The physics of parton showers

Davison E. Soper
University of Oregon

CTEQ School, Madison, June 2009

The aim of these lectures

- How can we understand the evolution of a parton shower? What is the underlying physics?
- I will concentrate on evolution equations.
- My analysis follows work with Zoltan Nagy.
- I will say little about computer algorithms to implement these equations.
- In fact, the general shower evolution equation is beyond what one can efficiently implement.

What do parton shower event generators do?

- An "event" is a list of particles (pions, protons, ...) with their momenta.
- The MCs generate events.
- The probability to generate an event is proportional to the (approximate!) cross section for such an event.
- Alternatively, cross section could be a weight given by the program times the probability to generate the event.

The description of an event is a bit tricky...

1. Incoming hadron (gray bubbles)
\Rightarrow Parton distribution function
2. Hard part of the process H
\Rightarrow Matrix element calculation at LO, NLO, ... level
3. Radiation (red graphs)
\Rightarrow Parton shower calculation
\Rightarrow Matching to the hard part
4. Underlying event (blue graphs)
\Rightarrow Models based on multiple interaction
5. Hardonization (green bubbles)
\Rightarrow Universal models

Compare this to a perturbative cross section

1. Incoming hadron (gray bubbles)
\Rightarrow Parton distribution function
2. Hard part of the process
\Rightarrow Matrix element calculation at LO, NLO, ... level

Why do we need parton showers?

- We need predictions for events at LHC and Tevatron.
- LO and NLO perturbation theory can give predictions for very inclusive cross sections.

- We use parton showers to get predictions for the complete final state approximately right.

Matching

- One can match the parton shower calculation to exact tree level $2 \rightarrow \mathrm{n}$ cross sections for small values of n .
- One can, with difficulty, also do this with loop level $2 \rightarrow \mathrm{n}$ perturbative calculations.
- I omit discussion of these important topics.
- Instead, I discuss just lowest order parton showers.

A simple illustration

- Use an example in which partons carry momenta, but no flavor, color, or spin.
- ϕ^{3} theory in six dimensions works for this.
- Also, just consider the evolution of the final state, as in electron-positron annihilation.

States

- For a generic description of shower MCs, use a notation adapted to classical statistical mechanics.
- State with m final state partons with momenta p

$$
\left.\left.\mid\{p\}_{m}\right)=\mid\left\{p_{1}, p_{2}, \ldots, p_{m}\right\}\right)
$$

- General state $\mid \rho$)
- Cross section for the state to have m partons with definite momenta $\left(\{p\}_{m} \mid \rho\right)$
- Completeness relation

$$
\left.\left.1=\sum_{m} \frac{1}{m!} \int\left[d\{p\}_{m}\right] \right\rvert\,\{p\}_{m}\right)\left(\{p\}_{m} \mid\right.
$$

Measurement functions

- Measurement function $(F \mid$
- Cross section for F

$$
\begin{aligned}
\sigma[F] & =\sum_{m} \frac{1}{m!} \int\left[d\{p\}_{m}\right]\left(F \mid\{p\}_{m}\right)\left(\{p\}_{m} \mid \rho\right) \\
& =(F \mid \rho)
\end{aligned}
$$

- Totally inclusive measurement function (1|

$$
\left(1 \mid\{p\}_{m}\right)=1
$$

Evolution

- State evolves in resolution scale t.
- $t=0$: hard; increasing t means softer.
- Evolution follows a linear operator

$$
\left.\mid \rho(t))=\mathcal{U}\left(t, t^{\prime}\right) \mid \rho\left(t^{\prime}\right)\right)
$$

- Evolution does not change the cross section

$$
\left(1\left|\mathcal{U}\left(t, t^{\prime}\right)\right| \rho\left(t^{\prime}\right)\right)=\left(1 \mid \rho\left(t^{\prime}\right)\right)
$$

