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The aim of these lectures

e How can we understand the evolution of a parton
shower? What is the underlying physics?

e [ will concentrate on evolution equations.
e My analysis follows work with Zoltan Nagy:

o | will say little about computer algorithms to
implement these equations.

» In fact, the general shower evolution equation is
beyond what one can efhiciently implement.

Tuesday, July 12, 2011



What do parton shower event
generators do?

e An “event” is a list of particles (pions, protons, ...) with
their momenta.

e The MCs generate events.

e The probability to generate an event is proportional to
the (approximate!) cross section for such an event.

o Alternatively, cross section could be a weight given by
the program times the probability to generate the
event.
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The description of an event is a bit tricky...

1. Incoming hadron (gray bubbles)
= Parton distribution function

2. Hard part of the process @

= Matrix element calculation at LO,
NLQO, ... level

3. Radiation (red graphs)
= Parton shower calculation
= Matching to the hard part

4. Underlying event (blue graphs)
= Models based on multiple
interaction

5. Hardonization (green bubbles)
= Universal models
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Compare this to a
perturbative cross section

1. Incoming hadron (gray bubbles)
= Parton distribution
function

2. Hard part of the process
= \atrix element calculation

at LO, NLO, ... level
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Why do we need parton

showers?

e We need predictions for
events at LHC and
"levatron.

e LO and NLO perturbation
theory can give predictions

for VeI y lnCIUSIVC Cross % \ Picture: ATLAS simulation
sections. ‘

e We use parton showers to get predictions for the complete
final state approximately right.
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Matching

— —,

Tree \ LO Parton Loop

L(D Matchlng

NLO Matchlng calculations

calculations Shower

e One can match the parton shower calculation to
exact tree level 2— n cross sections for small values
of n.

e One can, with difficulty; also do this with loop level
2 —»n perturbative calculations.

e I omit discussion of these important topics.

e Instead, I discuss just lowest order parton showers.
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A simple illustration

e Use an example in which partons carry momenta,
but no flavor, color, or spin.

o ngtheory in six dimensions works for this.

e Also, just consider the evolution of the final state, as
in electron-positron annihilation.
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States

e For a generic description of shower MCs, use a
notation adapted to classical statistical mechanics.

e State with m final state partons with momenta p
‘{p}m) B ‘{plap% 00 < 7pm})
o General state |p)

e Cross section for the state to have m partons with
definite momenta ({P}m|p)

o Completeness relation

1= - [1dlphal 1h) ({2
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Measurement functions

e Measurement function (F|

e Cross section for F

olF) = Y [dphal (Fphn) (b}l
= (Flp)

o Totally inclusive measurement function (1|

(1{pim) =1
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Evolution

e State evolves in resolution scale 7.

e = (): hard; increasing f means softer.

e Evolution follows a linear operator
p(t)) = Ut T)]p(t))

e Evolution does not change the cross section

(Lt () |p(t')) = (L]p(E))
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Structure of evolution

3
Z/{(tg,tl) = N(tg,tl) —I—/ dit- Z/{(tg,tg) HI(tQ)N(tQ,tl)
i1

Hi(t) = splitting operator

N (t',t) = no change operator

N(t/,t)‘{p}m) — A(t,t'; {Ptm)iP}tm)

L

>




Probability conservation

U (ts, t1) :N(tg,t1)+/3dt2 U(ts, to) Hi(ta) N(ta, t1)
(LU(t,t") = (1] and N, t){p}m) = A, t'5{p}m){P}m)

L= A(ts, t1: {p}m) + / dty (1 H1(t2)|{p}m) Alta, t1; {phm)

d
dtg

A(ts, t1: {pVm) = exp (_ /: dT (1‘7'(1(7')‘{19}7%))

A(ts, t1;{ptm) = — (1| H1(t3) |[{p}m) Alts, t1; {p}m)




Summary

3
u(tg,tl):N(tg,t1)+/ dto U(ts,ts) Hi(ta) N(ta,t1)

t1

Nt ) {ptm) = A, U5 {p}m)[{P}m)

Inclusive probability
to split in time d7

/ —
Alts t1: (pho) = exp <_ /tlg dr (1\H1(7)|{p}m)>
~— ~ gl

Probability not to split
between times t; and t3
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Splitting

)

M({Dymi1) = M({pjm) X

Qﬁl . ﬁm—l—l




Kinematics

e The details are not important, but it is important
to know that there are details.
e Parton [ splits into partons [ and m + 1.

e Before the splitting, momenta are p;,.

o After the splitting, momenta are p;.

