is over.
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The shape of the feeding area for each 
final jellyfish is irregular.
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What would happen if there were 
lots of little green jellyfish also?

Is the final pattern much affected?

Saturday, July 9, 2011



Example with kT
• Here is the same example event from Cacciari, 

Salam, and Soyez (2008).

• With the kT algorithm, we see what detector area 
goes into each jet.
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The Cambridge-Aachen 
algorithm

• This is a variation on the general successive 
combination plan.

• Use

• Keep everything else the same.

dij = [(ηi − ηj)2 + (φi − φj)2]/R2

di = 1
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• Thus we merge the protojets that are closest in angle 
first.

• We stop at angle = R.

• This is a little like the inverse of a HERWIG shower.

dij = [(ηi − ηj)2 + (φi − φj)2]/R2

di = 1
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Example with C-A
• Here is the same example event from Cacciari, 

Salam, and Soyez (2008).

• With the Cambridge-Aachen algorithm, we see what 
detector area goes into each jet.
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The anti-kT algorithm

• This is another variation on the general successive 
combination plan.

• Use

• Keep everything else the same.

dij = min

�
1

p2
T,i

,
1

p2
T,j

�
[(ηi − ηj)2 + (φi − φj)2]/R2

di =
1

p2
T,i
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• This puts protojets together in an order that is 
nothing like the order that any shower Monte Carlo 
would generate splittings.

• The highest PT protojet has priority to absorb nearby 
softer protojets (out to radius R).

dij = min

�
1

p2
T,i

,
1

p2
T,j

�
[(ηi − ηj)2 + (φi − φj)2]/R2

di =
1

p2
T,i
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Example with anti-kT
• Here is the same example event from Cacciari, 

Salam, and Soyez (2008).

• With the anti-kT algorithm, we see what detector 
area goes into each jet.
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Conclusions

• To measure jet cross sections, you need a careful 
definition of a jet.

• The definition needs to be infrared safe.

• Definitions typically use an angular size parameter R.

• The conceptually simplest kind of definition 
successively combine small protojets into bigger 
ones. 
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