Structure of evolution

$$
\mathcal{U}\left(t_{3}, t_{1}\right)=\mathcal{N}\left(t_{3}, t_{1}\right)+\int_{t_{1}}^{t_{3}} d t_{2} \mathcal{U}\left(t_{3}, t_{2}\right) \mathcal{H}_{\mathbf{I}}\left(t_{2}\right) \mathcal{N}\left(t_{2}, t_{1}\right)
$$

$\mathcal{H}_{\mathrm{I}}(t)=$ splitting operator
$\mathcal{N}\left(t^{\prime}, t\right)=$ no change operator
$\left.\left.\mathcal{N}\left(t^{\prime}, t\right) \mid\{p\}_{m}\right)=\Delta\left(t, t^{\prime} ;\{p\}_{m}\right) \mid\{p\}_{m}\right)$

Probability conservation

$\mathcal{U}\left(t_{3}, t_{1}\right)=\mathcal{N}\left(t_{3}, t_{1}\right)+\int_{t_{1}}^{t_{3}} d t_{2} \mathcal{U}\left(t_{3}, t_{2}\right) \mathcal{H}_{\mathrm{I}}\left(t_{2}\right) \mathcal{N}\left(t_{2}, t_{1}\right)$
$\left(1 \mid \mathcal{U}\left(t, t^{\prime}\right)=\left(1 \mid \quad\right.\right.$ and $\left.\left.\quad \mathcal{N}\left(t^{\prime}, t\right) \mid\{p\}_{m}\right)=\Delta\left(t, t^{\prime} ;\{p\}_{m}\right) \mid\{p\}_{m}\right)$
$1=\Delta\left(t_{3}, t_{1} ;\{p\}_{m}\right)+\int_{t_{1}}^{t_{3}} d t_{2}\left(1\left|\mathcal{H}_{\mathrm{I}}\left(t_{2}\right)\right|\{p\}_{m}\right) \Delta\left(t_{2}, t_{1} ;\{p\}_{m}\right)$
$\frac{d}{d t_{3}} \Delta\left(t_{3}, t_{1} ;\{p\}_{m}\right)=-\left(1\left|\mathcal{H}_{\mathrm{I}}\left(t_{3}\right)\right|\{p\}_{m}\right) \Delta\left(t_{3}, t_{1} ;\{p\}_{m}\right)$
$\Delta\left(t_{3}, t_{1} ;\{p\}_{m}\right)=\exp \left(-\int_{t_{1}}^{t_{3}} d \tau\left(1\left|\mathcal{H}_{\mathrm{I}}(\tau)\right|\{p\}_{m}\right)\right)$

Summary

$$
\begin{aligned}
& \mathcal{U}\left(t_{3}, t_{1}\right)=\mathcal{N}\left(t_{3}, t_{1}\right)+\int_{t_{1}}^{t_{3}} d t_{2} \mathcal{U}\left(t_{3}, t_{2}\right) \mathcal{H}_{\mathbf{I}}\left(t_{2}\right) \mathcal{N}\left(t_{2}, t_{1}\right) \\
& \left.\left.\mathcal{N}\left(t^{\prime}, t\right) \mid\{p\}_{m}\right)=\Delta\left(t, t^{\prime} ;\{p\}_{m}\right) \mid\{p\}_{m}\right) \\
& \text { Inclusive probability } \\
& \text { to split in time } d \tau \\
& \Delta\left(t_{3}, t_{1} ;\{p\}_{m}\right)=\exp (-\int_{t_{1}}^{t_{3}} d \tau \overbrace{\left(1\left|\mathcal{H}_{\mathrm{I}}(\tau)\right|\{p\}_{m}\right)})
\end{aligned}
$$

Probability not to split between times t_{1} and t_{3}

Splitting

$$
M\left(\{\hat{p}\}_{m+1}\right) \approx M\left(\{p\}_{m}\right) \times \frac{g}{2 \hat{p}_{l} \cdot \hat{p}_{m+1}}
$$