Pm+1

| m—

e We need p7 = 0, but then p; # p; + P
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One choice

e Total momentum of final state partons ()

e Lightlike reference vector n
Q2
n =0 pi
2p1 - Q)
e Splitting variables: A
* Virtuality variable y ~ D
x Momentum fraction z

x 'Iransverse unit vector u |

_ 2]3frn—|—1 | ﬁl
2p; - @

* Y
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¢ Use shorthand A = /(1 + )2 — 4yQ?%/(2p; - Q).

ﬁm—|—1
Pi

‘./:’,' r” o K
4 o
7 ". .. E /A

"4

e Then define p,,+1 and p; in terms of the splitting variables.

5 I+ A4y 2y
] = 1 — 22(1 —
Pm+1 = 2 5 pr+ ( Z)1+>\+ynz+\/z( 2)y uL
1+ )\ 2
pr=(1—2) +2+ypl+z1_|_;\/+ynl—\/Qz(l—z)yuL

e Note that p,,.1 + p; 1s not exactly p;.
e Maintain momentum conservation with a Lorentz
transformation of the spectator momenta.

Di = Apz‘
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Summary of splitting

A

Pm+1
e Using vy, 2z, u, ‘pz Kﬁl
({p}m+1|H1(t)|p)

S (1o (2 )) [ Q:Q{p}m\p)

e y is fixed by .

e The p; are given by the p; and the splitting variables.
e The splitting probability, including a jacobian factor, is

proportional to

dt z(1 — z)dz du
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Solution of evolution

e Evolution equation

—/ —/

o generates (either analytically or in computer code)

| _.<—
tti IS YIS
: — | [
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Difterential equation

e U{(t,t") obeys a simple differential equation.
e Define V(t) by

V(t)H{ptm)
v(t, {P}m)

v(t, {Ptm)[{P}tm)
(HHu(t){ptm)

e Then

d AN /
EN(t,t)——V(t)N(t,t)




e Then

%Z/{(t,t’) = [Hui(t) = V()] U(t, 1)

e Proof. Suppose that U(t,t") obeys this equation and define

y t
Ut 1) = N(¢,t") + / dr U(t, 7) Ha(r) N (7, 1)
Then |

Ut ) = [Hi(t) — V(O U(L )
Also

_~

U ) =U( )
Thus

~

Ut =U(tt)
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Connection with
perturbation theory

%Zx[(t,t’) = [Hi(t) = V@)U, ')

implies

(FIU(15,0)[p(0) = (FIo(0) + [ dt (FIFa(0) = V{O)|p(0) + -




The corresponding graphs

(FU(15,0)lp(0) = (FIo(0) + [ dt (FIF(0) = V{O)|p(0) + -

e Born hard scattering graph

(
(F|p(0)) < >

)

e Approximate real emission with virtuality cutoft

(
[ ar ) ipo) Cb"
)




e Approximate virtual graphs with virtuality cutoft

] | |
[t mv1po) «f >< f‘»

)
(1Verue(t)[p(0)) = (1/H1(2)|p(0)) — 0 for ¢ — oc.

)
e The true virtual graphs obey

e Our approximation shares this property since
(1Y (t)[p(0)) — (1[H1(2)[p(0)) = O
e But the approximation is not exact for finite ¢.

e This allows us to preserve the hard scattering

cross section exactly. (1|U(¢,t") = (1]
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Partons in the initial state

e State with m final state partons with momenta p;
and two initial state partons with momentum

fractions 0., Ny

{P}m) = [{Mas b, P1, P2, - -, Pm })

= W o =
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—

1
2
3
4

b

e General state |p) so that cross section is

olF) =Y [ [a{wh] (FIph) ({9}l

e |p) includes the parton distributions

fa(ma)fe(m)
2N b DA * DB

({p}m|p) — ‘M({p}m)‘Q
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Factorization

ﬁm—l—l

M({pymi1) = M({pjm) X

_Qﬁa | ﬁm—l—l




Splitting operator

({p}m‘p) — ‘M({p}m)‘Q fA(na)fB(nb)

2MaNbDA *PB
So
({ﬁ}m—H |H1 (t) }p)
@ )@=
— ol t—1
zz: (t Og(\2ﬁz-ﬁm N
i . A A
g Nalb fA(a) fB (1)
X _Qﬁl - Do, | ﬁaﬁbfA(na)fB(nb) ({p}m‘p)




Shower time

Showers develop in “hardness” time.