$\left(\{\hat{p}\}_{m+1}\left|\mathcal{H}_{\mathbf{I}}(t)\right| \rho\right)$
$=\sum_{l} \delta\left(t-\log \left(\frac{Q_{0}^{2}}{2 \hat{p}_{l} \cdot \hat{p}_{m+1}}\right)\right)\left[\frac{g}{2 \hat{p}_{l} \cdot \hat{p}_{m+1}}\right]^{2}\left(\{p\}_{m} \mid \rho\right)$

Kinematics

- The details are not important, but it is important to know that there are details.
- Parton l splits into partons l and $m+1$.
- Before the splitting, momenta are p_{i}.
- After the splitting, momenta are \hat{p}_{i}.

- We need $p_{l}^{2}=0$, but then $p_{l} \neq \hat{p}_{l}+\hat{p}_{m+1}$.

One choice

- Total momentum of final state partons Q
- Lightlike reference vector n

$$
n=Q-\frac{Q^{2}}{2 p_{l} \cdot Q} p_{l}
$$

- Splitting variables:
* Virtuality variable y
* Momentum fraction z
* Transverse unit vector u_{\perp}
- $y=\frac{2 \hat{p}_{m+1} \cdot \hat{p}_{l}}{2 p_{l} \cdot Q}$
- Use shorthand $\lambda=\sqrt{(1+y)^{2}-4 y Q^{2} /\left(2 p_{l} \cdot Q\right)}$.

- Then define \hat{p}_{m+1} and \hat{p}_{l} in terms of the splitting variables.

$$
\begin{aligned}
\hat{p}_{m+1} & =z \frac{1+\lambda+y}{2} p_{l}+(1-z) \frac{2 y}{1+\lambda+y} n_{l}+\sqrt{2 z(1-z) y} u_{\perp} \\
\hat{p}_{l} & =(1-z) \frac{1+\lambda+y}{2} p_{l}+z \frac{2 y}{1+\lambda+y} n_{l}-\sqrt{2 z(1-z) y} u_{\perp}
\end{aligned}
$$

- Note that $\hat{p}_{m+1}+\hat{p}_{l}$ is not exactly p_{l}.
- Maintain momentum conservation with a Lorentz transformation of the spectator momenta.

$$
\hat{p}_{i}=\Lambda p_{i}
$$

Summary of splitting

- Using y, z, u_{\perp},

$$
\left(\{\hat{p}\}_{m+1}\left|\mathcal{H}_{\mathrm{I}}(t)\right| \rho\right)
$$

$$
=\sum_{l} \delta\left(t-\log \left(\frac{Q_{0}^{2}}{y 2 p_{l} \cdot Q}\right)\right)\left[\frac{g}{y 2 p_{l} \cdot Q}\right]^{2}\left(\{p\}_{m} \mid \rho\right)
$$

- y is fixed by t.
- The \hat{p}_{i} are given by the p_{i} and the splitting variables.
- The splitting probability, including a jacobian factor, is proportional to

$$
d t z(1-z) d z d u_{\perp}
$$

Solution of evolution

- Evolution equation

- generates (either analytically or in computer code)

Differential equation

- $\mathcal{U}\left(t, t^{\prime}\right)$ obeys a simple differential equation.
- Define $\mathcal{V}(t)$ by

$$
\begin{aligned}
\left.\mathcal{V}(t) \mid\{p\}_{m}\right) & \left.=v\left(t,\{p\}_{m}\right) \mid\{p\}_{m}\right) \\
v\left(t,\{p\}_{m}\right) & =\left(1\left|\mathcal{H}_{\mathrm{I}}(t)\right|\{p\}_{m}\right)
\end{aligned}
$$

- Then

$$
\frac{d}{d t} \mathcal{N}\left(t, t^{\prime}\right)=-\mathcal{V}(t) \mathcal{N}\left(t, t^{\prime}\right)
$$

- Then

$$
\frac{d}{d t} \mathcal{U}\left(t, t^{\prime}\right)=\left[\mathcal{H}_{\mathrm{I}}(t)-\mathcal{V}(t)\right] \mathcal{U}\left(t, t^{\prime}\right)
$$

- Proof. Suppose that $\mathcal{U}\left(t, t^{\prime}\right)$ obeys this equation and define

$$
\tilde{\mathcal{U}}\left(t, t^{\prime}\right)=\mathcal{N}\left(t, t^{\prime}\right)+\int_{t^{\prime}}^{t} d \tau \mathcal{U}(t, \tau) \mathcal{H}_{\mathrm{I}}(\tau) \mathcal{N}\left(\tau, t^{\prime}\right)
$$

Then

$$
\frac{d}{d t} \tilde{\mathcal{U}}\left(t, t^{\prime}\right)=\left[\mathcal{H}_{\mathrm{I}}(t)-\mathcal{V}(t)\right] \tilde{\mathcal{U}}\left(t, t^{\prime}\right)
$$

Also

$$
\tilde{\mathcal{U}}\left(t^{\prime}, t^{\prime}\right)=\mathcal{U}\left(t^{\prime}, t^{\prime}\right)
$$

Thus

$$
\widetilde{\mathcal{U}}\left(t, t^{\prime}\right)=\mathcal{U}\left(t, t^{\prime}\right)
$$

Connection with

 perturbation theory$$
\frac{d}{d t} \mathcal{U}\left(t, t^{\prime}\right)=\left[\mathcal{H}_{\mathrm{I}}(t)-\mathcal{V}(t)\right] \mathcal{U}\left(t, t^{\prime}\right)
$$

implies
$\left(F\left|\mathcal{U}\left(t_{\mathrm{f}}, 0\right)\right| \rho(0)\right)=(F \mid \rho(0))+\int_{0}^{t_{\mathrm{f}}} d t\left(F\left|\mathcal{H}_{\mathrm{I}}(t)-\mathcal{V}(t)\right| \rho(0)\right)+\cdots$

The corresponding graphs

$\left(F\left|\mathcal{U}\left(t_{\mathrm{f}}, 0\right)\right| \rho(0)\right)=(F \mid \rho(0))+\int_{0}^{t_{\mathrm{f}}} d t\left(F\left|\mathcal{H}_{\mathrm{I}}(t)-\mathcal{V}(t)\right| \rho(0)\right)+\cdots$

- Born hard scattering graph

$$
(F \mid \rho(0))
$$

- Approximate real emission with virtuality cutoff

$$
\int_{0}^{t_{\mathrm{f}}} d t\left(F\left|\mathcal{H}_{\mathrm{I}}(t)\right| \rho(0)\right)
$$

- Approximate virtual graphs with virtuality cutoff

$$
\int_{0}^{t_{\mathrm{f}}} d t(F|\mathcal{V}(t)| \rho(0))
$$

- The true virtual graphs obey
$\left(1\left|\mathcal{V}_{\text {true }}(t)\right| \rho(0)\right)-\left(1\left|\mathcal{H}_{\mathrm{I}}(t)\right| \rho(0)\right) \rightarrow 0 \quad$ for $\quad t \rightarrow \infty$.
- Our approximation shares this property since
$(1|\mathcal{V}(t)| \rho(0))-\left(1\left|\mathcal{H}_{\mathrm{I}}(t)\right| \rho(0)\right)=0$
- But the approximation is not exact for finite t.
- This allows us to preserve the hard scattering cross section exactly. $\quad\left(1 \mid \mathcal{U}\left(t, t^{\prime}\right)=(1 \mid\right.$