) ) ) ) )
:/ -
e
// .
//
|
L \\\\
\ \\‘
T~
\\
\\\\
\\
N
—/ \—/ \—/ —/ \—/

Real time picture Shower time picture
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QCD

e QCD is more complicated than scalar field theory:

e In typical parton shower algorithms, the main
approximation is collinear or soft splitting.

e I will first sketch the structure of evolution with just
this approximation.

e Then I will describe further approximations related
to color, spin, and quantum interference for soft
gluons.
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The matrix element

e The basic object is the quantum matrix element
Ca,Cb,C]_ ,...,Cm
M({p7 f}m)sa,sb,sl,...,sm
e This is a function of the momenta and flavors and

carries color and spin indices. Consider it as a vector
in color and spin space

‘M({p, f}m)>
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The cross section

The cross section with a measurement function F is then

5 1 faya(Mas 17) for 8100, 1E)
o] = zm:ﬁ / Hp: F1m] 4nc(a)ne(b) 2nanupa -pB

< (M({p, f) [F U, £ 1) [ M{D, £ 1))

e ¢ and b are the flavors of the incoming partons.

® fu/a(Na, ) is a parton distribution function.

e n.(a) is the number of colors for flavor a.
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The density matrix

ol =3 - [ [dp: £1n] Telp({p: £1) F ({5 Fhn)

where

p({p, f1m)
. faya(Mas 13) oy B (Mo, 1)
= M D) g ane(®) 2napa-pn. M)

— Z: Z: |{S7 C}m> p({p, f, 8", ¢ s, chm) <{S/’ C/}m|




Density matrix in “classical”
notation

p({p7 f7 8/7 Cl? S, C}m) — ({p7 f7 8,7 C/v S, C}m‘p)

e For QCD, partons have momenta and flavors.

e Furthermore, there are two sets of spin indices and
sets of color indices.

e There are lots of indices, but the general formalism
is the same as sketched earlier.
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Splitting

P

‘ . ﬁm—i—l

this 1s an exact
5 Feynman graph

b1
ﬁl + pm-l—l

.
(4

Pm+1

approximation is here,
the kinematics is an m
body configuration
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Soft gluon emission

Splitting includes interference graphs.

A soft gluon approximation is used for the splitting function.

Here you may think of 1 and 3 as a “dipole” that
radiates 2 coherently:.
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Evolution equation

e The structure of the evolution is the same as before:

3
U(ts, t1) = N(ts,t1) +/ dta U(ts, ta) Hi(ta) N (t2,t1)

i i
EN(t,t)_ —V(t)N(t,t)
(1|V(t) = (1| Ha(t)

e V(1) leaves the number of particles, their momenta,
flavors, and spins unchanged.

e Unfortunately, it is not diagonal in color.
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Spin approximation

e One commonly averages over
the spin states of a parton that
is about to split and sums over
the spin states of the daughter
partons.

e This eliminates angular
correlations that arise from the
spin states.

e For sufhiciently inclusive
observables, it should be a
pretty good approximation.
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Color

e One can use a set of “string” basis states for color.

imple.

1S S

itting

is, spl

e With this bas
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Color approximation

e Shower programs usually use a large N. approximation.

An interference diagram, to be
decomposed in basis states.

The leading contribution A subleading contribution.
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Simplified evolution equation

e The structure of the evolution is still:

3
U(ts, t1) = N(ts,t1) +/ dta U(ts, ta) Hi(ta) N (t2,t1)

t1

d AN /
E/\/(t,t)——l}(t)/\/(t,t)

e V(1) leaves the number of particles, their momenta,

flavors, and colors unchanged. Spin has been eliminated.

e This is approximately the organization of Pythia.
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Angular ordering

e There is an alternative way of organizing a parton
shower, used in Herwig.

e To understand it, consider the splitting of a quark
into a quark + a gluon at a small angle, followed by
the emission of a soft gluon from the two sister
partons.
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—

® U, U2, and u, are unit three vectors o< pi, p2, and gq.

e < is the polarization vector for the soft gluon.

o If / 1-2 is much smaller than £ ¢-1 and £ ¢-2

then the two factors are the same
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e This includes the color tactor.

e It is as if the soft gluon were emitted from a lightlike line

in the p; + po direction.
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e Consider the sum

o If we add the graphs when 1 — 4, - u; < 1 — 14, - U,
we get approximately
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o If we add the graphs when 1 — 4, - o < 1 — 4, - Uy,
we get approximately
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o If we add the graphs when 1 — ;- s < 1 — 4, - U,

we get approximately
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* For the graph

it is as if the soft, wide-angle gluon were emitted first,
from an on-shell quark.

e This suggests omitting interference graphs and

ordering the splittings in order of emission angles,
treating daughter partons as on-shell.

Impose lower limit on virtuality of these splittings, say

I GeV.

e This gives an angle-ordered shower, as in Herwig.
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Summary

e There are two ways to construct parton showers.

o Avirtuality ordered shower puts the hardest

interactions first, based on the hard-soft
factorization of Feynman graphs.

- Actually; transverse momentum is usually used in
place of virtuality:.

- One needs to include interference graphs.

e Alternatively, one can skip the interference graphs

and use an angle ordered shower.
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