Partons in the initial state

- State with m final state partons with momenta p_{i} and two initial state partons with momentum fractions $\eta_{\mathrm{a}}, \eta_{\mathrm{b}}$

$$
\left.\left.\mid\{p\}_{m}\right)=\mid\left\{\eta_{\mathrm{a}}, \eta_{\mathrm{b}}, p_{1}, p_{2}, \ldots, p_{m}\right\}\right)
$$

- General state $\mid \rho)$ so that cross section is

$$
\sigma[F]=\sum_{m} \frac{1}{m!} \int\left[d\{p\}_{m}\right]\left(F \mid\{p\}_{m}\right)\left(\{p\}_{m} \mid \rho\right)
$$

- $\mid \rho)$ includes the parton distributions
$\left(\{p\}_{m} \mid \rho\right)=\left|M\left(\{p\}_{m}\right)\right|^{2} \frac{f_{A}\left(\eta_{\mathrm{a}}\right) f_{B}\left(\eta_{\mathrm{b}}\right)}{2 \eta_{\mathrm{a}} \eta_{\mathrm{b}} p_{\mathrm{A}} \cdot p_{\mathrm{B}}}$

Factorization

Splitting operator

$$
\left(\{p\}_{m} \mid \rho\right)=\left|M\left(\{p\}_{m}\right)\right|^{2} \frac{f_{A}\left(\eta_{\mathrm{a}}\right) f_{B}\left(\eta_{\mathrm{b}}\right)}{2 \eta_{\mathrm{a}} \eta_{\mathrm{b}} p_{\mathrm{A}} \cdot p_{\mathrm{B}}}
$$

So

$$
\begin{aligned}
& \left(\{\hat{p}\}_{m+1}\left|\mathcal{H}_{\mathrm{I}}(t)\right| \rho\right) \\
& =\sum_{l} \delta\left(t-\log \left(\frac{Q_{0}^{2}}{\left|2 \hat{p}_{l} \cdot \hat{p}_{m+1}\right|}\right)\right) \\
& \times\left[\frac{g}{2 \hat{p}_{l} \cdot \hat{p}_{m+1}}\right]^{2} \frac{\eta_{\mathrm{a}} \eta_{\mathrm{b}} f_{A}\left(\hat{\eta}_{\mathrm{a}}\right) f_{B}\left(\hat{\eta}_{\mathrm{b}}\right)}{\hat{\eta}_{\mathrm{a}} \hat{\eta}_{\mathrm{b}} f_{A}\left(\eta_{\mathrm{a}}\right) f_{B}\left(\eta_{\mathrm{b}}\right)}\left(\{p\}_{m} \mid \rho\right)
\end{aligned}
$$

Shower time

Showers develop in "hardness" time.

Real time picture

Shower time picture

QCD

- QCD is more complicated than scalar field theory.
- In typical parton shower algorithms, the main approximation is collinear or soft splitting.
- I will first sketch the structure of evolution with just this approximation.
- Then I will describe further approximations related to color, spin, and quantum interference for soft gluons.

The matrix element

- The basic object is the quantum matrix element

$$
M\left(\{p, f\}_{m}\right)_{s_{\mathrm{a}}, s_{\mathrm{b}}, s_{1}, \ldots, s_{m}}^{c_{\mathrm{a}}, c_{\mathrm{b}}, c_{1}, \ldots, c_{m}}
$$

- This is a function of the momenta and flavors and carries color and spin indices. Consider it as a vector in color and spin space

$$
\left|M\left(\{p, f\}_{m}\right)\right\rangle
$$

The cross section

The cross section with a measurement function F is then

$$
\begin{aligned}
\sigma[F]=\sum_{m} & \frac{1}{m!} \int\left[d\{p, f\}_{m}\right] \frac{f_{a / A}\left(\eta_{\mathrm{a}}, \mu_{\mathrm{F}}^{2}\right) f_{b / B}\left(\eta_{\mathrm{b}}, \mu_{\mathrm{F}}^{2}\right)}{4 n_{\mathrm{c}}(a) n_{\mathrm{c}}(b) 2 \eta_{\mathrm{a}} \eta_{\mathrm{b}} p_{\mathrm{A}} \cdot p_{\mathrm{B}}} \\
& \times\left\langle M\left(\{p, f\}_{m}\right)\right| F\left(\{p, f\}_{m}\right)\left|M\left(\{p, f\}_{m}\right)\right\rangle
\end{aligned}
$$

- a and b are the flavors of the incoming partons.
- $f_{a / A}\left(\eta_{\mathrm{a}}, \mu_{\mathrm{F}}^{2}\right)$ is a parton distribution function.
- $n_{\mathrm{c}}(a)$ is the number of colors for flavor a.

The density matrix

$$
\sigma[F]=\sum_{m} \frac{1}{m!} \int\left[d\{p, f\}_{m}\right] \operatorname{Tr}\left\{\rho\left(\{p, f\}_{m}\right) F\left(\{p, f\}_{m}\right)\right\}
$$

where

$$
\rho\left(\{p, f\}_{m}\right)
$$

$$
\begin{aligned}
& =\left|M\left(\{p, f\}_{m}\right)\right\rangle \frac{f_{a / A}\left(\eta_{\mathrm{a}}, \mu_{F}^{2}\right) f_{b / B}\left(\eta_{\mathrm{b}}, \mu_{F}^{2}\right)}{4 n_{\mathrm{c}}(a) n_{\mathrm{c}}(b) 2 \eta_{\mathrm{a}} \eta_{\mathrm{b}} p_{\mathrm{A}} \cdot p_{\mathrm{B}}}\left\langle M\left(\{p, f\}_{m}\right)\right| \\
& =\sum_{s, c} \sum_{s^{\prime}, c^{\prime}}\left|\{s, c\}_{m}\right\rangle \rho\left(\left\{p, f, s^{\prime}, c^{\prime}, s, c\right\}_{m}\right)\left\langle\left\{s^{\prime}, c^{\prime}\right\}_{m}\right|
\end{aligned}
$$

Density matrix in "classical" notation

$$
\rho\left(\left\{p, f, s^{\prime}, c^{\prime}, s, c\right\}_{m}\right)=\left(\left\{p, f, s^{\prime}, c^{\prime}, s, c\right\}_{m} \mid \rho\right)
$$

- For QCD, partons have momenta and flavors.
- Furthermore, there are two sets of spin indices and sets of color indices.
- There are lots of indices, but the general formalism is the same as sketched earlier.

Splitting

Soft gluon emission

Splitting includes interference graphs.

A soft gluon approximation is used for the splitting function.
Here you may think of I and 3 as a "dipole" that radiates 2 coherently.

Evolution equation

- The structure of the evolution is the same as before:

$$
\begin{aligned}
& \mathcal{U}\left(t_{3}, t_{1}\right)=\mathcal{N}\left(t_{3}, t_{1}\right)+\int_{t_{1}}^{t_{3}} d t_{2} \mathcal{U}\left(t_{3}, t_{2}\right) \mathcal{H}_{\mathrm{I}}\left(t_{2}\right) \mathcal{N}\left(t_{2}, t_{1}\right) \\
& \frac{d}{d t} \mathcal{N}\left(t, t^{\prime}\right)=-\mathcal{V}(t) \mathcal{N}\left(t, t^{\prime}\right) \\
& \left(1 \mid \mathcal{V}(t)=\left(1 \mid \mathcal{H}_{\mathrm{I}}(t)\right.\right.
\end{aligned}
$$

- $\mathcal{V}(t)$ leaves the number of particles, their momenta, flavors, and spins unchanged.
- Unfortunately, it is not diagonal in color.

Spin approximation

- One commonly averages over the spin states of a parton that is about to split and sums over the spin states of the daughter partons.
- This eliminates angular correlations that arise from the
 spin states.
- For sufficiently inclusive observables, it should be a pretty good approximation.

Color

- One can use a set of "string" basis states for color.

- With this basis, splitting is simple.

Color approximation

- Shower programs usually use a large N_{c} approximation.

An interference diagram, to be decomposed in basis states.

The leading contribution
A subleading contribution.

Simplified evolution equation

- The structure of the evolution is still:

$$
\begin{aligned}
& \mathcal{U}\left(t_{3}, t_{1}\right)=\mathcal{N}\left(t_{3}, t_{1}\right)+\int_{t_{1}}^{t_{3}} d t_{2} \mathcal{U}\left(t_{3}, t_{2}\right) \mathcal{H}_{\mathrm{I}}\left(t_{2}\right) \mathcal{N}\left(t_{2}, t_{1}\right) \\
& \frac{d}{d t} \mathcal{N}\left(t, t^{\prime}\right)=-\mathcal{V}(t) \mathcal{N}\left(t, t^{\prime}\right)
\end{aligned}
$$

- $\mathcal{V}(t)$ leaves the number of particles, their momenta, flavors, and colors unchanged. Spin has been eliminated.
- This is approximately the organization of Pythia.

Angular ordering

- There is an alternative way of organizing a parton shower, used in Herwig.
- To understand it, consider the splitting of a quark into a quark + a gluon at a small angle, followed by the emission of a soft gluon from the two sister partons.

q

$$
\frac{\vec{u}_{1} \cdot \vec{\varepsilon}\left(\vec{u}_{q}\right)}{E_{q}\left[1-\vec{u}_{1} \cdot \vec{u}_{q}\right]}
$$

$$
\frac{\vec{u}_{2} \cdot \vec{\varepsilon}\left(\vec{u}_{q}\right)}{E_{q}\left[1-\vec{u}_{2} \cdot \vec{u}_{q}\right]}
$$

- \vec{u}_{1}, \vec{u}_{2}, and \vec{u}_{q} are unit three vectors $\propto \vec{p}_{1}, \vec{p}_{2}$, and \vec{q}.
- $\vec{\varepsilon}$ is the polarization vector for the soft gluon.
- If $\angle 1-2$ is much smaller than $\angle \vec{q}-1$ and $\angle \vec{q}-2$ then the two factors are the same

$$
\frac{\vec{u}_{12} \cdot \vec{\varepsilon}\left(\vec{u}_{q}\right)}{E_{q}\left[1-\vec{u}_{12} \cdot \vec{u}_{q}\right]}
$$

- This includes the color factor.
- It is as if the soft gluon were emitted from a lightlike line in the $\vec{p}_{1}+\vec{p}_{2}$ direction.
- Consider the sum

- If we add the graphs when $1-\vec{u}_{q} \cdot \vec{u}_{1} \ll 1-\vec{u}_{q} \cdot \vec{u}_{2}$, we get approximately

- If we add the graphs when $1-\vec{u}_{q} \cdot \vec{u}_{2} \ll 1-\vec{u}_{q} \cdot \vec{u}_{1}$, we get approximately

- If we add the graphs when $1-\vec{u}_{1} \cdot \vec{u}_{2} \ll 1-\vec{u}_{q} \cdot \vec{u}_{1}$, we get approximately

- For the graph

it is as if the soft, wide-angle gluon were emitted first, from an on-shell quark.
- This suggests omitting interference graphs and ordering the splittings in order of emission angles, treating daughter partons as on-shell.
- Impose lower limit on virtuality of these splittings, say 1 GeV .
- This gives an angle-ordered shower, as in Herwig.

Summary

- There are two ways to construct parton showers.
- A virtuality ordered shower puts the hardest interactions first, based on the hard-soft factorization of Feynman graphs.
- Actually, transverse momentum is usually used in place of virtuality.
- One needs to include interference graphs.
- Alternatively, one can skip the interference graphs and use an angle ordered shower.

